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Increasing evidence has indicated that modulation of epigenetic mechanisms, especially
methylation and long-non-coding RNA (lncRNA) regulation, plays a pivotal role in
the process of atherosclerosis; however, few studies focused on revealing the
epigenetic-related subgroups during atherosclerotic progression using unsupervised
clustering analysis. Hence, we aimed to identify the epigenetics-related differentially
expressed genes associated with atherosclerosis subtypes and characterize their
clinical utility in atherosclerosis. Eighty samples with expression data (GSE40231)
and 49 samples with methylation data (GSE46394) from a large artery plaque
were downloaded from the GEO database, and aberrantly methylated–differentially
expressed (AMDE) genes were identified based on the relationship between methylation
and expression. Furthermore, we conducted weighted correlation network analysis
(WGCNA) and co-expression analysis to identify the core AMDE genes strongly involved
in atherosclerosis. K-means clustering was used to characterize two subtypes of
atherosclerosis in GSE40231, and then 29 samples were recognized as validation
dataset (GSE28829). In a blood sample cohort (GSE90074), chi-square test and
logistic analysis were performed to explore the clinical implication of the K-means
clusters. Furthermore, significance analysis of microarrays and prediction analysis of
microarrays (PAM) were applied to identify the signature AMDE genes. Moreover,
the classification performance of signature AMDE gene-based classifier from PAM
was validated in another blood sample cohort (GSE34822). A total of 1,569 AMDE
mRNAs and eight AMDE long non-coding RNAs (lncRNAs) were identified by differential
analysis. Through the WGCNA and co-expression analysis, 32 AMDE mRNAs and
seven AMDE lncRNAs were identified as the core genes involved in atherosclerosis
development. Functional analysis revealed that AMDE genes were strongly related
to inflammation and axon guidance. In the clinical analysis, the atherosclerotic
subtypes were associated with the severity of coronary artery disease and risk of
adverse events. Eight genes, including PARP15, SERGEF, PDGFD, MRPL45, UBR1,
STAU1, WIZ, and LSM4, were selected as the signature AMDE genes that most
significantly differentiated between atherosclerotic subtypes. Ultimately, the area under
the curve of signature AMDE gene-based classifier for atherosclerotic subtypes was
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0.858 and 0.812 in GSE90074 and GSE34822, respectively. This study identified the
AMDE genes (lncRNAs and mRNAs) that could be implemented in clinical clustering to
recognize high-risk atherosclerotic patients.

Keywords: methylation, differentially expressed gene, lncRNA, atherosclerosis, K-means clustering

INTRODUCTION

Even though a marked reduction in atherosclerotic
cardiovascular disease (CVD) mortality due to the application
of new therapies has been observed, atherosclerosis and its
consequent clinical manifestations are the leading causes of
mortality worldwide (Nilsson, 2017). Recently, studies have
revealed the underlying associations between epigenetics
and atherosclerosis (Heo et al., 2016; Rizzacasa et al., 2019),
suggesting a high molecular heterogeneity and pathogenic
complexity in atherosclerosis, which still needs further sub-
classification of atherosclerosis to improve diagnostic and
treatment strategies.

Epigenetics is defined as the study of any potentially stable
and, ideally, heritable change in gene expression or cellular
phenotype that occurs without changes in Watson–Crick base-
pairing of the DNA sequence (Goldberg et al., 2007). Epigenetic
mechanisms include DNA methylation or demethylation, histone
acetylation or deacetylation, and non-coding RNA regulation
(Khyzha et al., 2017). In the past few years, increasing evidence
has indicated that modulation of epigenetic mechanisms,
especially methylation and long non-coding RNA (lncRNA)
regulation, plays a pivotal role in the process of atherosclerosis
(Tabaei and Tabaee, 2019).

Unsupervised clustering analysis is an agnostic multivariable
method that is used to aggregate similar cases without the
potentially confounding effects of pre-established diagnosis
(Lancaster et al., 2019). This type of analysis has been widely
applied to reveal epigenetic-related subgroups in cancer (Fiedler
et al., 2019; Fukuoka et al., 2020). However, few studies
revealed the different subgroups of atherosclerosis involved in the
epigenetic process using machine learning approaches.

