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ABSTRACT: Artificial intelligence (AI) is used to quantitatively
analyze the voltammetry of the reduction of acetic acid in aqueous
solution generating thermodynamic and kinetic data. Specifically,
the variation of the steady-state current for the reduction of
protons at a platinum microelectrode as a function of the bulk
concentration of acetic acid is recorded and analyzed giving data in
close agreement with independent measurements, provided the AI
is trained with accurate and precise knowledge of diffusion
coefficients of acetic acid, acetate ions, and H+.

■ INTRODUCTION

Machine learning has, despite its enormous potential, been
used only sporadically in the quantification of analytes in
different electroanalytical contexts and less in fundamental
electrochemistry. For example, in food chemistry, a support
vector machine approach was used to distinguish ale from lager
based on cyclic voltammetry, and a neural network was able to
estimate alcoholic content.1 In environmental chemistry, along
with cyclic square-wave voltammetry, neural networks were
applied to quantify the concentration of various pollutants in
seawater, including copper, lead, mercury, paraquat (PQ), and
Bisphenol-A (BPA).2 In biosensor development, by integrating
with fast-scan cyclic voltammetry (FSCV) and an autoencoder,
a variant of an artificial neural network, Mao et al. impressively
achieved in vivo quantification of the concentration of
dopamine, ascorbate, and NaCl in rat brains.3 Multicomponent
detection of insulin and glucose in serum with the help of
neural networks was also reported by Liu et al. recently.4

Beyond chemical analysis, in fundamental electrochemistry,
Bond et al. reported the successful classification of electrode
reaction mechanisms (specifically E-, EE-, and EC-type
processes) using a convolutional neural network5 and claimed
recognition of electrode kinetic between Butler−Volmer and
Marcus−Hush types using Bayesian inference.6 More gen-
erally, at least in principle, when electrochemistry is equipped
with machine learning for data analysis, the latter allows
correlation and analysis of electrochemical data (including
voltammograms and chronoamperograms) without the need
for deploying mathematically analytical expressions.
Despite the emerging reports on the application to

quantification of analytes, the study of electrochemical
reactions and mechanisms with machine learning is still largely

lacking. Bond and colleagues recently communicated the need
for quantification of confidence limits and errors in parameter
estimation when making a comparison of experimental data
and simulated data. They attributed such absences to possible
computational limitations.7 In response to the desirability for
machine learning of parameters in electrochemical reactions,
we recently communicated the theoretical study of training
neural networks on simulated voltammograms to infer rate/
equilibrium constants from the voltammograms of a
dissociative CErev reaction and the reverse process of
predicting voltammograms from such constants without
recourse to further simulation.8 The general scheme of the
dissociative CE reaction is
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where kf and kb are forward and reverse reaction rate constants,
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In this paper, we next develop this work in the context of
experiment and apply the approach to the extraction of
thermodynamic and kinetic parameters for the acetic acid
dissociation reaction in aqueous solution enabling comparison
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with extensive independent reports in the literature so
permitting verification and critical evaluation of the AI
approach including limitations. In particular, authentic
experimental data will contain finite background currents and
possible contributions from migration and/or convection and/
or double-layer charging, which inevitably distort, to a greater
or lesser extent, the voltammetry from that predicted via
simulation. Accordingly, it is important to address the question
of whether the AI approach to the analysis of voltammetry can
“live with” the inevitable imperfections of authentic exper-
imental data.
Specifically, to facilitate proving the power of machine

learning on parameter extraction from experiments, we
quantitatively analyze current−concentration data to extract
the thermodynamic and kinetic parameters (Keq and kf) of
acetic acid dissociation using machine learning. The predicted
parameters are then checked via simulation and comparison of
the results with experiments. Electro-reduction of acetic acid is
known to follow a dissociative CE process9,10
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Table 1 shows the reported Keq and kf values at 298 K in
different aqueous environments where the presence of the
added electrolyte is known to cause both kinetic and
thermodynamic salt effects, albeit relatively small in magnitude
(see Table 1). Keq values of acetic acid are readily measured,
for example, most simply from the pH of acetic acid solutions
and reported as 1.754 × 10−5 M in pure water.11 Higher values
are seen when the electrolyte is present (i.e., 2.82 × 10−5 M in
0.1 M KCl solution12). Measurement of kf has been made by a
variety of methods.
Nonelectrochemical methods reported include the electrical

pulse methods,13 the high field dispersion and temperature
jump method,14 and the electric field jump (E-jump) relaxation
technique.15 Although acetic acid does not absorb at visible
wavelength, a colored acid−base indicator, Bromocresol green,
was coupled in solution to enable spectroscopic detection
using a square-wave field-effect apparatus.16

