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Testicular dysfunction due to hyperglycemia is the main cause of infertility in diabetic men. Over the years, in order to solve this
growing problem, a lot of research has been done and a variety of treatments have been created, but so far, there is no safe, effective,
and practical method to prevent male infertility caused by diabetes. In this review, we emphasize the male infertility mechanism
caused by diabetes from the effects of oxidative stress and autophagy on the function of testes via the PI3K/Akt/mTOR signaling
pathway, and we highlight that oxidative stress-induced autophagy breaks the feedforward loop linking Nrf2 and p62 and

promotes oxidative damage in diabetic testes.

1. Introduction

As a multifactorial disease characterized by hyperglycemia,
the incidence of diabetes has been increasing in the past
decades [1]. According to the latest data, 463 million adults
currently have diabetes. If adequate action is not taken to
address the epidemic, 578 million people will have diabetes
by 2030. By 2045, that number will jump to a staggering 700
million [2]. It is well known that diabetes can negatively affect
the fertility of women and men, and studies have shown that
diabetes can cause cellular abnormalities in reproductive
organs [3-6]. Testicular dysfunction is a major complication
of diabetic patients, especially those at reproductive age, and
its incidence is increasing worldwide [7-9]. In male reproduc-
tive organs, testes are most vulnerable to hyperglycemia [9].
Animal studies using the diabetic rodent models have shown
that diabetes can damage the epididymis of rodents, influence
the quality of semen, and thus impair reproductive function
[10-13]. Previous clinical studies have confirmed that sperm
count, motility, and morphology in diabetic patients are sig-

nificantly worse compared to the control group [14-16]. In
addition, previous studies have demonstrated that diabetic
rats have reduced testicular weight [17], abnormal tissue
structure of seminiferous epithelium, vacuolization of Sertoli
cells (SCs) [18], and disruption of the blood-testis barrier
(BTB) [19]. Therefore, it is of great significance to study the
mechanism of testicular dysfunction in diabetic patients and
find an effective way to prevent male infertility.

In the pathogenesis of male infertility in diabetes, reactive
oxygen species (ROS) play a vital role [20]. And under a vari-
ety of pathological conditions, the relative excessive accumu-
lation of ROS can induce autophagy [21-24]. In previous
animal model studies, it has also been confirmed that in the
testis, excessive production of ROS can induce autophagy
[25-27]. Therefore, in this review, we speculate that in diabe-
tes, excessive production of ROS can induce autophagy in the
testis. A series of studies have confirmed that abnormal
autophagy can cause abnormalities in the complex and
highly ordered sperm cell differentiation process, such as
acrosome biogenesis and sperm differentiation defects [28,
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29], decreased serum testosterone levels [30], and SC apopto-
sis and BTB damage [26, 31]. The phosphatidylinositol 3-
kinase (PI3K)/protein kinase B (Akt)/mammalian target of
rapamycin (mTOR) signaling pathway is a target of oxidative
stress [32]. Furthermore, the PI3K/Akt/mTOR signaling
pathway is one of the most vital regulators of autophagy
and its activation promotes spermatogenesis [33-35]. In this
review, we mainly elaborate that autophagy induced by oxi-
dative stress via the PI3K/Akt/mTOR signaling pathway
accelerates the oxidative stress in the testis, and we highlight
that autophagy induced by oxidative stress breaks the feed-
forward loop linking Nrf2 and p62 and aggravates oxidative
damage in diabetic testes.

2. Diabetes and Male Infertility

Diabetes mellitus (DM) is a multifactorial disease character-
ized by hyperglycemia. In the past few decades, a lot of work
has been done and a variety of treatments have been devel-
oped to address this growing problem; however, even today,
the prevalence and incidence of diabetes continues to rise
sharply. And the incidence of type 1 diabetes (T1D) has been
increasing worldwide [36]. At the same time, as the incidence
is increasing, the age of onset is also getting younger. Accord-
ing to studies evaluating temporal trends, the incidence of
childhood-onset T1D has increased around the world, with
an average relative growth of 3%-4% per calendar year [37].
This has many implications for the risk of complications.
The increased incidence of diabetes in young people is of
great concern because it may affect the reproductive function
of more men during their active reproductive age.

