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TherapeuTic advances in 
Musculoskeletal disease

Introduction
Musculoskeletal disorders (MSD) are highly het-
erogeneous conditions affecting muscles, ten-
dons, bones, cartilage, ligaments, joints, and 
nerves, characterized by musculoskeletal pain and 
decrease in physical function.1,2 To date, MSDs 
are very common across the population and rep-
resent a significant burden in terms of global 

health, social, and economic cost.1,2 In particular, 
low back pain represents the ninth cause of 
increased global disability-adjusted life-years in 
all ages, while osteoarthritis is the 18th cause 
between 50 and 74 years of age. During the last 
decades, these pathologies have been following a 
growing trend for disability burden, as underlined 
by the Global Burden of Disease Study in 2019.3
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In this context, Physical and Rehabilitation 
Medicine (PRM) is a branch of medicine that 
aims at improving functional ability and quality of 
life of patients with physical impairments or disa-
bilities.4 Although the macroscopical effects of 
rehabilitation intervention are fully supported by 
evidence, to date, several questions are still open 
about the mechanisms underpinning functional 
improvements.5–7 In this scenario, biophysics, as 
the science studying biological systems and bio-
logical processes through physics laws,8 could 
have a crucial role in understanding how to exploit 
several physical properties to achieve pain control 
and healing.9 On the other hand, a deeper under-
standing of the biophysical processes, the molecu-
lar processes affecting biological factors, and 
underpinning macroscopical effects of the rou-
tinely used rehabilitation intervention might guide 
clinicians in tailoring effective therapeutic treat-
ments based on biological modifications, enhanc-
ing a personalized approach in PRM.10–12

Although conclusive data for their mechanism of 
action are still lacking, treatments based on bio-
physical properties are routinely administered in 
PRM. However, to our knowledge, no previous 
study highlighted the importance of a broad bio-
physical-based approach in the rehabilitation of 
MSD and temporomandibular disorders (TMD).

Thus, the aim of this narrative review was to pro-
vide a comprehensive overview about the state of 
the art of biophysical dimensions of currently 
available treatments for MSD, to promote evi-
dence-based implementation and develop per-
sonalized strategies for the multidisciplinary 
management of these patients.

Methods
This narrative review was carried out in accord-
ance with the Scale for the quality Assessment of 
Narrative Review Articles (SANRA) quality crite-
ria.13 It has been performed after a scientific lit-
erature research on five different databases 
(PubMed/Medline, Scopus, Cochrane Central 
Register of Controlled Trials, Physiotherapy 
Evidence Database, and Web of Science). These 
databases were searched for the following key-
words: ‘Biophysics’, ‘Biophysics-based approach’, 
‘Biophysical Therapy’, ‘Biophysical treatment’, 
‘Rehabilitation’, ‘Regenerative Rehabilitation’, 
‘Regenerative medicine’, ‘Musculoskeletal disor-
ders’, ‘Musculoskeletal pain’, ‘Joint pain’, 
‘Instrumental therapy’, ‘Physical therapy’, 

‘Medical procedures’, ‘Injections’, ‘Neuromo-
dulation’. The literature research has been per-
formed independently by two different reviewers 
between March 2022 and October 2022. All the 
studies were screened by two independent review-
ers screened the studies for eligibility. A third 
reviewer was asked if consensus between the two 
reviewers was not reached through discussion.

We considered both in vitro and in vivo studies, 
clinical trials, systematic reviews, and meta-
analysis assessing a biophysical approach in 
MSDs. We excluded all the studies in languages 
other than English, studies without full text 
available, conference abstracts, masters, or 
doctorate theses. A qualitative synthesis of all 
data extracted has been performed by two 
reviewers. In case of disagreement, a third 
reviewer was asked if consensus was not reached 
by collegial discussion.