Electrochemical methods reported include voltammetry
using a hydrodynamic modulated rotating disk electrode and
analysis using the modified Koutecky−Levich equation,9,17 the
polarography on acetate-acetic acid solution of low buffering
capacity,10 and a two-cell technique, each with a rotating
electrode connected by a Wheatstone bridge circuit.18 A table
of individually measured kf and Keq values is shown in Table 1.
The values of kf range widely from 1.91 × 105 to 3.46 × 106 s−1

in different solution compositions.
In the following, we report a simple three-step electro-

chemical approach for estimating these two constants. This
paper follows the work flow of method A reported before,8 but
the technical implementation is bespoke to account for the
exact experimental data.
First, measurements are made of the steady-state current for

the reduction of protons as a function of the bulk acetic acid
concentration cCH3COOH,total* at a platinum microdisk electrode.
This approach was preferred to cyclic voltammetry because the
steady-state currents obtained at a microelectrode are
independent of electrochemical rate constants and transfer
coefficients, whereas understanding and simulating a full T
ab
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voltammogram either at a macroelectrode or a microelectrode
for the reduction of H+ from acetic acid dissociation would
require a confident knowledge of the mechanism and the
kinetic parameters of the hydrogen evolution reaction on the
Pt electrode, which remains controversial.26,27 Under the
conditions employed in the present study, the steady-state
current depends only on kf, Keq, and cCH3COOH,total* assuming
prior knowledge of diffusion coefficients.
Second, a simulation of the expected limiting currents with

different kf, Keq, and bulk concentrations of acetic acids was
conducted to obtain the steady-state current under different
conditions and a neural network was trained and tested with
simulated data. The features used for training were the steady-
state currents at different bulk concentrations of acetic acid
and targets were the kf and Keq values for the acetic acid CE
process.
Third, steady-state currents obtained from experiments were

fed into the trained network to give predictions of kf and Keq
values, which were compared with those in Table 1 facilitating
generic insights into the AI approach. More generally, the latter
offers the prospect of simulation-free approaches to the
quantitative analysis of voltammetric data in which simulations
are only used to initially train the AI but thereafter there is no
resort to expensive, commercial software, as the exact
implementation of which can be user sensitive. The method-
ology thus promotes the analysis of data in a manner that is
easily comparable between laboratories. To this end, we
provide the simulation and machine learning programs for
acetic acid reduction reported, along with raw experimental
data, at https://github.com/nmerovingian/Acetic-Acid-
Dissociation-AI. The simulation and machine learning
programs for the theoretical study reported before8 can be
found at https://github.com/nmerovingian/dissociativeCE-
Simulation-MachineLearning. The resources provided will
enable the users to fully reproduce the results reported and
possibly further explore the application of AI using the training
data provided.

■ THEORY
In this section, we first discuss the formal potential of the H+/
H2 couple and the expected half-wave potential for the
reduction of protons in the case that the proton reduction
reaction is electrochemically reversible. Second, we outline the
simulation of the expected transport-limited currents for the
proton reduction as a function of Keq and kf, noting that the
computational approach is given in ref 8 apart from small
changes in boundary conditions as outlined below.
Formal Potential and Half-Wave Potential of the H+/

H2 Couple. The formal potential, Ef,H+/H2

0 of the H+/H2 couple
has been shown to be given by
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where EH+/H2

0 is the standard electrochemical potential and γH+

is the activity coefficient of H+ ion in solution; ks and cs are the
salt parameter and salt concentration, respectively, which
account for the salt-out effect in an electrolytic solution; p0 and
a0 are standard pressure and standard activity, which are 1 bar
and 1 M, respectively; KH2

is Henry’s law constant for H2; and
R, T, and F are the gas constant, temperature, and Faraday

constant, respectively. Using parameters from Table 2, Ef,H+/H2

0

is calculated as −0.341 V vs saturated calomel electrode
(SCE).28

The half-wave potential assuming an electrochemically
reversible H+/H2 couple for the reduction of protons at a
uniformly accessible electrode has been derived previously28
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where E1/2 is the half-wave potential and cH+* and c0 are the bulk
concentration of acetic acid and reference concentration (1
M), respectively. The dependence of the half-wave potential on
the bulk proton concentration arises from the nonunity
stoichiometry of the reaction.28,29 The formal potential