In the present study, we used integrative analysis to identify
the aberrantly methylated–differentially expressed (AMDE)
genes (mRNAs and lncRNAs) that could be used to define novel
risk subgroups of atherosclerosis. Furthermore, using various
statistical methods, we selected eight signature AMDE genes as
the potential therapeutic targets for patients with high risk of
atherosclerosis.

MATERIALS AND METHODS

Study Datasets and Design
The four previously published gene expression profiles
(GSE40231, GSE28829, GSE90074, and GSE34822) and one
previously published gene methylation profile (GSE46394) were
obtained from the Gene Expression Omnibus (GEO) database1.

1https://www.ncbi.nlm.nih.gov/geo

The overall design of the study is shown in Figure 1. For
differential analysis, data collection from stable atherosclerotic
and normal artery wall samples in GSE40231 [The Stockholm
Atherosclerosis Gene Expression (STAGE) study] and GSE46394
[genome-wide DNA methylation aberrations in human
atherosclerosis (450K)] were used to identify AMDE genes
(including mRNAs and lncRNAs) (Hägg et al., 2009; Zaina
et al., 2014). Furthermore, weighted correlation network analysis
(WGCNA) and co-expression network analysis were applied
to find the core AMDE genes. Moreover, K-means clustering
analysis was utilized to identify different atherosclerotic clusters
based on core AMDE genes in atherosclerotic samples in
GSE40231 (training dataset). Then, we reapplied K-means
clustering analysis in another atherosclerotic artery wall
profile (GSE28829, gene expression in early and advanced
atherosclerotic plaque from human carotid) as validation
dataset (Döring et al., 2012). To explore the clinical implication
of risk stratification, GSE90074 and GSE34822 datasets,
including blood samples from atherosclerosis patients, were
applied for further analytic procedures and considered
as training and validation dataset, respectively. Clinical
characteristics were compared between different clusters in
GSE90074 (Ravi et al., 2017). Then, significance analysis of
microarrays (SAM) and prediction analysis of microarrays
(PAM) were used to choose signature AMDE genes as subtype
classifier. Lastly, the classification performance of signature
AMDE genes was validated in GSE34822 (transcriptome
analysis in patients with progressive coronary artery disease)
(Nührenberg et al., 2013).

Data Preprocessing
The probes obtained from the GEO series were annotated into
lncRNAs and mRNAs using GENCODE version 19 (equivalent
to Ensembl GRCh37). After excluding the probes on sex
chromosomes and with single nucleotide polymorphism (SNP),
the valid CpG sites in the HM450K methylation microarrays were
annotated as Ensembl transcript IDs which were then converted
into gene IDs using the “biomaRt” package in R. Once several
probes in the microarray were mapped to the same gene, the
ultimate expression value of the gene was calculated as the mean
value of several probe expressions. The combat function in the
“sva” R package was applied to remove the batch effects, and
the expression values were quantile-normalized across different
biological samples.

Differential Analysis
After excluding non-artery samples (n = 198), 40 atherosclerotic
artery wall (AAW) samples and 40 non-atherosclerotic artery
wall (NAAW) samples with expression profile from GSE40231
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FIGURE 1 | Flow chart of the entire study.

were used to identify the differentially expressed genes (DEGs),
including differentially expressed mRNAs (DEmRNAs) and
lncRNAs (DElncRNAs). The “limma” R package was used for
DEG selection according to the following criteria: (a) adjusted
P-value < 0.05 and (b) absolute log2 fold change > 1.

Thirty-four AAW and 15 NAAW samples with methylation
profiles from GSE46394 were used to screen the aberrantly
methylated genes (AMGs). Student t-test was used to check
the difference in the beta values of the AAW and the NAAW
samples according to the following criteria: (a) P-value < 0.05
and (b) | mean (AAW) – mean (NAAW)| > 0.1. Lastly,
11,995 hypermethylated CpG sites and 4,904 hypomethylated
CpG sites were identified. Then, the aberrantly methylated
CpG sites were mapped into corresponding genes for further
accessing of AMDE genes.

According to the principle of the relationship between
methylation and expression, hypomethylated–highly expressed
genes were detected by overlapping the hypomethylated and
upregulated genes, and hypermethylated–negligibly expressed
genes were detected by overlapping the hypermethylated and
downregulated genes (Wang et al., 2019; Zhao et al., 2020).
Hypergeometric tests were used to calculate the P value of the
overlapping results of AMGs with DElncRNAs and DEmRNAs.

