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A B S T R A C T

Crop infestation with root-knot nematodes (RKN) and water deficiency lead to similar visible symptoms in the
plant canopy. Identification of biotic or abiotic stress origin is therefore a problem, and currently the only reliable
methods for determination of RKN infestation are invasive and applicable only for point-searches. In this study
the applicability of hyperspectral remote sensing for early identification of drought stress and RKN infestations in
tomato plants was tested. A four-stage image and data management pipeline was established: (1) image
acquisition, (2) data extraction, (3) pre-processing, and (4) processing.

� This pipeline reduces atmospheric impacts, facilitates data extraction (by using specially designed spectral
libraries and supervised classification procedures), diminishes the impact of viewing geometry, and
emphasized small spectral variations not apparent in the raw data.

� By combining partial least squares – discriminant analysis and support vector machines with time series
analysis, we achieved up to 100% classification success when determining watering regime and infestation, and
their severity.

� This pipeline could be at least partially automated, thus facilitating high throughput identification of stress
origin in plants. Furthermore, the same pipeline could be applied to hyperspectral phenotyping procedures,
which are gaining importance in breeding programs.

© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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Specifications Table
Subject Area: Agricultural and Biological Sciences
More specific subject area: Precision agriculture and plant protection
Method name: Hyperspectral image processing
Name and reference of
original method:

H. Huang, L. Liu, M. Ngadi, Recent developments in hyperspectral imaging for assessment
of food quality and safety, Sensors. 14 (2014) 7248–7276. https://doi.org/doi:10.3390/
s140407248.

Resource availability: IEnvi, https://www.harrisgeospatial.com/SoftwareTechnology/ENVI.aspx
Unscrambler, http://www.camo.com/rt/Products/Unscrambler/unscrambler.html
R, https://www.r-project.org/

ethod details

ackground

Plant-parasitic nematodes have a major impact on global food production, with an annual loss of
pproximately $100 billion worldwide [1]. Root knot nematodes (RKN) of the genus Meloidogyne are
ne of the most important agricultural pests [2–4], accounting for approximately 5% of global crop
osses [5]. The group of tropical RKNs can parasite a wide range of host plants, hundreds of
gricultural crops belonging to monocotyledons, dicotyledons, including herbaceous and woody
lants.
The nematodes actively enter growing plant roots and elicit development of feeding sites where

isible root galls develop. The deformed root system thus leads to reduced uptake of water and
utrients, and overall weakening of the host plants [6]. Visible symptoms of infestation on
hotosynthetically active tissue are akin to those of water deficiency, making accurate identification of
tress origin difficult. Furthermore, these symptoms develop during the last stages of nematode
nfestation, making early detection vitally important. Visually checking the root system for galls is
urrently the most reliable method of determining RKN infestation. However, this approach is invasive
nd useful only for point-searches on individual plants. Remote sensing applications enable
on-invasive and early detection of drought stress, and its origin (biotic or abiotic). Moreover,
etection can be performed on several plants at the same time, thus covering larger areas or more
lants than with point-searches.
Hyperspectral imaging is a passive remote sensing method, which combines the benefits of two

ajor techniques, imaging and spectroscopy [7]. These devices record image planes of the object
nder study, at different wavelengths, and superimposes these, forming a three-dimensional data
ube, the hyperspectral image [8]. After radiometric corrections, reflectance can be computed.
nalyses of leaf reflectance can provide physiological and morphological information about plants,
uch as leaf pigmentation and presence of stress [9].
The aim of this paper is to present a hyperspectral data processing pipeline, which can be used as-is

r be adapted for other applications.
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Experimental design

Tomato (S. lycopersicum) hybrid ‘Horus H1’ (L’Ortolano, Italy) plants were divided into six groups
each with seven biological replicates (a single plant per pot) (N = 42). Prior to germination seeds were
sterilized using a 3% aqueous solution of sodium hypochlorite (NaOCL; Kemika, Croatia), and
germinated in the dark on 1/3 potato dextrose agar (PDA; Biolife, Italy) for 6 days at T = 22 �C. Sprouted
seeds without signs of bacterial or fungal infections were transferred to sterile plant substrate and
grown in trays in a climate controlled environment for 16 days. Plants were planted in a mixture of
2 parts fine-grain (MP1/G), 2 parts coarse-grain (MP4) quartz sand (Termit, Slovenia), and 1 part fine
peat substrate Potgrond P (Klasmann-Deilmann, Germany), with a final substrate density of 1.25 g/
cm3. Plantlets were then transplanted into styrofoam multitrays and grown for 35 days, until the root
system was well developed. Finally, 51-day-old plants were transplanted to 5 L polypropylene pots
with a diameter of 25 cm, with the same substrate mixture. In three randomly selected pots
temperature sensors iButton (Maxim, USA) were embedded in the substrate. Temperature
measurements were used to follow the life cycle of nematode Meloidogyne incognita and predict
the completion of the first life cycle, according to the model developed by Širca et al. [10].