3. Hyperglycemia Inducing the
Production of ROS

Diabetes is characterized by a hyperglycemic state, and the
elevating level of oxidative stress directly induced by
hyperglycemia plays a crucial role in male infertility [38]
(Figure 1). Hyperglycemia has been shown to cause oxida-
tive stress through hydroxyl radicals generated by the
autoxidation of glucose [39, 40]. Previous investigations
have demonstrated that accumulation of advanced glyca-
tion end products (AGEs) produced by nonenzymatic
reactions between sugar and amino groups of proteins
under hyperglycemic conditions and their receptors
(RAGE) plays a crucial role in the development of
diabetes-induced complications, including the pathogenesis
of diabetes-induced male reproductive damage, which acti-
vates oxidative stress and increases the generation of ROS
[19, 41, 42]. Through semiquantitative analysis of immu-
nostaining of sperm from the diabetic and nondiabetic
males, Mallidis et al. also found that in diabetic male
sperm samples, the majority of sperm (>60%) expressed
RAGE, which is approximately three times greater than
that seen in samples from nondiabetic men [43]. There-
fore, in patients with diabetes, excessive hydroxyl radicals
and AGEs induced by hyperglycemia can further increase
the production of ROS, leading to an increase in oxidative
stress and aggravation of sperm loss.
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4. The Role of ROS in Testicular Functions

As one of the messengers that affect sperm function during
the process of sperm from the testis to the oocyte, low levels
of ROS can regulate sperm function, promote sperm capaci-
tation, and regulate sperm maturation [44]. Numerous stud-
ies have shown that low levels of ROS are essential in the
process of obtaining fertilization in sperm. Aitken et al. first
proposed the idea that low levels of ROS can regulate the
physiological functions of sperm and found that the ability
of sperm to bind the zona pellucida can be enhanced by
low levels of ROS [45]. Adding low concentration of hydro-
gen peroxide (H,0,) can stimulate sperm capacitation, over-
activation, acrosome reaction, and oocyte fusion, which has
also been confirmed by studies [46, 47]. ROS other than
H,0, such as nitric oxide and superoxide anion have also
been shown to promote sperm capacitation and acrosome
reaction [48, 49]. However, human sperm is particularly vul-
nerable to oxidative damage, and an imbalance between the
production of ROS and the antioxidant capacity of sperm will
lead to male infertility [50-52]. It has been accepted that
spermatozoa are vulnerable to oxidative damage because
their plasma membranes contain large amounts of polyun-
saturated fatty acids (PUFA) and have low concentrations
of scavenging enzymes in their cytoplasm [13, 53, 54]. When
levels are excessive, ROS attack PUFA in the sperm plasma
membrane, leading to lipid peroxidation [55]. A large num-
ber of studies have shown that long-term hyperglycemia
increases the production of ROS in testicular tissues in
patients with diabetes and plays a key role in male testicular
dysfunction [6, 56-58] (Figure 1).

4.1. Imbalance of Oxidation and Antioxidation in Testes
Leads to Male Infertility. Among diabetics, oxidative imbal-
ance is a key hallmark in testes. Hyperglycemia induces the
germ cells and somatic cells in the testes to produce excessive
ROS [19, 59], which overwhelms the endogenous ROS scav-
enging systems [60, 61]. Oxidative stress further causes dam-
age to many macromolecules and disrupts their functions,
such as lipid peroxidation, protein modifications, and DNA
damage [62-64] (Figure 1). And the sperm cell membrane
damage induced by oxidative stress may be one of the reasons
for infertility [52, 65]. It has been proved that ROS attacks
not only the fluidity of the sperm plasma membrane but also
the integrity of DNA in the sperm nucleus [66]. Agarwal et al.
have found that the level of apoptosis of mature sperm in
infertile patients is significantly higher than that in normal
donors in the control group, indicating that DNA damage
caused by ROS may accelerate apoptosis of germ cells, further
leading to a significant decrease in sperm count and semen
quality [67]. The level of DNA oxidation in infertile men’s
sperm is higher than that in fertile men’s sperm, which fur-
ther proves that the excessive production of ROS causes dam-
age to sperm [68]. Therefore, improving the antioxidative
ability of testes may become an effective method for prevent-
ing male infertility in diabetic patients.