WGCNA
Different modules were constructed using the “WGCNA”
package in R (Langfelder and Horvath, 2008). The modules
significant for atherosclerosis development were identified

by correlation analysis. The threshold for the determination
of weighted adjacency matrix was fixed at a soft power of
12 and a scale-free R2 > 0.85, respectively. Then, the hubs
were identified as the highest-degree nodes, and the adjacency
matrix was converted as the topological overlap matrix
(TOM). In TOM, the network connectivity of each gene was
calculated and divided into modules with similar expression
patterns through average linkage hierarchical clustering.
Next, module–trait (NAAW and AAW) co-expression
similarity and adjacency analyses were performed in six
identified gene modules.

Functional and Co-expression Analyses
Co-expression was predicted on the basis of expression of
correlation coefficient (Pearson’s correlation > 0.9 or <-0.9)
and statistical significance (P < 0.05), and then we extracted
the protein-coding genes co-expressed with target lncRNAs for
further functional annotation. We performed Gene Ontology
(GO) enrichment and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analyses of the lncRNAs and mRNAs
in the most correlative modules using the Enrichr database
(Kuleshov et al., 2016).

Furthermore, co-expression analysis of the AMDE lncRNAs
and mRNAs was performed. Spearman’s analysis was performed
to define significant gene pairs according to the following criteria:
(a) | r| > 0.3 and (b) P value < 0.05. We then used the Cytoscape
software to select the core genes (AMDE mRNAs and lncRNAs)
in the co-expression network.
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K-Means Clustering of the Training
(GSE40231) and Validation (GSE28829)
Datasets
K-means clustering of unions of the core ADME genes was
performed using the “ConsensusClusterPlus” package in R based
on the AAW samples for risk stratification (Wilkerson and Hayes,
2010). In total, two to 10 K-means clusters were obtained based
on the gene expression values. Consensus matrix heat maps
and consensus cumulative distribution functions (CDF) were
applied in ascertainment of the K optimizing clustering stability.
Furthermore, to identify the relationship of K-means clusters
from training (GSE40231) and validation datasets (GSE28829),
“ModulePreservation” function from WGCNA package was used
to validate the preservation of discovery clusters. Ultimately,
K-means = 2 was selected as the optimal value for the training
(GSE40231) and validation (GSE28829) datasets.

Clinical Analysis
To clarify the clinical implication of the core AMDE genes in
atherosclerotic progression, K-means clustering analysis based
on the core AMDE genes was also performed with data from
blood samples. Dataset GSE90074, including blood samples of
atherosclerosis patients with complete clinical information, was
chosen for further procedure, and data from GSE34822, also with
blood samples, were selected as the validation cohort.

After excluding the patients with coronary artery disease
(CAD) class equal to 0 (n = 18), 125 patients from phase 2 of the
Supporting a Multi-disciplinary Approach to Researching
Atherosclerosis study were included (GSE90074). The
standards used to quantify CAD severity were consistent
with corresponding publications. The clinical characteristics
of each atherosclerosis subtype were identified and compared
after K-means clustering. The logistic regression analysis of
obstructive CAD with subtypes was also performed in both
unadjusted and adjusted models.

Significance Analysis of Microarrays
To identify the differential clusters of the core AMDE genes, we
use SAM, which specifically compares high-throughput data such
as microarray findings. SAM was used to determine whether the
expression of each gene in the two given groups was significantly
different. Hence, we used the sam function in “siggenes” package
in R software to measure the expression of significant AMDE
genes in the blood sample dataset (GSE90074) after K-means
clustering (Tusher et al., 2001).

Signature Selection and Validation Using
a Classifier
We then inputted the SAM-prioritized significant AMDE genes
to perform PAM, which uses the nearest shrunken centroid
methodology, for the classification of K-means clusters in the
blood sample dataset (GSE90074) (Tibshirani et al., 2002), and
all the signature AMDE genes that best characterized each
cluster were identified using the pamr.cv function of “pamr”
package in R software.