History of biophysical approach in medicine
Biophysics is the application of physics aiming at 
understanding the mechanisms of how biological 
systems and biological processes work.8

Some early biophysical considerations can be 
traced back to ancient Greek culture, with the 
earliest theories of life processes and their dynam-
ics. Subsequently, in Renaissance times, mechan-
ical principles were applied for the understanding 
of movements across the animal kingdom, from 
walking, to swimming, to flying, for example in 
the works of Leonardo da Vinci (1452–1519) and 
Alfonso Borelli (1608–1679).14 Later, electrical 
and thermodynamic knowledge was applied in 
biological studies, in the work of Luigi Galvani 
(1737–1798). Other scientists, whose works con-
tributed to the development of first physiology 
and then biophysics between the 18th and 19th 
centuries, were A. L. Lavoisier, P. S. Laplace, 
Thomas Young, and Hermann von Helmholtz.14 
In this scenario, the term biophysics was coined 
by the English mathematician and biostatistician 
Karl Pearson in 1892, when he used it in his book 
‘The Grammar of Science’ to address the needing 
for ‘a branch of science [. . .] dealing with the 
application of the law of [. . .] Physics to the 
development of organic forms’.15

A further important step toward the development 
of biophysics identity as an independent science 
was the discovery of X-rays and their application 
to medicine, which required close collaborations 
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of physicists, biologists, and medical scientists.14 
With the background of World War II, an increase 
in sophisticated scientific tools led, then, to a 
growth in biophysical research and knowledge.16 
In this context, the 1943 lecture called ‘What is 
Life?’ by Erwin Schrödinger paved the road for 
thermodynamics studies in living systems.14

Finally, the Biophysical Society was born in the 
1950s, contributing to the rise in scientific activi-
ties and knowledge, leading to modern biophysics 
that encompasses studies on data analysis and 
structure of DNA, computer modeling, molecules 
in motion around the cell, neuroscience, bioengi-
neering, nanotechnologies, biomaterials, diagnos-
tic medical imaging, medical applications (such 
as dialysis, radiation therapy, cardiac defibrilla-
tors, pacemakers, and artificial heart valves), and 
ecosystems.16

Biophysics in regenerative rehabilitation
In the recent years, there has been a growing 
interest in regenerative medicine aiming at 
enhancing tissue repairing or replacement, 
through the stimulation of the activity of endoge-
nous stem cell function and/or through the trans-
plant of exogenous stem cells.17 Understanding 
biochemical and biophysical factors represents a 
crucial step toward the success of regenerative 
medicine approach.18 On the other hand, PRM 
focuses on mechanical and biophysical stimuli to 
restore body function.17,18 Given the multilevel 
overlapping of regenerative medicine and reha-
bilitation, the combination of these two syner-
getic disciplines created the regenerative 
rehabilitation approach, defined as ‘application of 
rehabilitation protocols and principles together 
with regenerative medicine therapeutics toward 
the goal of optimizing functional recovery through 
tissue regeneration, remodeling, or repair’.18 
Interestingly, it has been proposed that regenera-
tive rehabilitation might have a role in enhancing 
tissue and functional restoration, after a damage 
caused by several causes, including aging, trauma, 
sickness, or congenital processes.19

In this scenario, growing efforts have been made 
for understanding the biophysical mechanisms 
promoting regeneration in rehabilitation. More 
specifically, mechano-transduction plays a key 
role in influencing gene expression. Cells, in fact, 
are surrounded by extracellular matrix that con-
veys biophysical signals in the form of pressures, 
tensile and compressive forces, shear stresses, and 

electrical stimuli. They are transmitted from cell’s 
membrane to the nucleus, by means of cytoskel-
eton, regulating gene expression.19 For example, 
at cartilage level, chondrocytes gene expression is 
stimulated by shear loading in the absence of 
exogenous growth factor; mesenchymal stem cells 
are also stimulated to secrete transforming growth 
factor-β, which plays a pivotal role in chondro-
cytes homeostasis.19,20 Taken together, physical 
exercise has a chondroprotective role. This 
knowledge could translate clinically to the appli-
cation of rehabilitation protocols to stimulate 
native mesenchymal stem cells in the presence of 
cartilage damage.20 On the other hand, bone-level 
responses and adaptations to load application are 
well established, as stated by Wolff’s law,20 
although, to date, molecular pathways remain 
unclear.19 The concept of mechanical environ-
ment for bone healing has led to the idea of 
‘Reverse Dynamization’, still representing a con-
troversial topic in current literature. This is based 
on the knowledge that bone heals through an 
endochondral phase that benefits from load; 
hence, hypothetically, initial bone healing would 
benefit from axial loading, while in later phases, 
when bone formation replaces cartilage, excessive 
movements prevent angiogenesis, and increased 
stiffness would be more beneficial.19 Thus, loads 
applied during the rehabilitation period might be 
adapted to the timing of bone healing to optimize 
biophysical interactions with bone healing and 
maximize functional recovery.20 Interestingly, 
skeletal muscle system is a target for a biophysical 
approach also at muscular level, where physical 
exercise has been proven to help the proliferation 
of transplanted stem cells for repairing muscle 
injuries.20