Ef,H+/H2

0 as derived above is −0.341 V vs SCE. Using the

reported pKa value of 4.756 of acetic acid11 and bulk
concentration of acetic acid as 10 mM, cH+* is calculated to
be 4.10 × 10−4 M and E1/2 is estimated as −0.448 V vs SCE.
On the other hand, assuming cH+* as the bulk concentration of
acetic acid, the calculated E1/2 is −0.408 V vs SCE. Clearly,
from the CE process of describing the acetic acid reduction
with the hypothetical assumption of reversible electro-
chemistry, the half-wave potential would be expected to lie
between −0.408 and −0.448 V.

Simulation Equations. The mass transport is assumed to
be exclusively diffusive, and the diffusion equations coupled
with chemical reactions are solved to show how the steady-
state limiting current at a microelectrode depends on the
parameters kf and Keq for different acetic acid concentrations.
Note that the electrochemical reaction on a microdisk
electrode of radius r can be approximated as a hemispherical

electrode with radius r2
π
to reduce the diffusion problem from

two dimensions to one dimension. The relevant steady-state
diffusion equations can be formulated as

Table 2. Parameters Used for Calculation of the Formal
Potential of the H+/H2 Redox Couple and for Simulation

parameter explanation value

EH+/H2

0 vs
SCE

standard potential of H+/H2 vs
saturated calomel electrode

−0.241 V,30

DCH3COOH
− diffusion coefficient of acetic acid 1.29 × 10−9 m2 s−1,11

DCH3COO
− diffusion coefficient of acetate 1.089 × 10−9 m2 s−1,11

DH
+ diffusion coefficient of hydrogen

ion
9.311 × 10−9 m2 s−1,11

DH2
diffusion coefficient of hydrogen 5.11 × 10−9 m2 s−1,11

γH+ activity coefficient of hydrogen ion 0.754,31

KH2
Henry’s law constant of hydrogen 1292 bar M−1,32

cKNO3
concentration of KNO3 electrolyte
in experiment

0.1 M

kKNO3
salt parameter of KNO3 0.07 M−1,33
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where Dj is the diffusion coefficient for species j.
If re is the radius of the hemispherical electrode, the

boundary conditions at the surface of the electrode for the
steady-state reduction of protons are
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The boundary conditions for the outer boundary of
simulation are
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where cT = cCH3COOH,total is the concentration of acetic acid
added to the solution before chemical equilibrium forming
proton and acetate, which are assumed absent in the initial
solution. In the absence of electrolysis, cCH3COOH,total =

cCH3COOH* + cCH3COO
−* and rsim is the outer boundary of the

simulation as discussed in ref 8.8

■ EXPERIMENTAL SECTION
Chemicals. Acetic acid (CH3COOH, 99.8%), potassium

nitrate (KNO3, 99%), potassium chloride (KCl, 99%), and
hexaammineruthenium (III) chloride (Ru(NH3)6Cl3, 98%)
were purchased from Sigma-Aldrich (Dorset, UK) and used as
received. All solutions were prepared with deionized water (of
resistivity 18.2 MΩ cm at 298 K, Millipore).
Voltammetry and Chronoamperometry of Acetic

acid at a Pt Microdisk Electrode. All electrochemical
measurements were performed with a μAutolab Type III

potentiostat analyzer using a standard three-electrode arrange-
ment in an optimized and thermostatted electrochemical cell34

in a Faraday cage. A Pt microdisk electrode (diameter:
approximately 10 μm) was polished with three grades of
successively finer aluminum powder (1.0, 0.3, and 0.05 μm),
washed with deionized water, dried with N2 flow, and served as
the working electrode. The counter and reference electrodes
were a platinum wire and a saturated calomel electrode (SCE),
respectively. The radius of the Pt microdisk electrode was
calibrated electrochemically as 4.97 ± 0.05 μm by analyzing
the steady-state voltammetry of 1.0 mM [Ru(NH3)6]

3+ in 0.1
M KCl aqueous solution, using the reported diffusion
coefficient for [Ru(NH3)6]

3+ of 8.43 × 10−10 m2 s−1 at 298
K in 0.1 M KCl solution.35

Linear sweep voltammetry of 10 mM acetic acid in 0.1 M
KNO3 was performed in the potential range of −0.15 to −1.0
V vs SCE at a scan rate of 800 mV s−1, as shown in Figure 1.