Next, to validate the classifier performance of signature
AMDE genes from PAM, GSE34822 was identified as the
validation cohort. We calculated the sensitivity, specificity,
precision, and accuracy in GSE90074 and repeat the whole
process for 10 times (Mallik and Zhao, 2018), and then the
classifier of signature AMDE genes from GSE90074 was applied
in the validation dataset (GSE34822). Furthermore, the receiver
operating characteristic (ROC) curves for K-means clusters in
GSE90074 and GSE34822 were also plotted based on the PAM-
derived classifier from GSE90074 using “pROC” package in R. All
statistical analyses were performed using R software.

RESULTS

Identifying the Aberrantly Methylated
DEGs
The flow chart of the entire study is shown in Figure 1,
and the detailed information on these datasets is summarized
in Supplementary Table 1. By comparing the AAW and
the NAAW specimens from the GSE40231 profile, 6,607
DEmRNAs (3,137 upregulated and 3,470 downregulated) were
identified (Figure 2A), and the expression levels of DEmRNAs
among each sample are shown in Figure 2B. Moreover, 317
DElncRNAs (166 upregulated and 151 downregulated) were
identified (Figure 2C), and the heat map of the DElncRNAs
are shown in Figure 2D. Differentially methylated CpG sites
were analyzed (Figure 2E). After being mapped onto the
respective genes, 8,824 AMGs (5,879 hypermethylated and 2,945
hypomethylated genes) from the AAW and the NAAW samples
were identified.

Subsequently, a total of 1,569 mRNAs and eight lncRNAs
with a negative correlation between methylation and expression
were recognized as the AMDE genes (Figure 2F), and the P
values of hypergeometric tests in the overlapping analysis of
DElncRNAs and DEmRNAs with AMGs were significant (both
P values were <0.0001).

WGCNA and Functional Analysis
WGCNA was performed next to select AMDE mRNAs
or lncRNAs in the most correlative modules with
atherosclerosis. However, AMDE lncRNAs could not be
conducted through WGCNA due to the low abundance
of AMDE lncRNAs. According to the scale-free topology
criteria, soft power 12 was chosen as the soft thresholding
to set up a weighted adjacency matrix (Figure 3A).
After calculating the module eigengenes, six modules
were generated (Figure 3B). The red and yellow module
eigengenes with lowest P values and highest correlative
index were most related to the clinical atherosclerosis traits
and analyzed in the further procedure (AAW and NAAW,
respectively) (Figure 3C).

To obtain insight into the molecular function of these
AMDE genes in atherosclerosis development, we performed
GO enrichment and KEGG pathway analyses of the red
and yellow AMDE mRNA modules and AMDE lncRNAs.
The AMDE mRNAs in red modules showed a biological
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FIGURE 2 | Identification of the aberrantly methylated–differentially expressed (AMDE) genes: (A) volcano plot of the differentially expressed mRNAs (DEmRNAs) in
GSE40231, (B) heat map of DEmRNAs in GSE40231, (C) volcano plot of the differentially expressed lncRNAs (DElncRNAs) in GSE40231, (D) heat map of
DElncRNAs in GSE40231, (E) volcano plot of the aberrantly methylated CpG sites in the GSE46394, and (F) Venn diagram showing the overlapping AMDE genes.

process of neutrophil degranulation, neutrophil activation
involved in immune response, and neutrophil-mediated
immunity (Figure 3D), and MAPK and neurotrophin signaling,
respectively, were the most significant pathways for AMDE
mRNAs in red modules (Figure 3E). Furthermore, the AMDE
mRNAs in yellow modules were significantly involved in
interleukin-18-mediated signaling pathway and cellular response
to interleukin-18 process (Figure 3F), and Figure 3G also showed
thatMAPK signaling was the most significant pathway for AMDE
mRNAs in yellow modules. The GO analysis also showed that the
AMDE lncRNAs were involved in protein O-linked fucosylation,
negative regulation of axon extension involved in axon guidance,
and negative regulation of axon guidance (Figure 3H), whereas
KEGG analysis revealed that their most significant molecular
function was axon guidance (Figure 3I).

Co-expression Network and K-Means
Clustering in AAW Samples
Hub AMDE gene pairs were calculated by Spearman’s analysis
(Figure 4A). To identify the core AMDE mRNAs and lncRNAs,
node degree >10 was defined as the threshold. Ultimately, 32
mRNAs and seven lncRNAs were recognized as the core AMDE
genes involved in the atherosclerotic process (Figure 4B).