In addition, regenerative medicine has recently 
been considered a therapeutic option to achieve 
functional recovery in neurological lesions.21 
However, to date, preclinical research has been 
inconclusive in the implementation of regenera-
tive rehabilitation, highlighting the need for a 
deeper understanding of single therapeutic mech-
anisms before analyzing their combinations.21

Altogether, the data underlined that several prom-
ising results were reported in scientific literature 
about the effects of regenerative rehabilitation.22 
However, it should be noted that most of the 
knowledge derives from in vitro and animal stud-
ies, while there is still a large gap of knowledge in 
translational research integrating preclinical dis-
coveries in clinical settings. Therefore, further 
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studies need to enhance biophysical integration in 
clinical settings to optimize multidisciplinary 
management of MSDs tailored to the biological 
process characterizing the different diseases.19,22

Physical agent modalities for 
musculoskeletal and TMD
Physical agent modalities are adjuvant therapies 
fully integrated in the comprehensive rehabilita-
tion management of MSDs aiming at improving 
functional recovery and relieve pain.23 Several 
instrumental therapies are currently available in 
the current literature, including therapies based 
on heat, light, sound waves, and electricity, with 
both preclinical and clinical studies supporting 
the promising effects of these therapies.

To date, shock wave therapies have been recently 
implemented in the rehabilitation management of 
MSDs to enhance repair and formation of new 
bone, tendon, and other soft tissues.24 This 
instrumental physical therapy modality might 
interfere with the transmission of the painful 
impulse, and it can break down the inflammatory 
patterns linked to calcifications.24 Focal shock 
waves are single pulsation acoustic waves gener-
ated in a microsecond by an external source and 
concentrated on a specific body site, without loss 
of energy. The radial shock waves are pneumatic 
waves, distributed radially to the body through an 
applicator24–26; moreover, they could also be suc-
cessfully used as an adjunctive therapy not only 
for musculoskeletal diseases27 but also for myoge-
nous TMD.28

Low-level laser therapy is administered through a 
single wavelength, between 390 and 1600 nm 
(involving visible red and near-infrared portions 
of the electromagnetic spectrum), directed toward 
the painful area enough to produce stimulation, 
but not heating of the target system.29 To date, 
however, the studies that have evaluated its effec-
tiveness in low back pain have had inconsistent 
results.30 Two recent systematic reviews with 
meta-analysis performed by our group evaluated 
the role of physical agent modalities in the man-
agement of both myogenous31 and arthrogenous32 
TMD patients, reporting the significant efficacy 
of laser therapy in terms of pain relief.

Ultrasound is widely used in the treatment of 
many musculoskeletal pain syndromes, usually in 
combination with other physical therapies, with 
the rationale that deep tissue warming can bring 

about various local benefits. Therapeutic ultra-
sound works by delivering sound waves to the tar-
get tissue, causing thermal and mechanical effects, 
and generally, there are two common frequencies: 
3 and 1 MHz. Three megahertz is being transmit-
ted rapidly out of the probe, and it is penetrating 
the tissue interface very fast with a short wave-
length. In general, the depth would be less than or 
equal to 2 cm or less. If the goal of the treatment 
is to go deeper, then a 1 MHz setting should be 
used. That slower frequency allows more of the 
ultrasound wave to be absorbed by the deeper tis-
sues.33 As a result, local cellular metabolism, cir-
culation, extensibility of connective tissue, and 
tissue regeneration are thought to be stimulated. 
However, a recent Cochrane review found uncer-
tain evidence regarding the effect of therapeutic 
ultrasound on pain in individuals with chronic 
nonspecific low back pain.33 More studies on 
MSD are warranted.

The short-wave diathermy is classified as an 
endogenous thermotherapy, and it works by 
exploiting electrical currents, generated by capac-
itive or resistive mono-polar radiofrequency at 
448 kHz. The proposed mechanism of action is 
an increase in blood flow caused by the thermal 
effect, which results in a healing process that 
decreases pain and improves function in MSD.34 
Although the literature is scarce in clinical studies 
about the efficacy of this treatment, some promis-
ing results are present,35 which indicates that this 
technique should be further evaluated.

