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Abstract: Rare mutations associated with schizophrenia (SZ) and bipolar disorder (BD) usually have
high clinical penetrance; however, they are highly heterogeneous and personalized. Identifying rare
mutations is instrumental in making the molecular diagnosis, understanding the pathogenesis, and
providing genetic counseling for the affected individuals and families. We conducted whole-genome
sequencing analysis in two multiplex families with the dominant inheritance of SZ and BD. We
detected a G327E mutation of SCN9A and an A654V mutation of DPP4 cosegregating with SZ and BD
in one three-generation multiplex family. We also identified three mutations cosegregating with SZ
and BD in another two-generation multiplex family, including L711S of SCN9A, M4554I of ABCA13,
and P159L of SYT14. These five missense mutations were rare and deleterious. Mutations of SCN9A
have initially been reported to cause congenital insensitivity to pain and neuropathic pain syndromes.
Further studies showed that rare mutations of SCN9A were associated with seizure and autism
spectrum disorders. Our findings suggest that SZ and BD might also be part of the clinical phenotype
spectra of SCN9A mutations. Our study also indicates the oligogenic involvement in SZ and BD and
supports the multiple-hit model of SZ and BD.

Keywords: schizophrenia; bipolar disorder; whole-genome sequencing; rare mutation

1. Introduction

Schizophrenia (SZ) and bipolar disorder (BD) are two devastating chronic mental dis-
orders, with the pathogenesis remaining to be elucidated. Genetic factors play a significant
role in the etiology of these two disorders [1,2]. The genetic bases of these two disorders
are complex, involving common variants with modest effects and rare mutations with high
clinical penetrance in multiple genes. Identifying common variants and rare mutations
associated with SZ and BD has increased our understanding of the neurobiology of these
two disorders [3–5]. Although SZ and BD are two psychiatric diagnoses from the clinical
aspect, there is a significant overlap of symptoms between these two disorders [6]. It is not
uncommon to observe members affected with SZ or BD within the same family. Further-
more, genetic studies showed overlaps of genetic variants between these two disorders,
indicating these two disorders share some common heritability [7–10].

Rare genetic mutations associated with SZ and BD are highly heterogeneous, includ-
ing chromosomal abnormalities [11], copy number variations (CNVs), and rare single-
nucleotide variants [12,13]. Additionally, rare mutations associated with SZ and BD are
highly personalized; most are private to the affected individuals and families. Identifying
private pathogenic mutations associated with SZ and BD can help establish the molecu-
lar diagnosis, understand the pathogenesis, and provide helpful genetic counseling for
the affected patients and families. Recent advances in high-throughput genome-wide
mutation scanning methods, such as chromosomal microarray analysis (CMA) [14] and
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next-generation sequencing (NGS) [15], have facilitated the detection of private mutations
associated with SZ and BD.

Rare pathogenic mutations associated with SZ and BD may occur sporadically or
transmit within families. Family-based analysis can help elucidate the inheritance of rare
mutations and their relationship with SZ and BD. Hence, identifying mutations cosegre-
gating with psychiatric conditions in affected members within the family is an effective
strategy to discover high penetrant pathogenic mutations associated with psychiatric disor-
ders [16]. In our genetic study series of psychiatric disorders, we consecutively recruited
families with single or multiple patients to search for their genetic deficits using systematic
genetic analyses, including karyotype analysis, CMA, and NGS analysis.

2. Results

We recruited two multiplex families with SZ and BD transmitted in a dominant
inheritance pattern. We did not find any chromosomal abnormality or pathogenic CNV
in these two multiplex families. Nevertheless, whole-genome sequencing (WGS) analysis
identified several rare deleterious missense mutations cosegregating with psychiatric
conditions in these two families.

2.1. Family 1

The first family was a three-generation family with several members diagnosed with
SZ and BD. As shown in Figure 1, the grandfather (I-1) was diagnosed with BD. He had six
children, the first son (II-1) also had BD, but his two daughters (II-2 and II-3) were diagnosed
with SZ. His other three children did not have mental disorders (II-4, II5, and II-6). Further, he
had two grandchildren diagnosed with SZ (III-1 and III-4). The other grandchildren (III-2,
III-3, III-5, III-6, III-7, III-8, III-9, and III-10) did not have any mental illness.
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Figure 1. Pedigree of the three-generation family with multiple affected members. Black color indicates the diagnosis of SZ,
while gray color indicates the diagnosis of BD. All the affected members carried the G327E mutation of SCN9A and the
A654V mutation of DPP4.