Forty AAW samples from the training dataset (GSE40231)
were chosen to further explore the core AMDE gene-associated
subtypes by K-means consensus clustering, with the consensus
distribution for each K value displayed using an empirical CDF
plot (Figure 4C). Accordingly, we chose k = 2 as the optimal
value due to the stable horizontal mid-portion between 0 and
1 and plotted the heat map of the consensus matrix for k = 2
(Figure 4D). Furthermore, the expression of the core AMDE
genes for the different subtypes of atherosclerosis was plotted
(Figure 4E). Lastly, WIZ and UNC45A were found to be the
two DEGs mostly associated with two atherosclerosis subtypes
(Figures 4F,G).

Furthermore, to verify that the two atherosclerosis subtypes
were the optimal choices for K-means clustering, GSE28829
with 29 AAW samples was chosen as the validation profile.
Consensus matrix heat maps for k-2, 3, and 4 (Supplementary
Figures 1A–C), CDF plot (Supplementary Figure 1D),
and tracking plot (Supplementary Figure 1E) indicated
that K-means = 2 was recognized as the optimal value.
Moreover, the preservation of discovery clusters was tested in
K-means clusters of the validation dataset. The scatter plots of
module membership showed positive correlations of the same
subtype among different datasets (GSE40231 and GSE28829)
(Supplementary Figures 2A,B). Furthermore, the network plots
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FIGURE 3 | Weighted correlation network analysis (WGCNA) and functional analysis of the aberrantly methylated–differentially expressed (AMDE) genes: (A)
scale-free networks of scale independence and mean connectivity, (B) clustering dendrogram of AMDE mRNAs obtained by WGCNA, (C) the relationship of each
WGCNA module in the normal and atherosclerotic artery wall samples, (D) Gene Ontology (GO) analysis of the AMDE mRNAs in the red module, (E) Kyoto
Encyclopedia of Genes and Genomes (KEGG) analysis of the AMDE mRNAs in the red module, (F) GO analysis of the AMDE mRNAs in the yellow module, (G)
KEGG analysis of the AMDE lncRNAs in the yellow module, (H) GO analysis of the AMDE lncRNAs, and (I) KEGG analysis of the AMDE lncRNAs.

of the core AMDE genes in different subtypes were plotted
(Supplementary Figures 2C–F).

Clinical Implication of the Signature
AMDE Genes in Blood Sample Datasets
To explore the clinical implication of K-means clustering based
on 39 core AMDE genes, the profiles of 125 blood samples
of atherosclerosis patients (93 with obstructive CAD and 33
with no obstructive CAD) from the GSE90074 profile were
included in the validation dataset. The CDF plot and the heat
map of the consensus matrix showed that the two clusters of
atherosclerotic blood samples still had better stable consensus
distribution (Figures 5A,B).

Table 1 illustrates the baseline characteristics of the two
atherosclerosis subtypes, indicating a higher prevalence of
obstructive CAD (P = 0.028) in subtype B patients. In
addition, subtype B patients, compared to subtype A patients,
showed significantly more severe coronary atherosclerotic
burden (P = 0.005). They were also thinner than subtype A
patients (P = 0.031), suggesting a higher risk of CVD events.
Moreover, logistic regression analysis showed a strong correlation
between obstructive CAD and atherosclerotic subtypes even
after adjustment (P = 0.022) (Table 2). Additionally, we

used the partitioning around medoids algorithm to re-
cluster the same dataset (GSE90074) and observed that these
clusters, compared to the K-means clusters, showed a relatively
poor discriminatory ability compared with K-means clusters
(Supplementary Table 2).

Furthermore, SAM was performed, revealing that 10 AMDE
genes (out of the 39 core AMDE genes) were most significantly
differentiated K-means-derived atherosclerotic subtypes
(Figure 5C). Moreover, we performed PAM and determined the
unique features (AMDE genes) of the different atherosclerosis
subtypes (Figure 5D). PARP15, SERGEF, PDGFD, MRPL45,
UBR1, STAU1, WIZ, and LSM4 were ultimately selected as
signature AMDE genes, and the raw expression levels of these
eight unique resultant genes in the given specific threshold were
plotted (Figure 5E).