The half-wave potential is measured at −0.570 V vs SCE,
significantly smaller than the half-wave potential of the
electrochemically reversible H+/H2 couple at different
concentrations (−0.408 to −0.448 V), suggesting that the
reduction of H+ on the Pt microdisk electrode was at least
partly electrochemically irreversible.28

Acetic acid solutions with four concentrations (10, 20, 40,
and 100 mM) were prepared in the 0.1 M KNO3 supporting
electrolyte. The solution was degassed for 10 min with N2
before voltammetric or chronoamperometric measurements,
and the temperature was stabilized at 298 ± 1 K via a digital
temperature controller (SCT1 Digital contact thermometer).34

Current time transients for analysis via AI were recorded at an
applied potential of −1.0 V vs SCE for a duration of 10 sec.
The working electrode was polished with 0.05 μm aluminum
powder and washed with deionized water between each
experiment. Three repeated chronoamperometries were
performed for each concentration.

■ SIMULATION AND MACHINE LEARNING
The simulation program was written in Python. Multi-
processing was used for parallel computing of the working
surfaces on an Intel E5 processor. The nonlinear diffusion

Figure 1. Linear sweep voltammetry of 10 mM acetic acid in 0.1 M
KNO3 at a scan rate of 800 mV s−1 from −0.15 to −1.0 V vs SCE.
Dashed lines show the calculated half-wave potentials at different bulk
concentrations of H+.
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equations were solved using the finite difference method by
discretizing the diffusion equations using both expanding space
grid and time grid. The resulting multidiagonal matrix was
solved using the Newton−Raphson method for at most 10
iterations.36 If the mean absolute error in dimensionless
concentration was smaller than 10−12, additional iterations
were skipped to save time without significant compromise of
accuracy. The convergence of the simulation was checked, and
the results can be found in Testing and Verification of the
Simulations section in the Supporting Information.37−39

The working surfaces from simulations were used to train a
multiheaded Dense Neural Network (DNN) written in
TensorFlow.40 The DNN was trained by using the simulated
steady-state currents at different concentrations as features to
predict the corresponding log10 kf and log10 Keq as targets. Note
that the targets were in logarithm form to reduce the
exploding/diminishing gradient problem.41 The DNN has
only 4 hidden layers with relatively small numbers of neurons
(<100) to avoid overfitting: a smaller network forced itself to
predict rate constants instead of “memorizing” them.
The implementation of simulation and machine learning

programs along with scripts for visualization and feature
engineering can be found at https://github.com/
nmerovingian/Acetic-Acid-Dissociation-AI. Raw experimental
data is also provided in the repository. The more general
simulation and machine learning programs for dissociative CE
reaction reported before8 can be found at https://github.com/
nmerovingian/dissociativeCE-Simulation-MachineLearning.
Note that because of the stochastic nature of the neural
network, and different hardware and operating systems from
our workstation, the users’ machine learning results may vary
slightly from the authors’, but generally to less than 0.1 on the
log10 scale for prediction of rate and equilibrium constants.

The simulation results are expected to be consistent in a
different computing environment.

■ RESULTS AND DISCUSSION

Figure 1 shows the voltammogram for which measurements
were made. Current data was measured at a potential of −1.0
V vs SCE corresponding to the limiting current and the
attainment of the steady-state current assessed by chronoam-
perometry as described in the next section. Specifically, the
measurement of the limiting current as a function of the bulk
concentration of acetic acid is used to avoid the need for any
electrode kinetic data or assumption.

