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The purpose of this study was to take a new approach in showing how the central
nervous system might encode time at the supra-second level using recurrent neural nets
(RNNs). This approach utilizes units with a delayed feedback, whose feedback weight
determines the temporal properties of specific neurons in the network architecture.
When these feedback neurons are coupled, they form a multilayered dynamical system
that can be used to model temporal responses to steps of input in multidimensional
systems. The timing network was implemented using separate recurrent “Go” and “No-
Go” neural processing units to process an individual stimulus indicating the time of
reward availability. Outputs from these distinct units on each time step are converted
to a pulse reflecting a weighted sum of the separate Go and No-Go signals. This output
pulse then drives an integrator unit, whose feedback weight and input weights shape
the pulse distribution. This system was used to model empirical data from rodents
performing in an instrumental “peak interval timing” task for two stimuli, Tone and Flash.
For each of these stimuli, reward availability was signaled after different times from
stimulus onset during training. Rodent performance was assessed on non-rewarded
trials, following training, with each stimulus tested individually and simultaneously in a
stimulus compound. The associated weights in the Go/No-Go network were trained
using experimental data showing the mean distribution of bar press rates across an
80 s period in which a tone stimulus signaled reward after 5 s and a flash stimulus after
30 s from stimulus onset. Different Go/No-Go systems were used for each stimulus, but
the weighted output of each fed into a final recurrent integrator unit, whose weights were
unmodifiable. The recurrent neural net (RNN) model was implemented using Matlab and
Matlab’s machine learning tools were utilized to train the network using the data from
non-rewarded trials. The neural net output accurately fit the temporal distribution of tone
and flash-initiated bar press data. Furthermore, a “Temporal Averaging” effect was also
obtained when the flash and tone stimuli were combined. These results indicated that
the system combining tone and flash responses were not superposed as in a linear
system, but that there was a non-linearity, which interacted between tone and flash.
In order to achieve an accurate fit to the empirical averaging data it was necessary to
implement non-linear “saliency functions” that limited the output signal of each stimulus
to the final integrator when the other was co-present. The model suggests that the
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central nervous system encodes timing generation as a dynamical system whose timing
properties are embedded in the connection weights of the system. In this way, event
timing is coded similar to the way other sensory-motor systems, such as the vestibulo-
ocular and optokinetic systems, which combine sensory inputs from the vestibular and
visual systems to generate the temporal aspects of compensatory eye movements.

Keywords: temporal coding, perception of time, interval timing, temporal averaging, peak procedure

INTRODUCTION

The temporal encoding of significant events in neural structures
has become an important consideration in a wide range of
adaptive behaviors. The importance of time estimation in
humans was first described by François (1927), but publicized by
Hoagland (1933, 1935), when he noticed that his wife counted
from 1 to 60 at an estimated 1 count/sec differently when her
temperature changed as a result of influenza (Hoagland, 1935).
Other studies on interval timing showed that a visual stimulus
associated with a standard duration could be identified amongst
other intervals that were given to subjects (Wearden et al., 1997).
This work showed that this estimation of time intervals could
be scaled for standard deviation as the interval was increased
according to Weber’s law (Wearden et al., 1997).

Following Pavlov’s work on conditioning (Pavlov, 1927) and
subsequent work on operant conditioning (Skinner, 1938, 1951),
there has been growing interest in studying how animals learn
to time the arrival of key events, such as reward (Staddon
and Higa, 1999; Staddon, 2005). In a typical experiment, for
instance, a stimulus might be presented and in its presence food
reward is made available for the first response that occurs after
t seconds have elapsed. At issue is how the animal encodes the
time at which food becomes available and then distributes its
behavior accordingly.

Research on interval timing has generated a variety of different
theoretical models, the most popular of which is based on
an internal “pacemaker-accumulator theory” (Treisman, 1963;
Church, 1978) also known as scalar expectancy theory (SET)
(Gibbon, 1977). According to this “clock model” (Gibbon, 1977;
Gibbon et al., 1984), the onset of a signal closes a switch that gates
pulses to an accumulator until a reinforcement signal ends the
accumulation of pulses that are stored in a reference memory.
This accumulation of the number of stored pulses establishes
a distribution of values related to the reinforced duration. On
subsequent trials the signal causes retrieval of a value from
reference memory, and responding is based on a discrepancy
rule and a decision threshold. The difference between the current
accumulated time (working memory) and the reference memory
value is constantly updated, and responding is predicted to occur
when the ratio of that difference to the reference memory value
falls below some decision threshold. As trial time elapses, the
relative difference decreases and the probability of responding
increases. However, if reinforcement is omitted and the trial
signal remains beyond the expected time of reinforcement, the
relative discrepancy grows and responding decreases again. This
pattern of responding is typically observed in empirical studies

when averaging responses across many individual trials in a task
known as the “peak procedure” (Catania, 1970; Roberts, 1981).

Several other authors have objected to the pacemaker-clock
approach to interval timing and have proposed alternative
frameworks (Killeen and Fetterman, 1988; Grossberg and
Schmajuk, 1989; Church and Broadbent, 1990; Machado, 1997;
Staddon and Higa, 1999; Staddon, 2002, 2005; Matell and Meck,
2004; Oprisan and Buhusi, 2011; Buhusi and Oprisan, 2013).
Several of these alternative approaches rest on the notion that as
time passes from the onset of a stimulus, processing initiated by
that stimulus undergoes a series of discriminable states and that
the dominantly active state at the moment of reward becomes
strengthened. In this way, learned behavior can be said to be
“timed.” This notion was, perhaps, first noted by Pavlov (1927,
p. 104) in his attempt to explain the phenomenon of “inhibition
of delay”:

“nerve cells which are being excited pass through a series of
successive physiological changes. In accordance with this it is
obvious that if a definite unconditioned reflex is repeatedly evoked
coincidently with any one particular physiological state of the
cerebral cells, it is this definite state and no other that acquires a
definite conditioned significance.”

The idea expressed by Pavlov has been formalized in a variety
of ways. For example, Staddon and Higa (1999) introduced
a “multiple time scale model” of habituation as the basis of
interval timing, Grossberg and Schmajuk (1989) introduced a
“spectral timing” approach, and Killeen and Fetterman (1988)
and Machado (1997) assumed a series of stimulus-initiated
behavioral states as the basis of temporal control. In any given
conditioning trial, once that particular state associated with
reward is re-entered then responding will arise.

A third class of theories has also been developed to explain
interval timing. Church and Broadbent (1990) introduced a
connectionist model and Matell and Meck (2004) and Oprisan
and Buhusi (2011); also (Buhusi and Oprisan, 2013) extended
this to a neural network equivalent – the “striatal beat theory.”
The basic notion is that the brain contains multiple oscillators,
i.e., neurons that fire with different periodicities, and time can
be encoded as the unique oscillator firing pattern present at the
moment of reward. Subsequently, when that firing pattern is
approximated on a given conditioning trial, responding becomes
more likely through a pattern matching decision process.

Another approach, using large interconnected neurons have
also been applied to modeling certain fundamental aspects of
interval timing behavior. One key feature of the timing system
is that as the interval to be estimated increases, the variance of
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responding around that estimate also increases in accordance
with Weber’s law. This is known as the “scalar timing” principle
(Gibbon, 1977, 1992; Gibbon et al., 1984). The approach of using
“large population clock neurons” that give rise to a diffusion
equation whose drift rate is learned within these interconnected
neurons was utilized to model scalar expectancy in peak timing
experiments (Simen et al., 2011, 2013; Luzardo et al., 2017;
Hardy and Buonomano, 2018). Different intervals are timed, in
this model, by different proportions of neural populations that
generate timing pulses engaged by the stimulus, with higher
proportions effectively increasing the diffusion drift rate such that
a response is triggered sooner.