There is evidence that the electrical stimulation of 
peripheral nerves is able to modulate pain by 
altering its nerve conduction. Transcutaneous 
electrical nerve stimulation (TENS), which gen-
erates continuous electrical impulses through sur-
face electrodes, could have an effect by activating 
opioid receptors and by controlling central pain 
pathways.36 On the other hand, a recent Cochrane 
review on the effect of TENS in chronic pain 
underlined the low quality of evidence present in 
the literature, thus, without obtaining a conclu-
sive position.37

Approaches based on magnetic fields thought to 
be involved in this action are the electronic inter-
actions which cause vasodilatation, analgesic, 
anti-inflammatory, anti-edematous and spasmo-
lytic activity, and eventually healing acceleration.38 
Frequencies that are commonly used in the clini-
cal practice fall between 1 and 100 Hz, with a 
magnetic flux density up to 100 mT.38
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In particular, pulsed electromagnetic field (PEMF) 
therapy is a magnetotherapy that uses pulsed mag-
netic field and has been shown to prevent cartilage 
degeneration and maintain subchondral trabecular 
bone microarchitecture. Interestingly, a recent 
meta-analysis of randomized clinical trials on 
patients with osteoarthritis concluded that PEMF 
therapy had significant beneficial effect on pain, 
stiffness, and physical function.39,40 Lastly, in vivo 
studies on endogenous electric fields of skin wound 
highlighted their role as potential target for pro-
moting wound healing.41

Vibrational therapy is a technique used in reha-
bilitation that aims at improving proprioception 
and muscle strength, with results depending on 
the frequency of stimulation, varying from 50 to 
300 Hz.42–44 There could be whole body vibration 
therapy, in which exercise is performed on a 
vibrating platform, or focal vibration therapy, 
focused on a muscle or a group of muscles.42,43 A 
systematic review published in 2009 underlined 
that knowledge on whole body vibration is still 
weak and more high-quality studies are needed to 
comprehensively evaluate this therapy.45 On the 
other hand, a recent systematic review showed 
that focal vibration could be an effective means of 
motor conditioning in healthy individuals.44 
Although some beneficial effects were reported 
after focal vibration therapy alone or in combina-
tion with other physical therapies,42,43 there is still 
a gap of knowledge on applications in pathologi-
cal conditions.

Biophysics and medical procedures in 
musculoskeletal disorders
To date, emerging research is now focusing on 
the biophysical proprieties of several medical pro-
cedures to improve the management of musculo-
skeletal pain in the field of PRM. Medical 
procedures might have the advantage of precisely 
targeting a specific tissue inducing specific bio-
logical modification with both a pharmacological 
and non-pharmacological approaches.

In this scenario, joint injection of hyaluronic acid 
(HA) is a very common clinical practice currently 
accepted by several international guidelines for 
the therapeutic management of osteoarthritis.46,47 
The intraarticular injection of HA precisely targets 
the biophysical alteration characterizing joint 
degenerative diseases, increasing the viscoelastic 
properties of synovial fluids and its protective 
action on joint tissues. Moreover, the transmission 

of mechanical forces is involved in mechanical 
damage characterizing osteoarthritis, affecting 
both cartilage degeneration and chronic inflam-
mation in the joint.48 The biophysical properties 
of HA, including its adhesivity, mechanical char-
acteristics, and degradability, might severely affect 
both microscopical and macroscopical effects in 
clinical settings.49 In particular, HA can modulate 
cell function by specific receptors present on cell 
surfaces (e.g. CD44 and receptor for HA-mediated 
motility) that might respond to different molecu-
lar weights and HA concentration, resulting in 
modulation of cells adhesion, migration, and pro-
liferation.49 On the other hand, improvement in 
the understanding of the biophysical effects of HA 
supplementation might have a role in the develop-
ment of more precise identification of the optimal 
therapeutic administration of this interesting mol-
ecule improving not only the pain relief and physi-
cal function already supported in current literature, 
but also promoting potential interactions with the 
molecular pathways underpinning osteoarthritis.