We analyzed the whole-genome sequencing data from available family members
under the dominant inheritance and identified two missense mutations cosegregating the
psychiatric conditions in this family. We verified the authenticity of these two mutations
using Sanger sequencing (Figure 2). The first one was a C-to-T change at nucleotide
position 167149868 of chromosome 2 (rs765818027). The C-to-T change led to an amino
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acid sequence alteration from glycine to glutamic acid at codon 327 of the SCN9A gene,
designated G327E. Bioinformatics analysis showed that the allele frequency of this mutation
was very rare in several public genome databases, including Taiwan Biobank (Table 1).
Additionally, several online software predicted that this mutation was pathogenic (Table 1).
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Figure 2. Representative Sanger sequencing tracings of the wild-type and heterozygous mutations of the G327E mutation of
SCN9A (A) and the A654V mutation of DPP4 (B) in unaffected and affected family members, respectively.

Table 1. Position, allele frequency, and functional prediction of rare mutations identified in this study.

Family Gene and
dbSNP Position of Mutation

Allele Frequency Functional Prediction

Taiwan
Biobank ALFA PROVEAN PolyPhen-

2 SIFT

1 SCN9A
rs765818027

NC_000002.11:g.167149868C>T
NM_002977.3:c.980G>A

NM_002977.3:p.Gly327Glu
0.001648 0 Deleterious Probably

damaging Damaging

1 DPP4
rs149643982

NC_000002.11:g.162865098G>A
NM_001935.3:c.1961C>T

NM_001935.3:p.Ala654Val
0.000659 0.000156 Deleterious Probably

damaging Damaging

2 SCN9A
rs187526567

NC_000002.11:g.167137045A>G
NM_002977.3:c.2132T>C

NM_002977.3:p.Leu711Ser
0.003955 0.000068 Deleterious Probably

damaging Damaging

2 ABCA13
rs142532424

NC_000007.13:g.48556342G>A
NM_152701.4:c.13662G>A
NM_152701.4:p.Met4554Ile

0.001978 0 Deleterious Possibly
damaging Damaging

2 SYT14
rs77686387

NC_000001.10:g.210267700C>T
NM_153262.3:c.476C>T

NM_153262.3:p.Pro159Leu
0.003652 0.000318 Neutral Probably

damaging Damaging

ALFA: Allele Frequency Aggregator; PROVEAN: Protein Variation Effect Analyzer; PolyPhen-2: Polymorphism Phenotyping v2; SIFT:
Sorting Intolerant From Tolerant.

The second mutation was a G-to-A change at nucleotide position 162865098 of chromo-
some 2 (rs149643982). The nucleotide change resulted in an amino acid substitution from
alanine to valine at codon 654, designated Ala654Val. Bioinformatics analysis indicated
that the allele frequency of this mutation was very rare in several public genome databases,
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including Taiwan Biobank (Table 1). Additionally, online software predicted this mutation
had a deleterious effect on the DPP4 gene (Table 1).

2.2. Family 2

The second family was a two-generation family consisting of five members. As shown
in Figure 3, the father (II-1) was diagnosed with BD. He had three children. His third child
was diagnosed with SZ (II-3), while the other two children (II-1 and II-1) did not have any
mental disorders. We analyzed the WGS data under the dominant inheritance and detected
three missense mutations cosegregating with the psychiatric diseases. The authenticity of
these three mutations was verified by Sanger sequencing (Figure 4). The first mutation
was an A-to-G change at the nucleotide position 167137045 of chromosome 2 (rs187526567).
This nucleotide change led to amino acid substitution from leucine to serine at codon 711,
designated Leu711Ser. The allele frequency of this mutation was very rare in several public
genome databases, including Taiwan Biobank (Table 1). Online software also predicted
that this mutation was pathogenic (Table 1).
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Figure 3. Pedigree of the two-generation family with the affected father and his son. Black color
indicates the diagnosis of SZ, while gray color indicates the diagnosis of BD. The two affected
members carried the L711S mutation of SCN9A, the M4554I mutation of the ABCA13, and the P159L
mutation of the SYT14.