One empirical phenomenon that has been especially
challenging for all approaches is how multiple stimuli are
combined to generate timing behavior. Matell and his colleagues
have noted that when rodents are trained in a peak procedure
with two separate stimuli indicating different intervals to time,
responding to the stimulus compound reflects an averaging of
the two intervals rather than memories for each trained interval
(Swanton et al., 2009; Swanton and Matell, 2011; Matell and
Henning, 2013; Matell and Kurti, 2014; Delamater and Nicolas,
2015; De Corte and Matell, 2016a,b). This result is problematic
because most theories anticipate behavior to be controlled by
each of the two intervals trained separately. For instance, first
consider SET’s assumptions. When trained with different stimuli,
reference memory should include one distribution of trained
intervals appropriate for stimulus A and a second distribution
for stimulus B. When a stimulus compound is presented,
stimulus AB, one interval from each of the two reference
memory distributions should be retrieved and responding
should emerge whenever a working memory representation of
elapsed time is close to each of those two intervals. In other
words, there is no mechanism for responses to compound
stimuli to reflect the average of the two intervals built into SET.
Similarly, if timing were related to a series of discriminable
states initiated by presentation of the stimulus, then, once again,
whenever the system approached those two dominant states
trained individually, responses should be maximal at each of
those two times rather than at some intermediate time. The
multiple oscillator and striatal beat theories would have similar
difficulty because each reinforced activation pattern should
govern responding, in a manner analogous to SET.

In this paper, we explore the use of a simple RNN model
to predict interval timing. Our approach differs from others in
several ways. First, we do not assume that a clock system is
engaged to generate a steady stream of pulses. Rather, our RNN
has a dynamic response to an input stimulus, which is modeled by
a step function in Tone and Flash. The response is determined by
input weights and recurrent feedback weights that are learned by
a reinforcement signal at a specific time from stimulus onset. The
weights of the RNN are stored in memory (i.e., in the network
itself) but can be updated (learned) with repeated exposure to
signal and reinforcement. Second, as developed in greater detail
below, we assume that different recurrent processes adopt distinct
“Go” and “No-Go” behavioral functions that summate within a
“timing circuit” and this, ultimately, feeds into a final recurrent
integrator output stage that governs the system’s response.

Finally, we make the important additional assumption that
when multiple stimuli are presented together (as in a temporal
averaging study), interactions among the stimuli take place such
that the effective “salience” of each stimulus is impacted by the
other. On the basis of the temporal dynamics of the recurrent
processes that make up the network, we show that temporally
organized behaviors can be trained with empirical data obtained
from rodents performing in a peak procedure. Thus, the final
recurrent process with its learned weights generates a distribution
of output that matches the response patterns of the animal.
Furthermore, after training different recurrent systems with
different intervals of reinforcement and different stimuli (such
as a tone and flash), we show that dynamic interactions between
these two systems can predict temporal averaging. This idea
suggests that the encoding of interval timing is embedded in
the connection weights of a relatively small RNN, without the
need for a fixed internal clock (Staddon, 2005). In addition, by
considering the recurrent interactions within and between neural
processing units, other aspects of dynamic temporal control may
be shown to emerge in empirically meaningful ways.

MATERIALS AND METHODS

Experimental Data
Procedures
Subjects
Male and female Long–Evans rats (n = 8 of each) bred at Brooklyn
College (from Charles River Labs descent) were housed in a
colony room on a 14:10 light:dark schedule, and throughout the
experiment were maintained at 85% of their free feeding weights
(ranging from 223 to 263 g for females, and from 348 to 377 g
for males). All procedures on these animals were approved by
the IACUC of Brooklyn College, and were in compliance with
NIH guidelines as identified in the Guide for the Care and Use of
Laboratory Animals, 8th Ed.

Preliminary training
The rats first learned to retrieve food pellets (45 mg TestDiet
5TUM, 45 mg Bio-Serv #50021) from a recessed “food magazine”
(3.0 cm × 3.6 cm × 2.0 cm, length × width × depth) located on
the front wall of a rectangular shaped conditioning chamber (BRS
Foringer RC series, measuring 30.5 cm × 24.0 cm × 25.0 cm,
length × width × height). These chambers were housed inside
separate sound- and light-resistant shells (Med Associates, ENV-
022V). During each of 2 days, the rats were placed in the
conditioning chambers for 2, 20-min sessions. In each session,
one of the two pellet types was delivered to the food magazine
20 times at random, with the order counterbalanced. A response
lever (4.0 cm in width) was located 3.0 cm to the left of the
magazine and 8.0 cm above the chamber floor (that consisted of
steel rods spaced 2.0 cm apart). On the next day the rats learned to
press this response lever to obtain food reward, until 30 rewards
of each type were earned.

Peak procedure
Over the next 40 days the rats were trained on the “peak
procedure.” In each training session, the rats learned to obtain
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reward for the first lever press response occurring after 5 s from
the onset of an 80-s tone stimulus (Med Associate sonalert,
2900 Hz and 6 dB above background level of 74 dB provided by
a ventilation fan), and 30 s from the onset of an 80-s flashing
light stimulus. These stimulus-interval assignments were not
counterbalanced because prior research has shown that temporal
averaging effects are more likely to occur with the present
assignments (Swanton and Matell, 2011; Matell and Henning,
2013; Matell and Kurti, 2014). Two 28 volt light bulbs were
used for this purpose and these were located in the top of the
rear wall of the chamber opposite the food magazine, behind a
translucent plastic sheet used to protect the bulbs and diffuse
the light. The lights flashed at a frequency of 2/s with equal on-
off pulses. The chamber was dark otherwise. In each training
session, there were 16 conditioning trials with the tone stimulus
and 16 with the flash stimulus. The inter-trial interval (i.e., time
from offset of one stimulus to onset of the next) was 40 s in
each of the first two sessions, 80 s in the next two sessions, and
120 s in each session thereafter. The 40 training sessions were
arranged in “blocks” of four training sessions. In each of the first
two blocks of training, reinforcement was made available for the
first lever press response occurring after the critical time interval
on a predetermined 75% of the tone and flash trials. In the next
three training blocks, reinforcement was made available on 25%
of the tone and flash trials. Thereafter, reinforcement was made
available on 25% of the tone trials and 75% of the flash trials (in
order to maintain comparable peak levels of responding on each
trial type). Importantly, the non-reinforced tone and flash trials
were regarded as “probe” trials in which lever press responding
was assessed in 1-s intervals, starting 20 s prior to stimulus
onset and extending for the entire 80 s of stimulus presentation.
In each conditioning session the order of these reinforced and
non-reinforced probe trials was randomly determined.

Temporal averaging assessment
The same procedures continued in the 11th block of training
as in the 10th block. However, four additional non-reinforced
“probe” trials occurred in which the tone and flash stimuli were
presented as a simultaneous stimulus compound. Responding on
each of these non-reinforced probe trials with tone, flash, and the
tone+ flash compound constituted the main data of interest.

RESULTS

Experimental Results
Mean lever-presses per second on non-reinforced tone and
flash probe trials were recorded in 1-s time bins for the 20-s
period preceding stimulus onset and for the entire 80-s stimulus
period. The data were averaged across trials and days for an
individual subject and across rats for each 4-session block of
training. The response functions on both Tone (Figures 1A–E)
and Flash (Figures 1F–J) trials were progressively shaped over
the course of training, with responding peaking increasingly
closer to the anticipated reward times as training proceeded.
There were three noteworthy differences between tone and
flash responses by the end of training. First, in the presence

of the Tone, the response rapidly rose and peaked close to
the anticipated time of food availability (5 s) and declined
rapidly thereafter (Figure 1E). In the presence of the Flash
stimulus, the peak response occurred close to the anticipated
time of food availability (30 s) but it rose to that peak value
more slowly than for Tone, before declining gradually thereafter
and more slowly than for Tone. Second, these differential
patterns of responding emerged more quickly over training
to the Tone stimulus than the Flash (Compare Figures 1A–E
with Figures 1F–J). Third, while the responses in both stimuli
rose more rapidly than they declined, the overall variability
in responding (e.g., the width of the response distributions)
was larger for the flash than for the tone stimulus, a fact
that is likely due to the length of the time interval to be
estimated. It is also noteworthy that by the end of training,
responding to the Tone stimulus decreased to below-baseline
(i.e., pre stimulus) levels. This suggests that the stimulus
actively inhibited lever press responding late in the Tone
stimulus, periods in which food was never presented but were
clearly differentiated from the early periods in which food
was frequently available. Such behavior was not apparent to
the Flash stimulus.