Chronoamperometry of Acetic Acid. To identify the
steady-state currents, current−time transients for four different
concentrations of acetic acid between 10 and 100 mM in 0.1 M
KNO3 were recorded at a Pt microdisk electrode by stepping
the potential from a value where no current flowed to an
applied potential of −1.0 V vs SCE, corresponding to a
sufficiently negative potential for a diffusion-limited reduction
of protons. The corresponding chronoamperograms at four
concentrations are reported in the Chronoamperogram section
in the Supporting Information, which showed that steady-state
behavior is observed after 2 s. Erring on the side of caution,
currents at t = 10 s were chosen for quantitative analysis,
assumed to be steady state and measured as −30.5 ± 0.4,
−55.2 ± 0.3, −102 ± 1, and −238 ± 4 nA for 10.0, 20.0, 40.0,
and 100 mM of acetic acid with three separate chronoampero-
grams averaged for each concentration. The steady-state
currents did not scale proportionally with the concentration
of acetic acid since the reduction of acetic acid obeys the
dissociative CE mechanism. The concentrations of acetic acid
and the measured steady-state currents were utilized as

Figure 2. Working surface showing the steady-state currents at different kf and Keq values for a bulk concentration of acetic acid of 10 mM. Note:
the apparent “kink” in the left of the surface is because it is not parallel to the log10 Keq axis but rather cross (kf and Keq) space at an angle. The
smooth continuity of the surface is emphasized by the contour plot.

Analytical Chemistry pubs.acs.org/ac Article

https://doi.org/10.1021/acs.analchem.2c00110
Anal. Chem. 2022, 94, 5901−5908

5905

https://pubs.acs.org/doi/suppl/10.1021/acs.analchem.2c00110/suppl_file/ac2c00110_si_001.pdf
https://github.com/nmerovingian/Acetic-Acid-Dissociation-AI
https://github.com/nmerovingian/Acetic-Acid-Dissociation-AI
https://github.com/nmerovingian/dissociativeCE-Simulation-MachineLearning
https://github.com/nmerovingian/dissociativeCE-Simulation-MachineLearning
https://pubs.acs.org/doi/suppl/10.1021/acs.analchem.2c00110/suppl_file/ac2c00110_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.2c00110?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.2c00110?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.2c00110?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.2c00110?fig=fig2&ref=pdf
pubs.acs.org/ac?ref=pdf
https://doi.org/10.1021/acs.analchem.2c00110?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


experimental features for machine learning to predict rate and
equilibrium constant as described below.
Simulation of Steady-State Limiting Currents. A wide

range of kf (1−108 s−1) and Keq (10
−3−10−8 M) values were

applied to simulate the steady-state limiting currents at four
different bulk concentrations of acetic acid (10, 20, 40, and 100
mM). The diffusion coefficients of all species reported in the
literature are given in Table 2. Note that some combinations of
Keq and kf values would generate kb values exceeding a
reasonable magnitude, so simulations were only performed if
kb ≤ 1013 M−1 s−1 with the latter values selected to give a
considerable margin of error. The steady-state currents at
different kf and Keq values are represented on the working
surfaces such as the one shown in Figure 2 for a bulk
concentration of acetic acid of 10 mM. Figure 2 shows that the
steady-state current increases in magnitude with increasing Keq
and kf. Increasing Keq can increase the magnitude of steady-
state current since higher Keq increases the bulk concentration
of electroactive H+ at equilibrium. Higher kf increases the
extent of acetic acid dissociation on the voltammetric timescale
to replenish H+ consumed during electrochemical reduction.
The working surfaces for bulk concentrations of acetic acid of
20, 40, and 100 mM can be found in the Working Surfaces for
the Steady-State Limiting Current section in the Supporting
Information.
Training and Testing the Neural Network. Using the

working surfaces, the neural network was trained to predict
log10 kf and log10 Keq using steady-state currents at four
different concentrations of acetic acid and trained for 2000
epochs. The loss function was the mean absolute error (MAE)
and the optimizer was Adam (learning rate = 0.001).42 To
evaluate the performance of the neural network model after
training, it was tested with independent testing datasets and
the results are shown in Figure 3, as 90.5% predictions of log10
kf were within 10% error and 100% predictions of log10 Keq
were within 5% error. The lower accuracy of predictions of
log10 kf compared to log10 Keq arises because log10 kf had a
relatively smaller effect on the steady-state current but the
network was judged sufficient for the prediction of constants

from experimental results. The performance was benchmarked
with a third-degree polynomial regression, which results in
61.2% prediction of log10 kf within 10% error and 86.7%
prediction of log10 Keq within 5% error. Details are shown in
the Benchmark section in the Supporting Information.