Plants were subjected to two sources of stress, abiotic and biotic. For the former, two watering
regimes were used, to attain well-watered and water-deficient conditions, the latter eliciting chronic
drought. Biotic stress was achieved by root-knot nematode infestation. Plants were subjected to three
levels of initial nematode inoculum: (1) no infestation, (2) low infestation (15 �103 M. incognita eggs,
equaling 3 eggs cm�3 substrate), and (3) high infestation (250 � 103 eggs, equaling 50 eggs cm�3

substrate) (Fig. 1). Plants were watered daily with a three-component nutrient mixture Flora Series
(General Hydroponics Europe, France) for hydroponics-based systems. The nutrient mixture was
prepared by mixing three Flora Series (N-P-K) solutions: FloraGro 3-1-7, FloraMicro 5-0-1 and
FloraBloom 0-5-4, according to the manufacturer’s guidelines with regard to the plant developmental
stage. Drought conditions were initiated 8 days after inoculation (DAI) by irrigating plants with the

Fig. 1. Setup of the experiment. Plants were randomly assigned to one of six treatment groups, with seven biological replicates
each.
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owest volume of nutrient solution sustaining turgor pressure. Well-watered plants were irrigated to
ubstrate saturation. All plants received the same amount of nutrients, regardless of watering regime.

yperspectral imaging and spectral acquisition

Tomatoes were scanned using two pushbroom imaging spectrometers; HySpex VNIR (spectral
ange 400–988 nm) and SWIR (spectral range 950–2500 nm) (Norsk Elektro Optikk AS, Norway). The
ameras were mounted horizontally on a tripod coupled with a rotation stage, so the rotation speed
as synchronized with the scanning cameras frame rate and field of view. The system was controlled
y the data acquisition unit using HySpex GROUND software as supplied by the manufacturer. The
maging system setup included two calibrated halogen light sources with an even light intensity
etween 400 and 2500 nm, which were switched on 15 min prior to imaging in order to stabilize light
ource temperature drift and establish spatial lighting uniformity [11]. The cameras were positioned
t 1.5 m from ground level and 3 m distance from the imaged tomato plants – the resulting field of
iew per image was 1 � 2.5 m. Using this arrangement, up to 3 plants could be imaged at the same time
gainst a black background screen (reflectance <5%). Every image also included a calibrated diffuse
hite reference plate with 95% reflectance (SphereOptics, Germany). Hyperspectral imaging was
erformed at three sessions: (1) at 12 DAI (labelled S1), (2) 34 DAI (S2), and (3) 52 DAI (S3). The
maging sessions correspond to early stages of infestation (S1), middle of the nematode development
ycle (S2), and completed first reproduction cycle (S3).

ata pre-processing

Pre-processing was based on the guidelines by Huang et al. [8] and Shrestha et al. [12] (Fig. 2). All
yperspectral images were radiometrically calibrated to radiance units (W sr�1m�2). We established
pectral libraries with four classes: (1) plants, (2) background, (3) white reference, and (4) other.
embers of the last class were pots, sticks, and other artificial materials, used for growing plants, as
upport or as markers. Each imaging session and camera had its own spectral library, hence six
ibraries were constructed (Fig. 3). These spectral libraries were used as endmember collections for
upervised classification using spectral information divergence (SID) [13]. SID classification was
erformed on each image, in order to extract leaf-area pixels (Fig. 4). Classification success for
dentification of plants was 99.76%. Pixel values of each plant were normalised using area
ormalization, due to the variable geometry of imaged plants. Data from white reference plates was
xtracted using the same process (SID classification success 100%). Reflectance values for each band of
ach image pixel (R) were calculated as:

i = (Ii – Di)/((Wi – Di)/0.95),

here Ii represents the reflected signal of the i-th band; Wi is the reflected signal of the i-th band from
he reference panel, and Di is the sensors’ dark current of the i-th band [8].