Lever press responses during Block 11 included non-
reinforced probe trials with the Tone, Flash, and Tone + Flash
stimuli. For the purposes of analysis, the data were normalized
in each 1-s time bin by expressing response rate as a proportion
of maximal response rate. The maximal response rates on
each trial type averaged across animals did not appreciably
differ (mean maximal response rates on Tone, Flash, and
Tone + Flash trials, respectively, were 1.00, 0.96, and 0.98
responses/s). The normalization was done for each of the
three (3) cues separately and the slightly different rates reflect
the differing peak times across animals. However, when peak
rates were computed for each individual animal, the maximal
response rate on tone trials (mean = 1.10 responses/sec) was
significantly less than on flash trials (mean = 1.28 responses/sec)
and on compound trials (mean = 1.23) trials [F(2,28) = 4.84,
p < 0.05]. The model simulations were compared to the
response rates averaged across animals. Once again, differential
responses were observed to the Tone and Flash stimuli, when
tested individually, with earlier and less variable responses to
Tone (Figure 2A) than to Flash (Figure 2B). Importantly,
responses to the Tone + Flash compound stimulus reflected
an “averaging” of the two individual functions with a phase
delay with reference to Tone alone and phase advance with
reference to Flash alone. Notably, it did not result in peaks
occurring at 5 and 30 s. This indicates that there is an
integrative dynamic process that combines the responses to the
stimuli rather than a simple summation of the two individual
response functions.

To explore these data quantitatively we first evaluated the
response functions on these three trial types using the curve-
fitting method of Matell and Kurti (2014). The normalized lever
press data on Tone, Flash and Compound trials for each animal
were fit with a dual asymmetric sigmoid function, using the curve
fitting package in Matlab, Cambridge, MA, United States. The
time at which the function reached a peak (Peak Time) was then
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FIGURE 1 | Learned reward timing on tone (A–E) trials. Animals were trained to press a Bar to receive a food reward at T = 5 s following onset of a 60-s Tone
stimulus. Animals received the reward for the first lever press after this time. Interspersed throughout training, rats were also tested on non-reinforced “probe” trials to
determine how responding was temporally distributed within the trial. Bar Press frequency was computed by counting the number of Bar Presses within a 1 s
window. The peak Bar Press/sec was computed and increased rapidly and then declined. The width of the function describing the Bar press frequency decreased
as a function of training, but the time to reach the peak stayed relatively constant. The data are presented across representative 4-session Blocks of training. (F–J)
Learned timing for Flash input. Animals received the food reward for the first lever press occurring after T = 30 s. The time to reach peak Bar Press frequency was
longer, but as the animals learned, the width of the function decreased.
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FIGURE 2 | Average Bar Press frequency on non-reinforced probe trials for
Tone (A), Flash (B), and Combined Tone + Flash (C) trials in Block 11 of
training. There was a phase delay of the Combined Tone + Flash relative to
Tone alone trials and a Phase advance of the Combined Tone + Flash relative
to Flash alone trials. Thus, the Combined Tone + Flash stimulus generated a
response function whose peak and variance were between those observed
on Tone and Flash trials. Whereas the peak of the Combined Tone + Flash
function was somewhat closer to Tone alone, its width was closer to that seen
to Flash alone.

determined for the 16 animals for Tone, Flash and Compound
stimuli. The width of the function was determined as the time
between values that were reduced by 50% from the peak value of
the function (Width) (Matell and Kurti, 2014). These values as
well as their averages over all animals are shown in Table 1. The
data from one animal was not included in this analysis because
response rates on Flash and Compound trials did not display a
clear peak function.

First, we observed significant differences in peak times on
these three trial types [means (±SEM) = 4.7 (0.18), 26.1 (0.70),
and 16.2 (0.64) for Tone, Flash, and Compound, respectively],
F(2,28) = 366.45, p < 0.000001. Post hoc tests using the
method of Rodger (1974) confirmed that peak times on each
trial type differed from one another with the peak times for
Flash > Compound > Tone, and with the peak time for
Compound approximating the arithmetic average of the peak
times for Tone and Flash.

Second, we computed the coefficients of variation (CV,
width/peak time) for each animal for Tone, Flash and
Compound trials in order to determine if responding was scalar
invariant (Gibbon, 1977; Church et al., 1994). The mean CVs
significantly differed for Tone, Flash, and Compound trials

TABLE 1 | Each rat had 10 blocks of training.

Rat # Peak time (PT) Width 50% (W-50) Ratio PT/W-50

Flash

1 21.75 50.19 0.4332

2 25.14 38.73 0.6489

3 22.21 37.78 0.5877

4 27.98 35.94 0.7784

5 N/A N/A N/A

6 26.34 50.34 0.5231

7 30.68 37.70 0.8137

8 25.69 43.35 0.5925

9 26.26 34.27 0.7660

10 28.86 44.08 0.6545

11 30.99 43.33 0.7152

12 25.00 43.56 0.5738

13 24.06 36.58 0.6575

14 27.21 32.14 0.8466

15 25.78 45.97 0.5607

16 24.22 34.99 0.6920

Avg. 26.14 40.60 0.6563

Tone

1 5.93 10.38 0.5711

2 6.22 12.70 0.4893

3 4.17 6.87 0.6066

4 4.02 6.56 0.6126

5 N/A N/A N/A

6 5.04 8.33 0.6046

7 5.03 7.90 0.6363

8 4.67 9.83 0.4746

9 4.60 7.37 0.6240

10 4.44 14.85 0.2988

11 3.68 10.80 0.3406

12 4.06 7.53 0.5384

13 4.30 7.80 0.5510

14 4.51 8.39 0.5370

15 4.99 7.22 0.6905

16 5.24 10.40 0.5036

Avg. 4.72 9.13 0.5225

Compound

1 12.76 45.64 0.2795

2 19.06 34.81 0.5474

3 14.8 35.54 0.4164

4 14.41 34.57 0.4168

5 N/A N/A N/A

6 13.99 33.94 0.4121

7 12.49 28.17 0.4432

8 19.12 39.51 0.4839

9 17.56 36.42 0.4821

10 17.49 37.93 0.4610

11 16.14 36.64 0.4404

12 15.09 39.16 0.3853

13 15.77 33.54 0.4700

(Continued)
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TABLE 1 | Continued

Rat # Peak time (PT) Width 50% (W-50) Ratio PT/W-50

14 19.39 27.90 0.6947

15 20.23 38.36 0.5272

16 14.91 36.32 0.4104

Avg. 16.21 35.90 0.4580

The Compound Probe sessions were contained in Block 11 and comprised non-
reinforced presentations of flash, tone, and compound trials. The peak Time (PT)
and Width between 50% of peak times (W-50) was obtained using the method
of curve fitting used by Matell and Kurti (2014). The ratio of the peak time to the
Width (W-50) using the method of Matell and Kurti (2014) could then be used as a
measure of scalar invariance.