In this scenario, growing literature is now focus-
ing on platelet-rich plasma (PRP), a platelet con-
centrated from the centrifugation of autologous 
blood, which results in a concentrate of platelets 
devoid of other cellular components.20,50 The 
therapeutic effects have been related to greater 
platelets concentrations that might activate 
endogenous repair process, interact with inflam-
mation pathways through regulation of expres-
sion of crucial inflammatory interleukins such as 
interleukin (IL) 6 and IL-8, and enhance repara-
tive processes through several growth factors acti-
vating mesenchymal stem cells.20,50,51 Biophysical 
approaches in this field might improve knowledge 
about the biological effects of this promising tech-
nique, paving the way to a more precise PRP 
preparation, clarifying the optimal biological 
characteristics, dosage, and administration 
modalities.52 A similar paracrine effect might be 
exerted by adipose stem cells (ASC), as adipose 
tissue is known to produce several cytokines regu-
lating the inflammatory process.53

Adipose tissue is composed of preadipocytes, per-
icytes, fibroblasts, smooth muscle cells, endothe-
lial cells, hematopoietic cells, mature immune 
cells, and ASC, fibroblast-like cells from the  
stromal vascular fraction. This population,  
isolated and locally injected, might secrete numer-
ous trophic and growth factors enhancing the 
regeneration of both bone (via BMP-2 produc-
tion) and cartilage (involving direct engraftment 
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and trophic factors), although biological mecha-
nisms are not completely understood.54,55

On the other hand, inflammatory processes 
might be effectively targeted by other medical 
procedures, including ozone therapy which has 
been progressively gaining interest in recent 
years. In more detail, oxygen–ozone (O2O3) 
therapy has been recently applied in patients 
with MSDs with promising antinociceptive and 
anti-inflammatory effects.43,56–58 Albeit the 
mechanisms at the basis of its clinical efficacy 
have not been fully understood, several authors 
proposed that its oxidizing action might promote 
the transcription of proteins involved in the anti-
oxidant response, with intriguing implications in 
the endogenous response to oxidative stress 
characterizing several chronic diseases.57,59,60 
Furthermore, low doses of O2O3 stimulate a 
direct anti-inflammatory effect by regulating the 
synthesis of inflammatory prostaglandins, and 
bradykinin and increasing their secretions by 
macrophages and leukocytes. In the context of 
musculoskeletal pain, O2O3 might not only pro-
mote an indirect anti-inflammatory effect, but 
also directly stimulates the production of endog-
enous serotonin and opioids that have a crucial 
impact on pain relief through antinociceptive 
transmission.60 In addition, O2O3 seems to stim-
ulate vasodilation and fibroblastic activity, 
improving the deposition of collagen and the ini-
tiation of a tissue repair process.61 In addition, 
recent evidence suggested that O2O3 might break 
glycosaminoglycan chains in the nucleus pulpo-
sus of herniated disks, promoting a decrease in 
size of the herniated portion and inducing pain 
relief; thus, O2O3 therapy might be considered 
an effective complementary therapy in several 
MSDs.60 However, a biophysical approach 
might further characterize the O2O3 therapy’s 
biological action on patients with MSDs and 
clarify its role in a comprehensive rehabilitation 
approach for these disabling conditions.

Another medical procedure recently introduced 
in PRM management of MSDs is selective radi-
ofrequency denervation, characterized by the 
destruction of nerves through the heat generated 
by a radiofrequency current.62 In this minimally 
invasive approach, biophysical administration of 
a potential difference between a plate and a nee-
dle–cannula determines a thermal ablation of 
the neighboring tissues.63 Therefore, precise 
needle–cannula positioning in the proximity of 
the target nerve is mandatory and several 

imaging techniques have been proposed to guide 
the procedure.64 In the last century, radiofre-
quency has been used in the clinical manage-
ment of different types of pain, from facial pain 
to spinal, pelvic, and appendicular pain.65,66 
Interestingly, a neuromodulation approach of 
pulsed radiofrequency has been proposed to tar-
get motor sensory nerves that cannot be dam-
aged by thermal ablation given the functional 
consequences in motor function.67 However, 
the biophysical basis of the macroscopical 
effects of pulsed radiofrequency has not been 
fully understood, despite recent research pro-
posing that this minimally invasive therapy 
might impact in several pathways including 
nociceptive signals through the direct modula-
tion of ion channels and the modulation of the 
release of neurotransmitters, including aspar-
tate, citrulline, metenkephalin, and gluta-
mate.68,69 On the other hand, also postsynaptic 
receptors and synaptic function might be  
targeted by pulsed radiofrequency, resulting in 
neuromodulation of the afferent signals provid-
ing information to the brain cortex.68,69