Predicting Rate and Equilibrium Constants with
Experimental Data. Using the steady-state current at the
four different concentrations as the input of the neural network
trained in the last step, the neural network predicted kf and Keq
values in the logarithmic scale as 6.47 and −4.77, which
convert to 2.95 × 106 s−1 and 1.70 × 10−5 M. The 95%
prediction intervals for the neural network were estimated
using the bootstrap method.43 First, 500 observations were
sampled from testing datasets and repeated 100 times to obtain
100 bootstrapped samples. Second, each bootstrap sample was
trained in an independent neural network to obtain an
empirical distribution of bootstrap predictions. At the 5%
significance level, the upper and lower limits were, respectively,
97.5 and 2.5% quantile obtained from the bootstrap
distribution. The 95% prediction intervals were calculated as
2.78 × 106−3.13 × 106 s−1 and 1.67 × 10−5−1.71 × 10−5 M for
predicted kf and Keq, respectively. These values are fully
consistent with the accepted literature values shown in Table 1
showing the power of the proposed AI approach in extracting
kinetic and thermodynamic data.

Testing the Approach with Different Diffusion
Coefficients. Not all systems under study will have as well-
characterized diffusion coefficient as the acetic acid dissocia-
tion reaction described above. Sometimes, diffusion coef-
ficients are unknown and frequently uncertain. It is therefore
pertinent to ask how well the AI approach responds to
variations in the diffusion coefficients used for the proton,
acetic acid, and acetate ions.
To address this question, we compared the performance of

the three-step electrochemical approach with five different sets
of diffusion coefficients and the predicted constants using
simulated steady-state currents, as shown in Table 3. The
values of kf and Keq obtained for the wrong diffusion
coefficients that deviate from the accepted values give
noticeably wrong answers.
In cases 2 and 3, the diffusion coefficients were arbitrarily set

higher or lower than the accepted values by 10%. The effect is
that for lowered diffusion coefficients, the Keq and kf values
increase to provide more or more rapid dissociation, while for
increased diffusion coefficients, the opposite occurs and the
two parameters decrease to reduce the number of protons
formed through dissociation on the voltammetric timescale.
These trends are exactly what is expected since we are using
the limiting current to probe the two parameters of interest
and so the inferred values will be very sensitive to the rate of
diffusion in addition to kf and Keq. The steady-state
concentration profile can be found in the Concentration
Profile section in the Supporting Information.
It is interesting first that the values of kf and Keq are changed

so markedly, highlighting a limitation of the electrochemical
method for their measurement, and second that the AI
approach stresses the requirement for the accurate parameter
input in a way that is much more emphatic than using
traditional curve-fitting approaches.
In the example chosen for study, all three diffusion

coefficients are well known and the used ones in case 1 are
considered to be reliable especially as they are measured via
conductivity or Gouy interferometry.44 In some cases, where

Figure 3. Error of predicting the rate and equilibrium constants from
an independent testing dataset composed of simulated steady-state
currents. (a) Errors of predicting log10 kf 90.5% predictions of log10 kf
were within 10% errors and (b) errors of predicting log10 Keq 100%
predictions of log10 Keq were within 5% errors.
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the diffusion coefficients are unknown, an experimenter might
be tempted to estimate or guess the relevant parameters. Thus,
in cases 4 and 5, we investigate this approach and fix some or
all of the diffusion coefficients as 10−9 m2 s−1. This set of low
values significantly underestimates the D of H+ and therefore
leads to high kf estimates. The steady-state concentration
profiles of CH3COO

−, H+, and CH3COOH in cases 1, 4, and 5
are shown in the Supporting information when (a)
cCH3COOH,total* = 100 mM and (b) cCH3COOH,total* = 10 mM and
are to be contrasted with those generated from more reliable
diffusion coefficients.
The five cases discussed above showed that incorrect

simulation parameters notably diffusion coefficients lead to
incorrect input data for the neural network training and
generate unreliable predictions. Thus, in practice, we
recommend major caution with simulation parameters for
accurate simulations and predictions.