[means, respectively, = 1.95 (± 0.13), 1.57 (± 0.70), 2.26 (± 0.12),
F(2,28) = 10.38, p < 0.0005], and post hoc tests confirmed that
the three trial types differed from one another and were ordered
as follows: Compound > Tone > Flash. This indicates that
although the widths of the response functions increased with the
interval to be timed, they did not do so proportionally with peak
time (Table 1).

Neural Net Modeling
Bar press distributions for flash and tone inputs were
conceptually modeled by using a neural net that has dynamic
properties, whose dynamics, i.e., speed of response, are associated
with specific nodes that have recurrent feedback loops (Figure 3).
The input layer comprises separate sensory units, which code
auditory and visual stimuli, denoted by Tone and Flash inputs.
Output from these units enter the “Timing” component of the
network, which consists of two recurrent units for each sensory
input. These recurrent units are conceptualized as executing
“Go” and “No-Go” behavioral functions. Outputs from these
Go/No-Go units feed into a “Sum Operator” unit for the Tone
and Flash inputs when presented individually (Figure 3). The
summation of the Go/No-Go units implement a second order
dynamical system with short and long time constants whose
outputs oppose each other. A second order system has been
useful in modeling the semicircular canal dynamics of the
vestibulo-ocular reflex, which then activates a central velocity
storage integrator (Raphan et al., 1979). These early modeling
approaches motivated the development of the RNN presented in
this study. A parsimonious feature of this approach is that there
is a minimal number of neural processing units, each behaving
as an integrator with a different time constant, can be used
to model the response to constant tone, flash and compound
stimuli. Approaches using large populations of neurons have also
been used to model interval timing (Hardy and Buonomano,
2018). An approach that uses a single integrator driven by a
bistable input layer consisting of a population of units generating
a stochastic ramp and trigger (SRT) has been shown to generate a
drift-diffusion model that simulates scalar invariance in interval
timing (Simen et al., 2011). We found that we could better
fit the compound test data in this study by using a piecewise
linear activation function in the Sum Operator unit that had a
linear part that saturated with too much or too little input. It
was also required to implement a saliency operator, which was
implemented by cross coupling between the two stimuli such that

their effective “saliency” is diminished when presented together
(see Saliency Operator Description below). All of the weights
connecting nodes up to this point in the network were assumed
to be modifiable, so they could learn the timing characteristics
associated with the data. Output from the Tone and Flash
summation units then feed into a final recurrent integrator unit
that uses a linear activation function [f(x) = x]. Output from this
integrator unit serves as the basis of the model’s performance.
We now consider the details of the RNN and how learning was
implemented to simulate the data across these two modalities.

Recurrent Neural Network Model for
Generating Interval Timing
The model was implemented using Matlab’s Neural Net ToolBox,
and learning of the weights was obtained using Matlab’s machine
learning libraries. The simulated data were generated from the
model as output activation vectors corresponding to the 20 pre-
stimulus and 80 stimulus time steps for each stimulus (Tone,
Flash), and the mean lever press response data (normalized to
maximal response rates, see Figure 2) for a particular stimulus
were used to train the weights to minimize the mean square error
of the comparison.

We first consider how a single recurrent loop implements
timing (Figure 4A) and sheds light on the solution to the overall
timing problem by combining multiples of these recurrent loops
to implement a dynamical system. A single recurrent neural
processing unit can be described analytically by a feedback
loop, which is delayed by a single time step, represented by
z−1, and a feedback weight, w1 (Figure 4B). This has been
described in the system theory literature as an integrator (Zadeh
and Desoer, 1963). The concept of an integrator has been
utilized in modeling a wide range of phenomena related to
the saccadic system (Raphan and Cohen, 1981; Robinson, 1981;
Raphan, 1998), denoted by the velocity-position integrator, which
has played an important role in transforming the velocity
commands generated centrally to the position commands that
the eye muscles receive to hold the eyes (Robinson, 1981;
Raphan, 1998; Seung et al., 2000). Additional integrators have
been identified in the vestibulo-ocular reflex (Raphan et al.,
1979; Raphan and Cohen, 1996, 2002), vestibulo-sympathetic
system (Raphan et al., 2016), and locomotion system (Cho
et al., 2006, 2010; Osaki et al., 2008). In some instances,
our definition of “integrator” has also been referred to as a
“leaky” or “impure” integrator (see also Seung et al., 2000;
Simen et al., 2011), whereas a feedback weight of 1, is
referred to simply as an integrator (Zadeh and Desoer, 1963;
Seung et al., 2000).

The integrator can be defined by a difference equation, which
naturally lends itself to implementation as a RNN. The state, x(n),
denotes the current state of the integrator and x(n+ 1) is the next
state after 1 time step, which is updated by a dynamic process.

The integrator can be represented analytically as

x(n + 1) = W1x(n) + W0U(n) (1)

where x(0) is the initial value of the state and there is a linear
activation function (Figure 4C). The weight, w1, is the recurrent
feedback weight, which determines the rate at which the output
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FIGURE 3 | Architecture of the recurrent neural net (RNN) for timing learning. See text for details.

rises to a steady state level. The feed-forward gain (W0), i.e.,
the weight connecting an input unit to the integrator unit,
determines the asymptotic level to which the output rises in
response to a step input, U(n). When the feed-forward gain, W0,

is set to W0 = 1- W1, the asymptotic output level is equal to
the input unit’s activation level, which depends on an activation
function that is linear (Figure 4D). The rate at which that
asymptote is achieved depends upon w1. In response to a step
input (Figure 4D), this unit’s behavior, for a Matlab simulation,
changes over time differently for three different feedback weight
values (where w1 = 0.9, 0.8, 0.5, Figure 4D), illustrating its timing
capability from a long time constant to a short time constant.
Notice (1) that in all three cases, the asymptotic output level
matches the input level, and (2) that the closer the feedback
weight, w1, is to 1.0, the longer is the rise time to reach the
steady state value.

When implementing neural nets, non-linear activation
functions, such as squashed S functions are generally used to
increase the flexibility of the learning (Winston, 1993). In the
Matlab toolbox, this squashed S activation function is the tanh(•).
The integrator can now be represented mathematically by the
following equation:

x(n + 1) = tanh[w1(x(n)) + w0u(n)] (2)

where the output of the integrator is squashed before it is fed
back. It is implemented in Matlab as shown in Figure 4E.

The response to steps of input follow the slow, medium,
and fast rise although the weights are now different because
of the squashed S function that generates the next state
x(n) (Figure 4F). Because the input and recurrent weights
are not aligned, the asymptotes that the responses rise
to are different.

The Matlab implementation of the RNN timing model for
Tone and Flash stimulus inputs is a combination of integrators
as shown in Figure 5. The delays in the feedback loops for
recurrent units are denoted by having a 1 time step associated
feedback path. This meant that each recurrent unit stimulated
itself through weights, w3 – w4, w9 – w10, and w14.

It should be noted that the activation functions at each
layer were different and suited for the intended purpose of
the model. The first layer learned the weights from the data
and a tanh function was used as the activation function
for units at this layer. In the second layer (summator),
the activation function was dependent upon whether one
or two stimulus inputs were presented to the network. If
a single stimulus was presented the activation function was
linear, but if both stimuli were presented we used separate
piecewise linear functions whose slopes, saturation and cutoffs
differed for the two stimuli. As described in more detail
below (Saliency Implementation), this was done in order to
implement the idea that concurrently presented stimuli could
interfere with one another’s processing, i.e., their “salience.”
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FIGURE 4 | (A) Recurrent Node representation for a simple integrator. (B) Control theoretic input–output representation of an integrator The input in U(n) and the
output is the state of the integrator. The w1 is the feedback (recurrent) weight and z−1 represents a one time step delay. The feedforward weight is W0. When
W0 = 1-W1, the state x(n) rises to a value 1 with a rise time that is that is related to W1 . (C) Matlab Implementation of the integrator with a linear activation function.
(D) Response of the integrator to a step of input for different weights, w0 and w1. Note that the closer the weight w1, which is the recurrent feedback weight, gets to
1, the longer the rise time to its steady state value. (E) Matlab implementation of the integrator with a squashing activation function [tanh(·)]. (F) This leads to a wider
range of weights that produce different types of rise behavior. The larger the recurrent weight, the faster the response is to the steady state.