The second mutation was a G-to-A substitution at nucleotide position 48556342 of
chromosome 7. This substitution altered the amino acid sequence from methionine to
isoleucine at codon 4554 of the ABCA13 gene, designated Met4554Ile. The allele frequency
of this mutation was very rare in several public genome databases, including Taiwan
Biobank (Table 1). Additionally, this mutation was predicted to have a damaging effect on
the ABCA13 (Table 1).

The third mutation was a C-to-T substitution at the nucleotide position of 210267700
of chromosome 1 (rs77686387). This substitution altered the amino acid proline to leucine
at the codon 159, designated Pro159Leu SYT14 gene. This mutation was also very rare in
several public genome databases (Table 1). Additionally, online software predicted this
mutation had a damaging effect on the SYT14 (Table 1).
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the L711S mutation of SCN9A (A), the M4554I mutation of the ABCA13 (B), and the P159L mutation
of the SYT14 (C) in unaffected and affected family members, respectively.

3. Discussion

This study identified two rare mutations, the G327E mutation of SCN9A and the
A654V mutation of the DPP4, cosegregating with SZ and BD in the first family and three
rare mutations cosegregating with SZ and bipolar in the second family, including L711S
mutation of SCN9A, M4554I mutation of ABCA13, and P159L of SYT14. Notably, each
family had a missense mutation of SCN9A, respectively.

The SCNA9A gene encodes the sodium voltage-gated ion channel alpha subunit 9,
which plays an essential role in nociception signaling. Loss-of-function mutations of SCN9A
were associated with congenital insensitivity to pain [17], while gain-of-function mutations
of this gene were associated with neuropathic pain syndromes, including erythromelalgia,
paroxysmal extreme pain disorder, and small-fiber neuropathy [18,19]. In addition to
pain-related diseases, mutations of SCN9A were associated with epilepsy in some case
reports [20,21]. Nevertheless, a recent study reported no association between SCN9A and
monogenic epilepsy disorders [22]. Of notice, the study by Robinson et al. reported that
rare mutations of SCN9A were associated with autism spectrum disorders (ASDs). Their
study found a C1143F mutation in the second intracellular loop of SCN9A shared in a
family with multiple affected members. Furthermore, they found a significant increase of
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rare mutations in the second intracellular loop of SCN9A in ASD patients compared to
control subjects. Hence, they concluded that rare mutations of SCN9A were involved in
the etiology of autism in some families [23]. Together, these studies suggest that mutations
of SCN9A might have pleiotropic clinical effects and play a role in neurodevelopmental
disorders in addition to pain-related disorders.

The G327E mutation of SCN9A identified in the first family was located at the first
extracellular loop of the sodium voltage-gated ion channel alpha subunit 9. Two previous
studies found the G327E mutation in patients with various seizure phenotypes [21,24].
The L711S mutation of SCN9A in our second family was located at the first intracellular
loop of the sodium voltage-gated ion channel alpha subunit 9, a novel mutation not
reported associated with any disease in the literature to our knowledge. Our patients
did not manifest symptoms related to pain or seizure. We propose that these two SCN9A
mutations contribute to the pathogenesis of psychiatric conditions in these two families,
and the SCN9A is a risk gene for SZ and BD. Our findings expand the clinical phenotype
spectrum of SCN9A mutations.

In the first family, we detected another mutation, A654V of DPP4 cosegregating with
psychiatric conditions. The DPP4 encodes the dipeptidyl peptidase 4, which is a multi-
functional transmembrane protein expressed in various tissues. Altered concentration
or activity of DPP4 in the blood was observed in patients with autism spectrum disor-
ders [25,26], anxiety [27], depression [28], and eating disorders [29], suggesting DPP4
dysfunction is involved in various psychiatric disorders. To our knowledge, no mutation of
DPP4 was reported to be associated with SZ and BD in the literature. Our study suggests
that mutations of DPP4 contribute to the pathogenesis of SZ and BD in some patients.