To validate the classifier performance for the atherosclerosis
subtypes based on eight signature AMDE genes from PAM
analysis, GSE34822 was involved in the validation procedure.
We plotted the shrunken subtype centroids for atherosclerosis
subtype and the raw expression of eight signature AMDE genes of
different atherosclerosis subtypes in GSE34822 (Supplementary
Figure 3). Moreover, the sensitivity, specificity, precision, and
accuracy for the K-means subtypes were calculated by 10-fold
cross-validation of the signature AMDE gene-based classifier

Frontiers in Genetics | www.frontiersin.org 6 December 2020 | Volume 11 | Article 569572

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-569572 December 8, 2020 Time: 12:2 # 7

Xue et al. AMDE Genes Reveal Risk Subtypes of Atherosclerosis

FIGURE 4 | Co-expression network of the aberrantly methylated–differentially expressed (AMDE) genes and K-means clustering of GSE40231: (A) co-expression
analysis of the AMDE lncRNAs and mRNAs in the red and yellow module, (B) co-expression network of the hub AMDE genes, (C) empirical cumulative distribution
function plot of the k value ranging from 2 to 10 in GSE40231, (D) heat map of the consensus matrix for k = 2 in GSE40231, (E) heat map of the expression levels of
the core AMDE genes in GSE40231, (F) box plot of WIZ expression in the different atherosclerosis subtypes (GSE40231), and (G) box plot of UNC45A expression in
the different atherosclerosis subtypes (GSE40231).

and repeated 10 times in GSE90074 (Table 3), and then this
classifier was used in GSE34822 (Supplementary Table 3).
Accordingly, the areas under the ROC curve (AUCs) of the
classifier from GSE90074 for atherosclerosis subtypes were
obtained in the same testing and testing process, suggesting
the good distinguishable ability of the classifier (Figure 5F).
Furthermore, the expression of these eight signature AMDE
genes in the different atherosclerosis subtypes is shown in
Figure 6.

DISCUSSION

The role of methylation in the pathophysiology of atherosclerosis
has drawn increasing attention, and it is currently believed that
investigating the improved insight on the methylation landscape
on atherosclerosis development is pivotal for understanding the
disease (Grimaldi et al., 2015). Recently, studies in patients with
atherosclerosis have revealed a unique methylation profile (Zaina
and Lund, 2014) and suggested that many factors, including shear
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FIGURE 5 | K-means clustering analysis and identification the signature aberrantly methylated–differentially expressed (AMDE) genes in the blood sample datasets:
(A) empirical cumulative distribution function plot of the k value ranging from 2 to 10 in GSE90074, (B) heatmap of the consensus matrix for k = 2 in GSE90074, (C)
using significance analysis of microarrays to identify the significant AMDE genes in the different atherosclerosis subtypes, (D) unique features (signature AMDE
genes) of the different atherosclerosis subtypes obtained by prediction analysis of microarrays (GSE90074), (E) raw expression levels of the eight signature AMDE
genes in the given specific threshold (GSE90074), and (F) receiver operating characteristic curves of the signature AMDE genes for atherosclerosis subtypes in
GSE90074 and GSE34822.

TABLE 1 | Baseline characteristics of validation data by subtype of
atherosclerosis.

Characteristics Subtype A (n = 57) Subtype B (n = 68) P value

Male sex 33 (58%) 37 (54%) 0.72

White race 40 (70%) 57 (84%) 0.08

Diabetes 27 (47%) 22 (32%) 0.10

Hyperlipidemia 43 (75%) 53 (78%) 0.83

Hypertension 48 (84%) 62 (91%) 0.28

Body mass index, kg/m2 29.5 (25.8–33.7) 27.0 (24.6–30.5) 0.031

Obstructive CAD 37 (65%) 56 (82%) 0.028

CAD class 1 20 (35%) 12 (18%) 0.005

2 15 (26%) 16 (24%)

3 14 (25%) 12 (18%)

4 8 (14%) 28 (41%)

CAD, coronary artery disease.

stress, inflammation, oxidative stress, hyperhomocysteinemia,
aging, and low-density lipoprotein oxidation, can initiate
atherosclerosis-related methylation (Chan et al., 2004; Yideng
et al., 2007; Steucke et al., 2015; Lee and Chiu, 2019). In
particular, it was demonstrated that the protein-coding genes

TABLE 2 | Binary logistic regression analysis of subtype and obstructive coronary
artery diseases.