The final integrator was implemented with a linear activation
function as its weight was fixed throughout the learning
process. While the model explained the dominant features
of the timing data, the saliency functions were necessary to
more accurately fit the data for combined tone and flash
compound tests (see Description and Equations implemented for
Saliency, below).

Model Equations Without Saliency
As explained above, the model is a dynamical system, which can
be described as an interconnection of integrators.

For Tone input, the state update equations of the Go and
No-Go units can be given as:

TGo(n + 1) = tanh[W3(TGo(n)) + W1(UTone(n))] (3)

TNoGo(n + 1) = tanh[W4(TNoGo(n)) + W2(UTone(n))] (4)

The initial state, TGo (0) and TNoGo (0) was assumed to be zero
during the first 20 time steps, which was pre-stimulus state and
the response was assumed to be due to the stimulus.
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FIGURE 5 | Matlab implementation of the RNN used to model interval timing. Note that each of the Tone and Flash stimulus inputs converge onto two distinct
“timing” nodes (Go and No-Go) that adopt opposing fast and slow integrator behavioral functions with squashing activation function behavior. Output from these two
timing nodes are then summed and are operated on by a saliency operator, which then adds their outputs and drives a fixed weight integrator.

For Flash input, the state update equations of the Go and
No-Go units can be given as:

FGo(n + 1) = tanh[W9(FGo(n)) + W7(UFlash(n))] (5)

FNoGo(n + 1) = tanh[W10(FNoGo(n)) + W8(UFlash(n))] (6)

For both Tone and Flash inputs, the Go and No-Go units feed
into a Sum Operator (Figure 5).

When Tone and Flash responses are induced separately (no
saliency), the Sum Operators have linear activation function and
the update equations are given by:

TSum(n) = W5TGo(n) + W6TNoGo(n) (7)

FSum(n) = W11FGo(n) + W12FNoGo(n) (8)

Where n is the present time step and n + 1 is
the next time step.

The summation is just used as input to the final Integrator
whose equation is given by:

x(n + 1) = W14x(n) + W13[TSum(n) + FSum(n)] (9)

Saliency Operator Equations
In this model, saliency is defined as the conditions that must be
met when two (or more) stimuli are present for one stimulus
to modify the transmission of the other stimulus. The saliency
operation that we considered was based on the examination of
the compound response as compared to the response predicted
without saliency. One aspect of the compound response based
on our data (Figure 2) was that it did not have an overshoot as
was predicted by the model without saliency (see section Machine
Learning for Combined Tone + Flash Trials below). This
required the presence of a saturation effect to limit the overshoot.
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Thus, the saliency operation in this model for Flash interfering
with Tone processing is the saturating of the summed Tone
Go/No-Go signal when the Flash signal is present. This is
represented by a modification of the activation function in the
Sum Operator for Tone by incorporating a saturation and a
modification of the slope that produces TSum (Figure 5).

The implementation of saliency had bilateral effects, where
not only does the Flash stimulus interfere with Tone’s processing,
but the No-Go component of the Tone stimulus, can also affect
Tones’s combined Go/No-Go processing.

With the saliency operator defined as above, the outputs of the
Sum Operator for Tone when Flash is present are given by:

If
W5TGo(n) + W6TNoGo(n) ≥ 0 (10)

Then,

TSum(n) = Min[TSat(W5TGo(n) + W6TNoGo(n)), TSat] (11)

Similarly,
If

W5TGo(n) + W6TNoGo(n) < 0 (12)

Then,

TSum(n) = Max[TSat(W5TGo(n) + W6TNoGo(n)),−TSat]

(13)
That is, if the weighted summation, TSum(n), is less than zero,

then the output of the summator is the maximum (Max) of the
negative of Tone saturation (-TSat) and the weighted summation
scaled by TSat. Thus, while negative signals are implemented, but
in reality, both Tone and Flash are always positive.

Similar equations of saliency were implemented for Flash
processing when being interfered with by Tone:

If
W11FGo(n) + W12FNoGo(n) ≥ 0 (14)

Then,

FSum(n) = Min[FSat(W11FGo(n) + W12FNoGo(n)), FSat] (15)

and,
If

W11FGo(n) + W12FNoGo(n) < 0 (16)

Then,

FSum(n) = Max[FSat(W11FGo(n) + W12FNoGo(n)),−FSat]

(17)
Where TSat and FSat are the saturating values and slopes

for the Sum Operator’s activation functions for Tone and
Flash, respectively.

Because the decline in the compound response function was
somewhat faster than that for Flash, it indicated that if there was
a slight presence of the Tone Sum after a long time, i.e.,:

If
|TSum| > ε (18)

Where ε is a value close to zero, then the Flash processing
can still be modified by the activation of an AND gate together

with the Flash No-Go component being less than cutoff_v, which
outputs a 1 and the Flash is cutoff from activating the final
integrator, i.e., the saliency cutoff switch is in the 1 position,
and final integrator is just left to discharge without input from
Flash processing.

Similarly, there is a modification of the process that produces
TSum (Figure 5). If there is a presence of the Flash sum signal, i.e.,:

If
|FSum| > ε (19)

and the Tone No-Go component is less than cutoff_a, then
the output of its AND gate is 1 and the Tone processing is
cutoff, i.e., the saliency cutoff switch is in the 1 position. The final
integrator is similarly just left to discharge without input from
Tone processing.

These components of saliency insure that there can be no
activation of the final integrator with low level interference
activations. These saliency features were simulated and
compared to the compound data after learning Tone and
Flash separately (see below).

Machine Learning Methodology
To determine weights that would make the model fit the
data we used the distribution of lever press responses across
100 time steps (20 pre stimulus, 80 during stimulus) to train
the network to generate a 100 time step output activation
vector that approximated the training vector. The weights
that minimized the mean square error between the behavioral
data and network output vectors were learned by utilizing the
Levenberg–Marquardt algorithm from the Matlab Neural Net
Toolbox to train the network. The training basically implements
a back-propagation algorithm through time (BPTT) (Hagan
et al., 1996; Haykin, 2004). This algorithm unfolds the RNN
into a multilayered feed-forward network where each time epoch
constitutes another layer (see Appendix A for a simplified
description of the unfolding mechanism). Once the RNN is
unfolded, multilayered back propagation with the Levenberg–
Marquardt refinement can be used to identify the weights
(see Table 2). As described above, saliency functions were
also implemented between the Flash and Tone summation
units, to better approximate the network’s performance to the
Tone + Flash compound empirical data (see Table 2 for
saliency constants).

Machine Learning for Tone Trials
The system was first trained by keeping the final integrator and
flash component weights fixed while also maintaining the flash
input at zero. The data came from the non-reinforced probe
trials with Tone in Block 11 of training (Figure 2A). Once
these weights were learned, we inspected the output activation
levels of the Go and No-Go recurrent units for each of the 100
steps on a simulated Tone trial. The Tone input generated a
rapid rise in activation of the “Go” unit and a slower decrease
in activation of the “No-Go” unit. Thus, the two counteracted
one another over time (Figures 6A,B). The summated response
(measured by the summation unit’s output activation level)
was a pulse (Figure 6C), which was then used to drive the
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TABLE 2 | The model weights W1–W6 were learned from the final average Tone Response data.