4.2. PI3K/Akt/mTOR Signaling Pathway as a Central
Regulator of Spermatogenesis. The activation of PI3K and
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FIGURE 1: Mechanistic illustrations. The increasing formation of ROS in DM can directly cause damage to spermatogenesis via attacking the
fluidity of the plasma membrane lipids, protein modifications, and integrity of DNA. And ROS also can induce autophagy by inhibiting
mTOR through the PI3K/Akt signaling pathway. Autophagy accelerates the degradation of p62, and then, the Nrf2 activation is

suppressed and the oxidative damage is aggravated. Autophagy
testosterone levels, suppressing SC proliferation, and damaging

also directly causes damage to spermatogenesis via reducing serum
BTB. Moreover, mTOR has distinct effects on spermatogenesis via

promoting spermatogonia proliferation, maintaining somatic cell function, and restructuring BTB. As a result, the oxidative damage in
diabetic testes is further enhanced, thereby promoting the occurrence of infertility.

its downstream target mTOR is beneficial to protein synthe-
sis and cell survival, which has been confirmed by previous
studies. Blume et al. have confirmed that the activation of
PI3K is essential for stem cell factor-induced spermatogene-
sis [69]. mTOR, a well-conserved Ser/Thr protein kinase,
plays a key role in sensing environmental conditions and reg-
ulating cell metabolism [70]. Since the first clinical evidence
showed that a 36-year-old male was infertile after taking
rapamycin, an mTOR inhibitor, and his sperm analysis
showed a dramatic diminution of sperm count, percentage
of normal-shaped sperm heads, and sperm motility, a role
for mTOR in male reproductive physiology was originally
proposed [71]. Studies have verified distinct roles for mTOR
in spermatogenesis [72] (Figure 1). Deutsch et al. found that
testosterone secretion and sperm count decreased in patients
treated with rapamycin, and sperm count and sex hormone
levels improved after withdrawing rapamycin [72]. Recent
studies have shown that mTOR plays a key role in testicular
physiology. mTOR has two different complex forms, mTOR
complex 1 (mTORC1) and mTOR complex 2 (mTORC2),

which increases the complexity of studying the function of
mTOR [73]. mTOR and its associated partner proteins are
expressed in both the germ (particularly in spermatogonia)
and somatic (Sertoli and Leydig) cells within the testis, with
mTORC1 and mTORC2 being differentially present in all
these cellular types [74-77]. In spermatogonia, the applica-
tion of rapamycin caused a decrease in proliferation by
blocking the mTOR/p70S6K (70kDa ribosomal protein S6
kinase, a significant downstream effector of mTOR, mediat-
ing protein synthesis) pathway, which indicates the role of
mTORCI in maintaining germ cell proliferation [77]. In vivo
studies have shown that rapamycin causes atrophy and vacu-
olation of seminiferous tubules by inhibiting mTORC1, lead-
ing to reduced sperm production, which indicates the role of
mTORCI in spermatogenesis [77]. mTORCI-deficient mice
show reduced sperm motility, which indicates that mTORC1
can regulate the physiological functions of sperm during the
passage of the epididymis, in addition to maintaining germ
cell proliferation and spermatogenesis [76]. Studies show
that mTOR can directly participate in nutritional support



for spermatogenesis by controlling glucose consumption and
redox balance in SCs [78]. In addition, mTOR also plays a
key role in the maintenance and reorganization of BTB,
which is very important for maintaining the spermatogenic
epithelium circulation [79, 80]. Although mTOR has been
shown to participate in many physiological processes, the
role of mTOR and its inhibitors in male reproduction needs
more research.