Misclassified and erroneous pixels were then removed using a set of three simple filters: (i)
pecular reflectance, i.e. reflectance >100% at any band, (ii) dead pixels, i.e. reflectance <0.1% at any
and, and (iii) misclassifications. The latter were removed by calculating the median after removing (i)
nd (ii), then calculating the standard deviation around the median, and lastly, calculating the mean
rom the data inside 2 standard deviations around the median (Fig. 5). In contrast to median values,
eans incorporate spatial variability, and were hence chosen for further analysis. Spectral data
xtraction and filtering was repeated for each plant inside each image, separately for both VNIR and
WIR cameras. Mean values from both cameras were then combined to obtain a complete spectral
ignature of each plant. These data sets were then fused with the label data. Labels included imaging
ession (three labels), watering regime (two labels), infestation (two labels), and treatment (six
abels).

Reflectance data were smoothed by Savitzky-Golay filter using second-order polynomials, and
econd-order derivatives were calculated to remove scattering effects in the spectra and emphasize
mall spectral variations not evident in the raw data. Partial least squares – discriminant analysis
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(PLS-DA) [14] was used as an additional pre-processing step, and to identify relevant spectral regions
by evaluating their correlations with PLS-DA factors. Outliers were identified using Hotelling T2 test.
Variables used in PLS-DA were weighted using a standard deviation weighting process, and models
were validated using full cross-validation. The thus obtained PLS-factor scores were then used as input
variables for support vector machine classification (PLS-SVM).

Classification

For each PLS-SVM classification the capacity factor (C) and gamma value were determined by
performing a grid search of several combinations of C and gamma on a log scale. The combinations
giving the best accuracy were selected for model development. Similar to PLS-DA, variables
(PLS-factors) were weighted using standard deviation weighting. Models were validated using 10-fold
cross validation.

Analyses were first performed on pooled samples, from all three imaging sessions, and later
separately for each imaging session. Finally, samples were analysed separately for well-watered and

Fig. 2. Image and data processing pipeline. The process was divided into four parts. The first three parts were applied to each
plant in each imaging sessions, and classifications (part four) were performed for each imaging session and for all sessions
combined.
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ater-deficient plants, and infected plants alone, to determine the infection severity. Image
re-processing and data extraction were performed in ENVI 5.1 (Harris Geospatial, USA). Spectral
re-processing, PLS-SVM evaluation, and assessment of relevant spectral regions were carried out in R
15], while PLS-DA and PLS-SVM classifications were done in Unscrambler 10.3 (CAMO Software,
orway).

ethod validation

By combining hyperspectral imaging and PLS-SVM biotic and abiotic drought stress in tomato
lants can be differentiated. When all imaging sessions were pooled, a 92% classification success was
chieved for identification of watering regime, while determination of infested plants attained a 77%
uccess, and treatment groups 24.6%. Time-series analysis showed that separation according to time of
maging increased classification success in all groups (watering regime, infestation, and treatment).
maging sessions were classified with a 95% success. Their differences were characterized at spectral
anges 510–576, 606–693, 725–784, 905–909, 1047–1178, 1216–1265, 1330–1390, 1523–1553,
830–1873, and 1906–2015 nm. Plants in drought stress showed lower reflectance in the green
art of the visible spectrum and in NIR, and higher reflectance in SWIR. Determination of watering
egime in time-series data achieved 100% accuracy. These differences were characterized in the NIR
831–875, 966–977, and 983–1009 nm) and SWIR (1140–1156, 1254–1270, and 1390–1400 nm)
egions [16]. Changes in pigment structure are indicated by the relevance of the green and red spectral
anges. NIR and SWIR are linked to physical and chemical characteristics, such as lignin [17], as well as
arbohydrates, proteins, and water content [18].
Determination of infestation showed similar patterns in all three imaging sessions. In the visible

art of the spectrum no apparent differences were observed, while infested plants showed higher
eflectance in NIR, and lower in SWIR. Classification success ranged from 90.5% (imaging session 2) to
00% (imaging session 1). When the data was further divided according to watering regime,
lassification success increased to 100% for all imaging sessions, except for water-deficient plants in
ession 2 (95.2% success rate).