Model weights Descriptor Saliency weights

W1 0.2342 Tone Go Input weight cutoff_a −0.8632

W2 −0.1774 Tone No-Go Input weight

W3 57.3471 Tone Go recurrent weight cutoff_v −0.2

W4 1.3228 Tone No-Go recurrent weight

W5 9.7741 Tone Go Sum weight Auditory Sum Operator Threshold 1.6

W6 11.3814 Tone No-Go Sum weight

W7 0.00081236 Flash Go Input weight Visual Sum Operator Threshold 0.85

W8 −0.000521 Flash No-Go Input weight

W9 865.0088 Flash Go recurrent weight Time to reach cutoff_a 27 time steps

W10 1.1229 Flash No-Go recurrent weight

W11 0.9659 Flash Go Sum weight Time to reach cutoff_ v 54 time steps

W12 1.6959 Flash No-Go Sum weight

W13 0.1 Final Integrator Input Weight

W14 0.9 Final Integrator recurrent weight

The model weights W7 – W12 were learned from the final average Flash Response data. The final integrator weights, W13 and W14 were chosen to have a reasonably
long time constant that can be used to integrate the Tone and Flash Timing information from the previous layers. The Saliency weights were chosen to improve fits of the
model to the data after the learning took place.

FIGURE 6 | (A–D) The learned Go (A), No-Go (B), and summated Go/No-Go
responses to a Tone input. The Summated Go/No-Go response compares
favorably with the derived data for this response. (E–H) The learned Go (E),
No-Go (F), and summated Go/No-Go (G) responses to a Flash input. The
Summated Go/No-Go response compares favorably with the derived data for
this response (H). Note that the “derived” data was based on the values
needed to produce the actual rodent empirical data when these were fed into
the integrator unit.

final integrator. When this summated function (Figure 6C) was
applied to the integrator, the simulated tone response fit the data
with great fidelity (Figures 6D, 7A). Because the flash input was
zero, the flash component did not impact the response of the
system to a pure tone.

Machine Learning for Flash Trials
The network was similarly trained to respond to the Flash
stimulus, but the Tone weights were kept constant as found
during Tone learning. The final integrator weights were kept
from learning as well and they were the same used for training
Tone. The Go and No-Go units to a Flash input, respectively, also
displayed a fast rise and slower fall in activation (Figures 6E,F).
Notably, the No-Go unit decreased its output at a slower rate than
on simulated Tone trials (Figures 6B,F). The Flash summation
unit, which summed over its separate Go and No-Go units,
showed a similar pulse to that of the Tone summation unit, but
weights that were learned delayed the phase and increased the
variance over time as compared to Tone (Figures 6C,G). When
this widened pulse was applied to the final integrator whose
weights were the same as for Tone input, the simulation fit the
Flash data almost perfectly (Figures 6H, 7B). These simulations
indicate that the Tone and Flash timing data could be generated
separately by having different timing subsystems for the two
stimuli that, nonetheless, combine at the final integration level.

Machine Learning for Combined
Tone + Flash Trials
After training the Tone and Flash separately (Figures 7A,B), the
model was then tested to determine whether it would predict the
combined response to Tone and Flash inputs. Without altering
any of the weights and without incorporating any saliency
functions, the model predicted a shift in phase when the inputs
were combined (Figure 7C). It also predicted a rapid rise in
responding to the compound stimulus, close to that seen to Tone
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(Figure 7A), as well as a slow decline in responding closely
aligned to the Flash alone (Figure 7B). However, it did not
accurately predict the shapes on these simulated compound trials.
The peak was close to that of Tone (Compare Figure 7C with
Figure 7A), and simulated responding to the compound stimulus
overshot the empirical response function (Figure 7C). This
discrepancy between model output and empirical data prompted
us to consider a role that saliency might play in governing system
performance. When we introduced the “saliency functions” for
tone and flash components of the network described above,
the empirical and simulated data fit with a much-reduced
error (Figure 7D).

Because these parameters were non-linear functions, they
could not be learned and the various saliency parameters of the
effects of tone on flash and flash on tone were adjusted in a trial
and error way. We did so in order to reduce the mean squared
error between the empirical behavioral function on compound
trials and the model’s response function on compound trials once
parameters for Tone and Flash were learned.

Thus, the best predictor of the fit to the average compound
data occurred when Tone was saturated by the interference of
Flash, causing a rise in response close to that of tone and a
saturation and cutoff of Flash and Tone to produce the decline
in the compound response function. Tone interfered with the
Flash internal signal at a time when the Flash No-Go signal
was sufficiently negative (i.e., had surpassed a certain threshold).
Conversely, the internal summed Go and No-Go Tone signal
was cutoff when the Tone No-Go unit was sufficiently negative
and surpassed a different threshold. Because the Flash signal
rose to the threshold slower than the Tone, there was a non-
symmetric non-linear interaction that governed the dynamic
responses. The principle of Saliency that we have established is
that while Tone and Flash can effectively interfere with the other,
they are governed by different saturation and cutoff functions.
The saturation level is determined by the presence of the other
signal and the cutoff is determined by the No-Go component of
the same signal. Both the saturation and cutoff are present only
when both signals are processed simultaneously; otherwise, these

FIGURE 7 | Average Normalized Response Functions observed on Tone (A), Flash (B), and Combined Tone + Flash probe trials in Block 11 (C,D) overlayed with the
RNN model’s simulated data. Note, these simulated data reflect output values from the large fixed weight integrator. The model was trained to fit the empirical data
for the Tone only and Flash only trials. (C) The fits to the data when there was no saliency and the Tone and Flash responses were linearly combined. (D) A stronger
fit to the combined Tone + Flash data was obtained when we assumed that the simultaneous presentation of both stimuli diminished the “salience” of one stimulus
on the other, but the learned weights in the network were not changed. These data support the idea that salience interactions among stimuli may be required to
understand temporal averaging effects. See text for more details.
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units adopt a simple linear activation function (as was used on
trials with one or the other stimulus present).

DISCUSSION

This study showed that a simple RNN, one that has local
feedback, could simulate rodent data from a peak interval
timing task. In particular, we demonstrated that the model
could be trained to produce the different response functions we
obtained with rats performing in a peak timing task when one
stimulus (Tone) indicated reward availability after 5 s and a
second stimulus (Flash) after 30 s. Further, we showed that the
model approximated the behavior of the animals when probed
with a compound stimulus (Tone + Flash). Specifically, both
the rats and the model responded to the stimulus compound
by “averaging” the two independent temporal estimates to
reward such that maximal responding occurred at an interval
intermediate between the two signaled by the individual stimuli
(Swanton et al., 2009; Swanton and Matell, 2011; Matell and
Henning, 2013; Matell and Kurti, 2014; Delamater and Nicolas,
2015; De Corte and Matell, 2016a,b).