We detected two additional mutations cosegregating with psychiatric conditions in
the second family, the M4554I mutation of ABCA13 and the P159L of SYT14. The ABCA13
is a member of the ATP-binding cassette (ABC) gene superfamily consisting of seven
subfamilies (from A to G) and at least 48 genes. The ABC family genes encode transporters
that utilize the hydrolysis of ATP as the energy source to transport the substrates across
the membrane to maintain the normal physiological functions in various tissues [30].
The ABCA13 encodes a large protein of 5058 amino acids and internalizes cholesterol
and gangliosides from the plasma membrane to intracellular vesicles [31]. Knight and
colleagues were the first to report the significant association of rare mutations of ABCA13
with SZ, BD, and major depression [32]. However, the other groups did not support
this association [33,34]. The discrepancy might be due to the low frequency of ABCA13
mutations in patients with these psychiatric disorders or the different populations in their
studies. The detection of the M4554I mutation of ABCA13 in this study agrees with the
findings from Knight and colleagues and supports the proposal that rare mutations of
ABCA13 might be involved in the pathogenesis of SZ, BD, and major depression [32].

The SYT14 gene encodes the synaptotagmin 14 protein, a member of the synaptotag-
min gene family consisting of 17 members. Synaptotagmins regulate the membrane fusion
of synaptic vesicles during neurotransmitter release [35]. They are calcium sensors and
trigger the fast neurotransmitter release neurotransmission upon coupling the calcium
influx [36]. The SYT14 is a calcium-independent synaptotagmin [37], expressed in the brain
and other tissues [37,38]. Disruption of the SYT14 by a balanced chromosomal translocation
t(1;3)(q32.1;q25.1) was reported in a girl with cerebral atrophy, macrocephaly, seizures, and
developmental delay [38].

Additionally, Doi and colleagues reported a homozygous missense mutation of the
SYT14 in a Japanese family with psychomotor retardation and cerebellar ataxia [39]. The
mutation was a G-to-A substitution at the SYT14 cDNA nucleotide position 1451, which
led to the amino acid change from the glycine to aspartic acid at codon 484, designated
G484D. Together, these studies indicate that dysfunction of SYT14 might be involved in
neurodevelopmental disorders. Hence, the P159L mutation of SYT14 identified in the
second family might also contribute to the pathogenesis of SZ and BD.
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Our findings in this study also support the oligogenic or multigenic involvement of SZ
and BD [13]. Emerging evidence suggests that combinations of multiple rare mutations are
an essential model of psychiatric disorders. For example, Kerner and colleagues reported
detecting eight rare mutations shared by three affected siblings with BD in a family [40]. Goes
and colleagues detected 84 rare damaging variants segregating with BD in eight multiplex
families [41]. Maaser and colleagues conducted whole-exome sequencing (WES) in fifteen
patients with BD in two large multiplex families from Cuba; they identified a total of seventeen
rare potentially damaging mutations in seventeen genes shared by the affected patients in two
respective families [42]. Ganesh and colleagues performed exome sequencing in thirty-two
patients from eight multiplex families with severe mental illnesses. They identified forty-two
rare deleterious mutations, with an average of around five mutations per family. None of
them was shared across different families [43]. John and colleagues recently reported five
rare damaging mutations from five different genes shared by four affected members in a
four-generation SZ family [44]. Together, these studies indicate that interactions of multiple
rare deleterious mutations are parts of the SZ and BD landscape.

4. Materials and Methods
4.1. Subjects

All subjects were residents of Taiwan. We consecutively recruited families with
single or multiple cases affected with SZ and BD into this study. The Review Board of
Chang Gung Memorial Hospital-Linkou approved this study with Approval Number
201801385A3. Each participant signed the informed consent after a full explanation of
this study. We interviewed each participant and reviewed their medical records to collect
their clinical information. The psychiatric diagnosis was based on the diagnostic criteria of
the DSM-5 (Diagnostic and Statistical Manual of Mental Disorder-5th edition). The blood
sample from each participant was collected for genetic experiments.