ig. 3. Spectral signatures of the four classes included in the spectral libraries. Lines denote mean spectra, and ribbons their
ccording standard deviations.
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For identification of treatment groups, the SWIR region was most relevant. Plants with low
inoculum showed higher reflectance at 1286–1313, 1482–1514, 1585–1612, 1775–1835, 1982–2009,
2090–2112, and 2291–2308 nm, and lower at ranges 1395–1406, 1889–1917, and 2188–2221 nm.
Furthermore, in water deficient plants, at session 2 and session 3, the NIR and visible spectral regions
were relevant. Classification success was highest when data was separated according to water
availability, and increased from session 1 to session 3 (from 78.6% to 100%).

Plants in drought stress reallocate resources to leaves with a higher potential, and prolonged stress
leads to degradation of pigments and other structural changes [19]. Wavelengths in the ranges 966–
977, 983–1009, 1216–1270, and 1330–1390 nm are linked to the O��H stretch in water, while the range
1047–1178 nm is linked to the N��H stretch of proteins [20]. Some of these spectral ranges are related
to certain physiological processes, which indicate drought stress. A lower reflectance at 535 nm in
linked to an increase in zeaxanthin content, which leads to the photoprotective state of the zeaxanthin
cycle [21]. On the other hand, a decrease at 550 nm is related to adjustments of photoprotective
pigments, such as anthocyanins [22]. As plants matured and RKN infestations became more
established, the relevant spectral ranges began shifting toward the visible spectrum (from S1 to S3). In
the last imaging session all plants in stress showed visible signs, mostly in the green part of the
spectrum (511–566 nm). The damage due to stress became severe enough to overshadow foliar water
content (at 1390–1520 and 1860–2080 nm). Moreover, the O��H stretch was replaced by the C��H

Fig. 4. Extraction of leaf-area pixels: a) original hyperspectral image; b) background removal; c) supervised classification using
spectral information divergence; and d) final mask used to extract leaf-area pixels.
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tretch of carbohydrates and proteins (at 1189–1222 and 1324–1346 nm) for the identification of
nfestation and its severity. Hence, wavelengths linked to pigments, and leaf chemistry and structure
re important for the determination and assessment of infestations.

ovelty of the methodology

Different methods enable early detection of stress in plants, but lack the potential to identify a
pecific disease [23]. Identification of RKN infestations is further complicated by the similarity of
isual symptoms with those of drought stress. Individually, drought stress and RKN infestations have
een detected before using hyperspectral spectrometers [24,25], with varying degrees of success.
road-band vegetation indices were developed for multispectral sensors, and are an easy and quick
ay of analyzing data, and can provide useful information. But they employ only certain wavelengths,
hus ignoring most of the data hyperspectral system provide. For example, an easy screening method
or drought stress is reflectance at the water absorption band at 950–970 nm [26]. But our results
ndicate that this changes depending on plant development and infestation status [16]. Furthermore,
s plants mature and infestations become more established, relevant spectral ranges can shift. Such a
hange cannot be detected by using vegetation indices, since these are linked to certain wavelengths.
Our method has several benefits, which increase classification accuracy: (1) imaging sensors

rovide more data, from the entire canopy, unlike spectrometers where individual measurements of
mall leaf are need to be made to obtain enough data; (2) we utilize the light spectrum from 400 to
500 nm (i.e. VNIR and SWIR); and (3) we do not calculate spectral indices, thus limiting the available
nformation to just a few selected wavelengths, but instead consider all wavelengths. The SWIR
pectral region is of special importance, as it’s linked to physical and chemical leaf characteristics, such
s cellulose and lignin [27], and carbohydrates, proteins, and water content [28].
Novelty of the presented methodology is that with the use of hyperspectral imaging detection of

oot-knot nematode (Meloidogyne spp.) infestation and its differentiation from water deficiency is
ossible. Moreover, hyperspectral imaging enables early detection of infestation, prior to development
f visible signs, thus facilitating timely management practices. There is no other reliable method to

ig. 5. Spectral signatures of 200 randomly selected leaf-area pixels of one plant. The red line denotes mean spectrum, and the
ibbon the standard deviation of the mean.
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determine nematode infestation without physical examination of plant roots, which is a disruptive
method as the plant needs to be removed from the soil. This remote sensing approach could be very
valuable for producers as it is discussed in more detail in Susi9c et al. [16].
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