The RNN neural network architecture presented in this study
is unique in that it models interval timing using a small number
of neurons to encapsulate the dynamic properties of interval
timing. A feature of the model is that it converts a sensory step
input into an appropriately timed pulse. This could be related
to the observation that single cell neural firings in the dorsal
striatum display temporal firing properties that match interval
timing behavior (Matell et al., 2003). Furthermore, our model
suggests that there should exist neurons that code the separate
Go and No-Go components of the timing signal. This is in
contrast to other RNN models that seek to derive properties of
scalar timing directly from large populations of interconnected
neurons (Simen et al., 2011; Luzardo et al., 2017; Hardy and
Buonomano, 2018). Despite its simplicity, our model has some
common conceptual features with other models interval timing.
For example, SET (Church et al., 1994), the multiple-time-scale
memory model of timing (Staddon and Higa, 1999; Staddon,
2005), spectral timing (Grossberg and Schmajuk, 1989; Buhusi
and Oprisan, 2013), behavioral theories of timing (Killeen and
Fetterman, 1988; Machado, 1997) and diffusion drift theories
(Simen et al., 2011; Luzardo et al., 2017) all assume that
integration or summation over time is an important component
of temporal encoding. SET assumes that there is a pacemaker
clock whose pulses are counted (i.e., integrated) over time, with
response decisions obeying particular decision rules (Gibbon and
Church, 1990). In this way, SET can be thought of as a dynamical
system, perhaps operating at a more computational, rather
than a mechanistic, level of analysis. Church and Broadbent
(1990) suggested one way to implement SET’s key ideas within
the framework of a feedforward connectionist network. Our
approach differs from this and related models (Oprisan and
Buhusi, 2011; Buhusi and Oprisan, 2013) by emphasizing the
feedback components within a RNN. Multiple time scale, spectral
timing, and behavioral theories of timing can be construed as
assuming that the reinforced time is encoded as one component
within a series of cascaded integrators, and that what is learned is

the reinforced strengths, or values, of these different components.
In particular, the component occurring maximally at the time
of reward accrues maximal strength (also Pavlov, 1927). The
RNN proposed in this study also utilizes the concept of an
integrator, but we implement it as an individual node with
a recurrent feedback loop whose weight determines its “time
constant,” i.e., its rate of growth and decay. In this way, maximal
responding arises when the summation unit reaches its peak,
but, importantly, this is accomplished in a system that neither
requires a pacemaker-clock system nor a cascade of separate
temporally discriminable states. A main distinction between our
RNN approach and those of many other approaches is that
temporal memory is encoded in the connection weights of the
RNN and the recurrent loop weights.

The apparent simplicity of the RNN proposed here is
noteworthy. Each input stimulus converges to two separate
recurrent units that, themselves, converge on a single summation
unit that, ultimately, feeds into a single response integrator unit.
Thus, each stimulus is assumed to be part of a 4-unit dynamical
“timing” system that feeds into a response output integrator
unit (see Figure 5). One important discovery with this network
was the observation that when training it to learn a particular
response function (e.g., to Tone, or to Flash), the first two
recurrent units always adopted opposing behavioral functions.
We label one of these the “Go” function and the other the
“No-Go” function. In essence, the RNN learns by developing a
tendency to respond (Go) and a separate tendency to turn off the
response (No-Go).

Through the combination of these two behavioral tendencies,
the network learns to appropriately time its output. In an
additional analysis we used the data from each block of training
(Figure 1) to train the network and we inspected the status of
the Go and No-Go units. We observed that the RNN rapidly
acquired the tendency to respond through a strong activation
of the Go unit, but only more slowly developed the opposing
tendency to turn off the response through increasing suppression
of the No-Go unit. In other words, just like the animals, the
RNN rapidly learned to respond, but only with additional
training learned to withhold responding at inappropriate times.
SET, and other approaches, interprets the loss of responding at
extended times in terms of an increasing dissimilarity between
a representation of elapsed time to the remembered reinforced
time. Here, we assume that it reflects the combined influences of
opposing learned response tendencies that appear to be acquired
at different rates. It remains to be determined whether including
more than two recurrent units at this stage of the RNN would
impact any of the model’s predictions.

Another important issue regarding the RNN concerns how
stochastic decision rules for responding can be incorporated. Our
RNN model generates a deterministic output, which would have
to be converted to a stochastic signal that could vary from trial to
trial (or even within trial) (Church et al., 1994). This aspect of the
model remains to be developed.

We earlier suggested that while many different types of models
of interval timing can explain key aspects of interval timing data,
all of those theoretical approaches generally have difficulty with
the averaging phenomenon (Swanton et al., 2009; Swanton and
Matell, 2011; Matell and Henning, 2013; Matell and Kurti, 2014;
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Delamater and Nicolas, 2015; De Corte and Matell, 2016a,b).
We replicated that empirical effect here, but went on to show
how it might arise from the RNN framework. In particular,
we showed that the response functions to the Tone + Flash
compound produce a response timing function whose peak and
variance was between those seen to Tone and Flash when given
separately. In order to better fit these data, we assumed that the
activation functions at the stage of inputs to the final response
integrator unit needed to be modified by what we refer to as non-
linear “saliency functions.” In particular, we assumed that when
the Tone and Flash stimuli were compounded, they mutually
interfered with one another’s processing (though not necessarily
to the same degree). In this model, saliency is defined as the
conditions that must be met when two (or more) stimulus
are present for one stimulus to interfere with or block the
transmission of the other. There were two aspects of the saliency
operation that we considered. A primary saliency operation in
this model is the saturating of the summed Go/No-Go signal
when another signal is present. Thus, one signal such as Flash
transmission can limit the transmission of the Tone response.
Another saliency operation is the blockage of signal transmission
at a certain point, which is represented by the switch. For Tone
transmission, for example, it is in the 0 position for NO blockage
and in the 1 position when there IS blockage. In this model,
the switch is in the 1 position (blockage) when there is another
signal (Flash) present AND the No-Go of the Tone response is
negatively greater than some cutoff. This is the purpose of the
AND gate and switch. Together, this type of saliency is capable
of fitting the nuances of the compound data, once the weights
for Tone and Flash have been learned separately. While this
may not be a unique methodology for implementing saliency,
it does suggest that saliency may play an important role in
refining the response to compound stimuli once weights have
been learned for responding to stimuli separately. It opens the
possibility of more in depth studies of saliency and its role in
implementing event timing.

The specific rules for determining salience disruptions, more
generally, have not been elucidated. Other research has shown
that mutual interference can occur when two stimuli are
equivalently salient, but that asymmetrical disruptions occur
when one stimulus is stronger (e.g., Mackintosh, 1976). Relatedly,
Matell and Kurti (2014) showed that temporal averaging varied as
a function of the differential reward probabilities and stimulus
modalities of the early and late time signals. Our suggestion
is that these effects reflect differential salience disruptions on
compound trials when stimuli are differentially salient to begin
with or when different reinforcement probabilities are used. This
mutual disruption of signal processing could be an important
consideration when interpreting temporal averaging studies.

A key aspect of any theory of interval timing should address
its scalar timing property (Gibbon, 1977; Gibbon et al., 1984;
Wearden et al., 1997) as it has long been recognized as
a fundamental issue in timing (Gibbon, 1977). We utilized
standard methods (taken from Matell and Kurti, 2014) to
compute the peak times and widths of our average Tone, Flash
and Compound data to determine whether there was scaling
across these trial types. We defined the CV as the width of the
behavioral function/it peak time for Tone, Flash, and Compound

trials and observed that they were not constant and, therefore, not
in accordance with scalar invariance. It is not clear why our data
did not obey the scalar timing principle, but it may be related to
the specific short and long intervals used (5 s, 30 s).

The RNN model proposed in this study is based on
the contribution of combinations of integrators to timing
performance (Staddon and Higa, 1999; Staddon, 2002, 2005).
Our starting point was to ask, first, if different behavioral timing
functions could be modeled using the RNN approach. We show
that the network weights are trainable so that trained weights can
simulate data from tone trials whose peak occurs at 5 s as well
as from flash trials whose peak occurs at 30 s and fits our data
almost exactly. For example, a constant tone or constant flash
input can be trained individually to respond to a certain rise and
fall time. In the RNN model, the constant tone input generated
a fast rising Go response and a slower rising No-Go response in
the negative direction at the first processing layer. When these
two responses were summated, a pulse was generated. Because
the time constants of these components were trained using the
empirical data, the pulse contains information about time of
reward (the peak value). When this pulse is processed through
an activation function, it scales and shapes the pulse that can be
input to a final integrator, with a long rise time, whose output
can be used by higher “cognitive” centers to decide whether
or not to respond by bar pressing. We also showed that this
final integrator can then be used to integrate compound stimuli
whose timing is different from its individual components. What
is perhaps intriguing about this model’s predictions is that we
utilized the method of Matell and Kurti (2014) to compute the
peak times, widths, and CVs for Tone, Flash and Compound
data to determine whether there was scaling across these trial
types. Although scalar invariance was not observed empirically,
our model predicted these response functions with great fidelity.
We suspect that different configurations of weights (within the
networks “weight space”) may, indeed, produce response outputs
that conform to scalar invariance. This was not our focus here,
but the present framework does present the possibility in future
developments that the model could differentiate when and under
what conditions scalar invariance may or may not be present.