4.3. ROS Inducing Autophagy via Inhibiting the PI3K/Akt
Signaling Pathway. Under various stress conditions, such as
hyperglycemia, oxidative stress, and starvation, the
PI3K/Akt/mTOR signaling pathway is a typical negative reg-
ulatory pathway for autophagy in mammalian germ cells.
Studies have reported that overproduction of ROS in long-
term hyperglycemic organisms significantly inhibits the
PI3K/Akt signaling pathway, thus affecting cell autophagic
function (Figure 1). Lin et al. found that ROS induced
autophagic cell death by negatively regulating this signaling
pathway [81]. Shi et al. also demonstrated that the levels of
p-PI3K and p-Akt/t-Akt in diabetic testes cells were signifi-
cantly downregulated, whereas after treatment with Lycium
barbarum polysaccharide, a well-known antioxidant food
supplement, p85-PI3K and p-Akt expression were signifi-
cantly upregulated [82]. Therefore, under hyperglycemic
conditions, reducing ROS production can regulate autophagy
through a PI3K/Akt-dependent mechanism in testicular tis-
sues. It has also been proved that the increase of oxidative
stress inhibits the PI3K/Akt/mTOR pathway, following by
the inhibition of the expression of p70S6K, leading to degen-
eration and malformation of sperm, and affects sperm count,
motility, and function in epididymis [77, 83].

5. The Role of Autophagy in Male
Testicular Functions

Autophagy is an intracellular lysosomal degradation pathway
and plays a very important role in maintaining intracellular
homeostasis [84]. The main role of autophagy is to eliminate
intracellular energy resources in nutrient shortage conditions
and remove cytotoxic proteins and organelles under stressful
situations [85]. Previous studies have shown that autophagy
plays an important role in acrosome biogenesis [29] and
spermatid differentiation during spermatogenesis [28]. Mod-
erate autophagy maintains homeostasis of organisms and
was reported to play a protective role against testicular dam-
age caused by hyperglycemia [85] and hypoxia [86]. How-
ever, a series of research studies confirmed that abnormal
autophagy is pivotal for male infertility (Figure 1). Leydig
cells, as an important part of the testicular stroma, are the
main source of androgens [87]. Zhao et al. have shown that
autophagy induced by suppressing the Akt-mTOR pathway
can inhibit Leydig cells, thereby reducing serum testosterone
levels [30]. SCs are essential for spermatogenesis and male
fertility, and they coordinate the spermatogenesis process
by providing nutrition and an environment conducive to
the survival and development of germ cells [88-90]. It has
been reported by Duan et al. that in SCs, the mTOR signaling
pathway mediated by ROS may be the main pathway to aug-
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ment autophagy, which causes the suppression of SC prolif-
eration, thus impairing spermatogenesis and fertility [31].
The BTB consisting of tight junctions, adherens junctions,
and gap junctions between adjoining SCs plays a key role in
the spermatogenesis microenvironment and is a well-
known premise of spermatogenesis [91-93]. Yi et al. have
proved that the accumulation of autophagosome affects the
integrity of BTB, which finally contributes to spermatogene-
sis disturbance, accumulation of damaged mitochondria, and
infertility [26]. Therefore, reducing autophagy induced by
ROS may become an effective method for preventing male
infertility in diabetic patients.