■ CONCLUSIONS
We have shown how artificial intelligence methods can be
developed and trained to analyze electrochemical data and
extract reliable kinetic and thermodynamic parameters, which
compare well with those independently measured both by
electrochemical and nonelectrochemical methods given a
mechanism for the electrode reaction is known. The specific
approach previously advocated8 has been shown to be effective
when using simulation to train and validate AI programs and
then applied to authentic experimental data. However, it is
useful to assess the strengths and especially the limitations of
the approach. We note that the method meets the challenge
presented by Bond and colleagues of giving a well-defined and
experimenter-independent method of data analysis. However,
it must be recognized that we have applied it to a well-defined
system where the mechanism of the electrode process under
evaluation is known. This is required to perform the simulation
necessary to train the AI. Moreover, because the chemistry is
clear, it is possible to simplify the number of parameters
needed for training by adopting the reliable literature data for
the diffusion coefficients of the three species controlling the
magnitude of the current, acetic acid, acetate ions, and protons.
Even so, from the analysis using deliberately wrong diffusion
coefficients, it is clear that even relatively small errors in the
values lead to significant errors in the inferred kf and Keq values.
That said, AI allows the sensitivity of the values to be readily
checked and the inferences caveated in a way that is not always
easily adopted in conventional analysis of voltammogram.
It is evident that the approach of using simulation to train

the AI requires a clear understanding of the likely chemistry
even if the experimenter is willing to simulate and train AI for
different possible mechanisms. Overall, this points to a possible
need to make complementary measurements, notably spectro-
electrochemistry, and/or good chemical intuition to identify
realistic chemistry. In the above, we deliberately selected to
focus our analysis on the limiting current data from our

experiments to make our conclusion independent of the
mechanism and electrode kinetics of the H+/H2 redox couple,
which would influence cyclic voltammetric data (peak current
and peak potentials). The speculative application of a trained
network for more complex chemistry is fraught with risk,
possibly extreme risk. Thus, in the context of the dissociative
CE mechanism, such a process undoubtedly underpins the
oxidation of hydrazine in aqueous solution where deprotona-
tion of N2H5

+ prior to oxidation of N2H4 is required at some
electrodes; however, the oxidation process is self-inhibiting
since it produces nitrogen and protons45,46

N H N 4H 4e2 4 2V + ++ −

which act to change the pH of the solution local to the
electrode. The application of an AI program trained for a
simple dissociative CE process could not capture the essential
content of the voltammetry/chronoamperometry and requires
chemical expertise from the experimenter. Similarly, the
voltammetry of blood reveals signals attributed to the
electro-reduction of oxygen released from oxy-hemoglobin
close to an electrode.47−49 Again, the chemistry is not simple:
four oxygen molecules are bound to each hemoglobin and have
different kinetics and thermodynamics of release. A chemically
over-simplified analysis using AI trained for a simple
mechanism would likely give erroneous or misleading output.
Further, it is evident that the use of low-quality training data
presents implantation risk and that this grows with the
complexity of the mechanism because of the number of
parameters required. Knowledge of accurate diffusion co-
efficients is one specific problem and, of course, is intrinsic to
all electrochemical data analysis problems. We predict that the
role of human intelligence (“HI”) will remain dominant over
the artificial form for the foreseeable future in electrochemistry
at least except for some niche applications. One such
immediate niche lies in the analysis of electrode reaction
mechanisms where the experimentalist is confident of the
generic nature of the reaction, for example, CE, EC, ECE, etc.
As we have shown, the AI approach allows for simulation-free
data analysis and hence makes the extraction of parameters
independent of the experimenter so better facilitating
interlaboratory comparisons.

■ ASSOCIATED CONTENT
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chronoamperogram; concentration profile (PDF)

Table 3. Five Cases Considered When Varying Diffusion Coefficients of Species and the Predicted kf and Keq Values

case # description predicted kf, s
−1 predicted Keq, M

1 diffusion coefficients shown in Table 2 2.95 × 106 1.70 × 10−5

2 increasing diffusion coefficients in Table 2 by 10% 3.02 × 103 5.13 × 10−6

3 decreasing diffusion coefficients in Table 2 by 10% >1010 3.47 × 10−6

4 all diffusion coefficients set to 10−9 m2 s−1 9.05 × 102 1.56 × 10−3

5 DH
+ = 9.311 × 10−9 m2 s−1, other species 10−9 m2 s−1 >1010 1.07 × 10−5
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