More generally, the kinds of dynamic properties of systems
that combine integrators are ubiquitous across various
sensorimotor systems. The vestibulo-ocular and optokinetic
reflexes are governed by combinations of feedback control
mechanisms that have equivalent dynamical responses as the
RNN proposed in this study (Raphan et al., 1977, 1979; Fanelli
et al., 1990). The concept of an integrator is at the core of the
model of the vestibulo-ocular reflex (VOR) (Raphan et al., 1979;
Raphan and Cohen, 1996, 2002). For example, when the head is
rotated with a step in velocity, eighth nerve afferents respond in
a pulsatile manner as a second order system with a rising time
constants of 0.003 s and an opposing falling time constant of
4–5 s (Fernandez and Goldberg, 1971; Goldberg and Fernandes,
1975; Wilson and Melvill-Jones, 1979; Raphan et al., 1996;
Dai et al., 1999). This has been modeled with control systems
using integrators with feedback similar to the RNN models
proposed in this study (Raphan et al., 1996; Dai et al., 1999).
The feedback mechanisms at this level comes from the viscosity
of the endolymph fluid in the canal and the elasticity of the
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cupula, in which is embedded the hair cells that drive the eighth
nerve afferents that code the movement of the head (Wilson and
Melvill-Jones, 1979). This model is similar to the summation of
the Go and No-Go responses presented here.

An important contribution regarding VOR processing, is the
presence of another integrator at the level of the vestibular
nuclei in the brainstem that lengthens the time constant
at the periphery to a longer time constant of about 12 s,
seen in medial vestibular nuclei neurons (Waespe and Henn,
1977a,b, 1978) and in eye velocity responses (Raphan et al.,
1979). This central integrator known as the velocity storage
integrator is also accessed by the optokinetic system (Cohen
et al., 1977), which then activates another integrator known
as the velocity-position integrator (Skavenski and Robinson,
1973; Skavenski et al., 1981; Raphan and Cohen, 2002). The
central feedback mechanisms are not local as they are in the
mechanical feedback that occurs within semicircular canals.
Rather, they appear to be more global and with projections
across the commissure and back (Galiana et al., 1984; Wearne
et al., 1997). These mechanisms were modeled using control
theoretic concepts, which have the same architectural structure
as the RNN proposed here, although there has been some work
to model this integrator using neural nets (Anastasio, 1991).
In addition, similar feedback control has been used to model
locomotion reflexes (Raphan et al., 2001; Osaki et al., 2007,
2008) and an RNN with feedback has been used to model
vestibulo-autonomic interactions (Raphan et al., 2016) to predict
vaso-vagal responses as well as vaso-vagal syncope (Yakushin
et al., 2016). This suggests that the central nervous system
utilizes integrators to implement sensory motor transformations
whose weights can be learned to adapt the behavior. It was of
interest that the transformations that were utilized to model
interval timing behavior were structured in the same manner as
that for the VOR.

The RNN model proposed here has not addressed the
important problem of identifying a trial-by-trial learning
mechanism from the timing of the reward. Rather, we used the
animals’ asymptotic empirical data to identify a set of weights
that result in appropriate network output on simulated Tone
and Flash trials, and then we used this to predict network
performance on stimulus compound trials. The reward timing
is therefore embedded in these empirical responses, which are
mapped to the RNN weights. The RNN developed separate
Go and No-Go functional units, and we adopted particular
saliency functions (based on stimulus cross-coupling and No-Go
threshold mechanisms) in order to account for the temporal
averaging effect. Therefore, we have provided a ‘proof of
concept’ that the RNN framework can be usefully applied to
model interval timing data and showed that temporal averaging
effects may arise from that network. More specifically, we
have shown that weights of the RNN can be found so that
the model is capable of faithfully reflecting the empirical data
arising when one stimulus signals a 5 s and another a 30 s
reward time. But in order to show this we used a somewhat
arbitrary learning algorithm (found in MatLab’s toolbox) in
conjunction with “teaching” signals provided by the animals’
actual response functions. This approach shows that, in principle,

the RNN is capable of producing a set of weights between nodes
that could give rise to scalar timing and temporal averaging
effects. But to show that the RNN could learn this in a more
realistic way requires specification of the learning mechanisms
whereby separate timing functions can be learned in a food-
reinforced learning situation. One approach is that provided
by “reinforcement learning” (Sutton and Barto, 2018), which
could be applied to dynamical systems learning. However, we
are not aware of its application to RNNs, and this would
need to be developed further. Regardless of the details of how
this might be accomplished, however, we have identified a
new model structure that could be extremely important for
our understanding of how the central nervous system encodes
interval timing.
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APPENDIX A

A recurrent neural net can be thought of as a feedforward network, in which the recurrent network is unfolded in time (Figure A1).
If this network were to be trained over a 100 time steps, as is for the experiments modeled in this paper, we could unfold the network
to create one 100 layers – one for each time step. The Back Propagation Through Time (BPTT) algorithm then represents a method
for computing the gradients over these layers and this fixed network produces the same final result for the computed weights as the
recurrent neural net with the same weights.

There are some problems with this type of learning, however. If a sigmoid transfer function is used, then if the output of the network
is near the saturation point for any time point, the resulting gradient could be quite small and could impact the convergence. Another
problem in training dynamic networks is the shape of the error surface. It has been shown that the error surfaces of recurrent networks
can have spurious valleys that are not related to the dynamic system that is being approximated. The underlying cause of these valleys
is the fact that recurrent networks have the potential for instabilities. However, it is possible, for a particular input sequence, that the
network output can be small for a particular value greater than one in magnitude, or for certain combinations of values. Finally, it
is sometimes difficult to get adequate training data for dynamic networks. This is because the inputs to some layers will come from
tapped delay lines. This means that the elements of the input vector cannot be selected independently, since the time sequence from
which they are sampled is generally correlated in time. Unlike static networks, in which the network response depends only on the
input to the network at the current time, dynamic network responses depend on the history of the input sequence. The data used to
train the network must be representative of all situations for which the network will be used, both in terms of the ranges for each
input, but also in terms of the variation of the inputs over time.

Static multilayer networks can be used to approximate functions. Dynamic networks can be used to approximate dynamic systems.
A function maps from one vector space (the domain) to another vector space (the range). A dynamic system maps from one set of
time sequences (the input sequences) to another set of time sequences (the output sequences). For example, the network of Figure A1
is a dynamic system. It maps from input sequences to output sequences. The BPTT algorithm starts from the last time point and
works backward in time. In addition to the gradient, versions of BPTT can be used to compute Jacobian matrices, as are needed in
the Levenberg–Marquardt algorithm. Once the gradients or Jacobians are computed, many standard optimization algorithms can be
used to train the networks. The BPTT algorithm, however, usually requires more memory storage and for large networks, the memory
requirements would be unmanageable. Despite the shortcomings of the BPTT algorithm, the recurrent neural network that we used
has a small number of interconnected units and therefore, the BPTT algorithm using the Levenberg–Marquardt algorithm in the
Matlab neural Net Package worked quite well in converging to weights that fit the data and gave insight into the internal workings of
the timing generator.

FIGURE A1 | The unfolding of a one dimensional recurrent neural net over time. The Back propagation through time (BPTT) algorithm can be used to identify the
weights.
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