Similarly, percutaneous electrical nerve stimula-
tion (PENS) is a treatment technique that con-
ducts electrical stimulation ranging from low 
(2–5 Hz) to high (80–100 Hz) frequency through 
fine needles. Pulse duration can also be modu-
lated, ranging from 250 to 500 μs and targeting 
several tissues including dermal, muscle, or peri-
osteal tissues.70 The neuromodulation mecha-
nisms underpinning the therapeutic effects of this 
medical procedure might include the electrical 
stimulation of large peripheral afferent nerve fib-
ers that interfere with pain signaling from small 
pain fibers to the spinal cord, according to the 
gate control theory. Moreover, there could be 
activation of inhibiting descending pain path-
ways.71 Nevertheless, a recent meta-analysis 
found low-quality evidence supporting the posi-
tive impact of PENS in musculoskeletal condi-
tions, and the effect on pain intensity was limited 
to short term when compared to sham.71

Taken together, this evidence suggested that sev-
eral medical procedures have been integrated into 
the rehabilitation management of patients with 
musculoskeletal diseases and TMD. In this con-
text, a biophysical approach might have a role in 
optimizing the tailored management of MSDs 
and provide more high-quality evidence to better 
characterize the clinical effects in chronic pain 
that frequently characterize MSDs.
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Future prospective
The biophysical-based approach in the PRM field 
represents a suitable option to improve transla-
tional knowledge about the macroscopical effects 
of rehabilitation in patients with MSDs (see 
Figure 1 for further details).

In this context, a deeper understanding of the 
multiple pathways at the basis of biophysical pro-
cesses might guide the prescription of a specific 
rehabilitation aiming at enhancing healing pro-
cess and stimulating tissue anabolic activity.72 
However, it should be noted that despite promis-
ing results that have been reported, the current 
research community is far from providing specific 
indications about a precise personalization of 
rehabilitation based on biophysical stimuli on 
biological system.73,74 On the other hand, it is 
widely accepted that precise biophysical stimula-
tion should not be suggested in all patients, but 
adapted to the type of injury, risk factors, and/or 
clinical conditions in accordance with a patient-
centered approach, while careful considerations 
of the potential synergisms between different  
biophysical stimuli might further enhance a  
specific tissue response, including osteogenic, 
chondrogenic, anabolic, and anti-inflammatory 
processes.72,73

In this context, there is a solid rationale for imple-
menting prehabilitation to counteract biophysical 
changes in tissue proprieties related to specific 
conditions, such as immobilization, surgery, or 
cancer treatments.75

On the other hand, it should be noted that sev-
eral limitations affect the utilization of this 
approach. The state of the art is still inconclu-
sive, and the low quality of clinical studies based 
on the biophysical approach included in this 
review did not provide clear treatment 
protocols.

Moreover, the main limitation of this review is the 
lack of a deeper presentation of the several topics 
related to biophysics approach in rehabilitation. 
However, it should be noted that the aim was to 
provide a broad overview about the currently 
available literature on this topic, aiming at empha-
sizing the need for further studies that might have 
a role in promoting a more precise rehabilitation 
approach targeting biological modification and 
enhancing functional improvement of patients 
with MSDs.

Altogether, several controversies still exist about 
the optimal approach providing specific biophysi-
cal modifications in human tissues, leading to 
conflicting results.

Conclusions
Taken together, several barriers still affect the 
integration of biophysical-based treatments in the 
rehabilitation management of MSD. Despite 
remarkable efforts that have increased current 
understanding about the molecular mechanisms 
underpinning the macroscopical effects of reha-
bilitative interventions, the implementation of a 

Figure 1. Biophysics-based rehabilitative approaches for musculoskeletal disorders.
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biophysical approach is still a challenge in the 
rehabilitation field. On the other hand, the cur-
rent evidence reported promising features of bio-
physical-based treatments, that might have 
potential implications in a focused therapeutic 
intervention aiming at optimizing functional 
recovery of patients with MSDs and targeting 
specific pathways underpinning the diseases.

Future studies are needed to improve knowledge 
in this emerging field providing additional evi-
dence supporting a more tailored approach to 
MSDS triggering specific biological modifica-
tions and focusing resources on more precise 
therapeutic treatments.
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