4.2. Karyotyping and Chromosomal Microarray Analysis

Karyotyping analysis was performed to search for chromosomal abnormalities using
the conventional G-banding method according to the method established in the laboratory.
The chromosomal microarray analysis was conducted following the manufacturer’s proto-
col to search for pathogenic CNVs using Affymetrix Genome-Wide Human SNP Array 6.0
(Affymetrix, Santa Clara, CA, USA). The CMA experiment was performed at The National
Genotyping Center (Academia Sinica, Taipei, Taiwan).

4.3. Whole-Genome Sequencing (WGS) Analysis

Paired-end whole-genome sequencing was performed using the Illumina NovaSeq6000
platform (Illumina, San Diego, CA, USA) to search for small insertions and deletions (indels)
and single-nucleotide variants (SNVs). The experiment followed the standard protocols
provided by the manufacturer. After a quality check, the raw sequencing data were aligned
to the human reference genome build hg19/GRch37. Afterward, we used the SAMtools
and Genome Analysis Toolkit to refine the local alignment and generate a variant calling
file for each subject. Variants were further annotated, filtered, and analyzed under the
dominant inheritance. We used the SeqsLab software (Atgenomics, Taipei, Taiwan) to
perform these analyses.

4.4. Sanger Sequencing

We designed primer pairs to obtain amplicons that covered the mutation by poly-
merase chain reaction (PCR)-based Sanger sequencing to verify the authenticity of mu-
tations identified from whole-genome sequencing analysis. In brief, 30 cycles of PCR
were performed in a 20 mL mixture containing 100 ng DNA, 1 µM of each primer, 1X
buffer, 0.25 mM of dNTP, and 0.5 U of Power Taq polymerase (Genomics, New Taipei City,
Taiwan). An aliquot of the amplicon was purified and subjected to Sanger sequencing
using the BigDye Terminator kit v3.1 (Applied Biosystems, Foster, CA, USA). The primer
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sequences, optimal annealing temperature, and size of each amplicon are summarized in
Table 2.

Table 2. Sequences of primers, optimal annealing temperature (Ta), and amplicon size for PCR-based sequencing of
mutations identified in this study.

Gene and SNP Forward Primer Sequences Reverse Primer Sequences Ta Size
(bp)

SCN9A
rs765818027 5′-CACCAGGTACATATGCCATTC -3′ 5′-TCCTTATTCAATATTGTCCCCC-3′ 60 ◦C 313

DPP4
rs149643982 5′-ACCCAGCCTTGCAAAATAGCAG-3′ 5′-GGAAACTGCGACTCGCTTACCA-3′ 60 ◦C 357

SCN9A
rs187526567 5′-ATTGGGTGGTGTTCCATAGC-3′ 5′-GCCTGACTGATTTGTATCTGG-3′ 60 ◦C 275

ABCA13
rs142532424 5′-TCAGGGATTCACCCCAAGGTC-3′ 5′-GATGGCTAGCAACCGGGGCAT-3′ 60 ◦C 241

SYT14
rs77686387 5′-GTTGCCATCAATTTTTTGATCCAG-3′ 5′-CTTGGACTGTTGCTGCAGTGGG-3′ 60 ◦C 264

4.5. Bioinformatics Analysis

We checked the allelic frequency of the mutations identified in this study in the dbSNP
(https://www.ncbi.nlm.nih.gov/snp/ (5 December 2021) and the Taiwan Biobank (https:
//taiwanview.twbiobank.org.tw/index (5 December 2021). Additionally, we conducted
in silico analysis to assess the functional impact of mutations identified in this study
using three online software, including Polyphen-2 (http://genetics.bwh.harvard.edu/
pph2/index.shtml (5 December 2021), SIFT (https://sift.bii.a-star.edu.sg/ (5 December
2021), and PROVEAN (http://provean.jcvi.org/index.php (5 December 2021).

5. Conclusions

This study combined the WGS and the family analysis and identified multiple rare
pathogenic mutations in four genes cosegregating with SZ and BD in two multiplex families.
Our findings expand the genetic and allelic heterogeneity associated with SZ and BD and
support the multihit model of complex psychiatric disorders. Further functional studies of
these mutations are needed to address mechanistic pathogenesis.
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