6. Autophagy Aggravating the Oxidative
Damage in Testes

The autophagy-related protein p62, as a scaffold protein,
binds ubiquitinated substrates and aids their aggregation
and degradation by macroautophagy [94]. And as a target
of autophagy, p62 is constantly controlled by constitutive
autophagy [95, 96] (Figure 1). Komatsu and colleagues have
also shown that p62, as an endogenous protein, activates
nuclear factor erythroid 2-related factor 2 (Nrf2) by com-
petitive combination of Kelch-like ECH-associated protein
1 (Keapl), a redox-sensitive E3 ubiquitin ligase substrate
adaptor, which strictly regulates the intracellular Nrf2
abundance [97, 98]. Nrf2, a key factor in the cellular anti-
oxidant system, can respond to oxidative stress [99-101].
Under homeostatic conditions, low levels of Nrf2 are
primarily maintained by Keapl-mediated proteasomal
degradation [102]. Under oxidative stress conditions, Keapl
is oxidized at reactive cysteine residues, resulting in inactiva-
tion of Keapl and stabilization of Nrf2, which then translo-
cates into the nucleus and subsequently binds to antioxidant
response elements to promote the expression of downstream
cytoprotective proteins that act as scavengers for diabetes-
induced free radicals [103-105]. Jain and colleagues also dem-
onstrated that p62 creates a positive feedback loop in the
Keapl-Nrf2 pathway and the loop will be broken by the
autophagic degradation of p62 [106] (Figure 1). In previous
studies, we have found that p62 expression was significantly
decreased, Keapl was significantly increased, and the ratio
of nuclear Nrf2 to cytosolic Nrf2 was decreased in the T1D
group [107]. We speculate that in the T1D group, when the
autophagy is induced by ROS, p62 is degraded and the feed-
forward loop linking Nrf2 and p62 is broken, which directly
results in a decrease in antioxidant capacity and an increase
in ROS (Figure 1).

Increased Nrf2 expression can increase the antioxidant
capacity of sperm in diabetic patients, which has been con-
firmed in previous studies. Jiang et al. have shown that sulfo-
raphane may prevent testicular oxidative damage and
apoptosis by increasing testicular Nrf2 expression under dia-
betic condition [108]. Pan et al. have proved that the Nrf2
knockout mice exhibited more significant diabetes-induced
loss in testicular weight and sperm count, as well as increased
testicular apoptotic cell death compared to wild-type mice,
and have demonstrated that Nrf2 plays a critical role in ame-
liorating diabetic testicular damage [109]. We have also
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shown that resveratrol can attenuate testicular apoptosis in
T1D mice via activating Nrf2 through the PI3K/Akt path-
way and p62-dependent Keapl degradation in our previous
study [107] (Figure 1). Therefore, increasing the expression
of Nrf2 may become an effective method for preventing
male infertility.

7. Conclusion

As mentioned above, infertility is a common complication of
diabetic men, and there is already some evidence to support
the role of ROS and autophagy in the pathophysiology of
male infertility caused by diabetes. In this review, we eluci-
date the interaction between ROS and autophagy in diabetic
testes via the PI3K/Akt/mTOR signaling pathway and high-
light that autophagy induced by ROS aggravates oxidative
damage via breaking the feedforward loop linking Nrf2 and
p62. Moreover, we have suggested that reducing the produc-
tion of ROS via decreasing the serum glucose concentration
may be effective to treat and prevent male infertility in dia-
betic patients. And we have also showed that upregulating
the Nrf2-Keapl pathway can increase the ratio of nuclear
Nrf2 to cytosolic Nrf2 and enhance the transcription of anti-
oxidant enzymes, such as superoxide dismutase, glutathione
peroxidase, and catalase. Additionally, supplementation with
nonenzymatic antioxidants such as resveratrol, glutathione,
carnitine, pyruvate, vitamin C (ascorbic acid), and vitamin
E (a-tocopherol) may be effective to augment the scavenging
capacity of testes.

Although it has been demonstrated that ROS could pro-
mote the formation of autophagy, in turn, autophagy may
contribute to aggravate oxidative damage by degrading p62;
the internal molecular regulatory mechanisms between ROS
and autophagy are complicated in diabetic testicular cells
and still need further research.
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