Variable Odd ratio 95% CI P value

Univariate analysis

Subtype B/A 2.52 1.10–5.77 0.028

Model 1a

Subtype B/A 2.86 1.16–7.03 0.022

Gender (male) 2.88 1.12–7.42 0.028

aAdjusted for gender, hypertension, hyperlipidemia, race, diabetes, and
body mass index.

KLF-2, KLF-4, HoxA5, ABCA1, and DDAH2 are hypermethylated
and down-regulated, whereas PDGF, MCP-1, LDLR, LOX-
1, and BAX are hypomethylated and up-regulated in a
DNA methyltransferase (DNMT)-dependent manner during
atherosclerosis progression (Dunn et al., 2014, 2015; Rizzacasa
et al., 2019). The lncRNA-coding gene, cyclin-dependent kinase
inhibitor 2B antisense RNA 1 (CDKN2B-AS1), can bind to
DNMT1, thereby enhancing the methylation of the A disintegrin
and metalloprotease 10 (ADAM10) promoter, leading to the
suppression of the atherosclerotic inflammatory response and the
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FIGURE 6 | The expressions of eight signature aberrantly methylated-differentially expressed genes in different atherosclerosis subtype (GSE90074). The expression
levels of (A) LSM4, (B) MRPL45, (C) PARP15, (D) PDGFD, (E) SERGEF, (F) STAU1, (G) UBR1, (H) WIZ in different subtypes of atherosclerosis.

promotion of cholesterol efflux in THP-1 macrophages (Li et al.,
2019). In addition, the knockdown of lncRNA growth arrest-
specific 5 (GAS5) promoted ATP-binding cassette transporter
A1 (ABCA1) expression by inhibiting the methylation of the
ABCA1 promoter region, hence enhancing cholesterol reverse-
transportation and reducing intracellular lipid accumulation
(Meng et al., 2020). Despite these evidences, only few studies
have illustrated the regulatory relationship between methylation
and lncRNA-coding genes in atherosclerosis. Therefore, we
conducted an integrative analysis of methylation and genes
(including lncRNA and protein-coding genes) to explore the
genome methylation conditions.

Most differential CpG sites were found to be hypermethylated
in atherosclerosis samples (11,995 hypermethylated vs. 4,904
hypomethylated), which is in agreement with the findings

TABLE 3 | Classification performance of the resultant gene signature having all the
features and samples for GSE90074.

Evaluation criteria Average (SD)

Sensitivity 0.868 (0.27%)

Specificity 0.826 (0.22%)

Precision 0.855 (0.20%)

Accuracy 0.848 (0.30%)

of previous studies (Rangel-Salazar et al., 2011; Zaina et al.,
2014). A subsequent functional analysis further revealed that
AMDE genes in the red and yellow modules played pivotal
roles in the inflammatory processes, including neutrophil
activation, neutrophil-mediated immunity, and cellular response
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to IL-18. Additionally, the KEGG pathway analysis indicated
that MAPK signaling could be the key pathway underlying
methylation abnormalities in atherosclerosis. Furthermore,
AMDE lncRNAs were strongly associated with axon guidance
and the semaphorin–plexin signaling pathway. Interestingly,
semaphorins were originally identified for their role in the
axon guidance pathway during the embryonic development of
the nervous system (Van Agtmael et al., 2010). Interestingly,
emerging evidence has also suggested that the genes of the axon
guidance pathway are related to atherosclerosis. For instance,
Sema3A, one of the members of the semaphorin family, has been
shown to induce the apoptosis of endothelial cells and monocyte-
derived macrophages (Guttmann-Raviv et al., 2007; Moretti et al.,
2008; Vadasz et al., 2013).

To validate the K-means clusters from the training dataset,
we conducted K-means clustering analysis in the validation
dataset (GSE28829). Both GSE40231 and GSE28829 included
tissue samples from a large (aortic and carotid) artery plaque
and measured the global gene expression based on the same
platform (GPL570). The “ModulePreservation” function of
WGCNA package revealed that the K-means clusters from
different datasets had similar core AMDE genes expressions. To
also investigate the clinical implication of K-means clustering,
we also conducted K-means clustering in the blood sample
dataset (GSE90074), which was a more easily obtained tissue in
atherosclerosis patients. CAD is a severe form of atherosclerosis;
however, current techniques for directly identifying the high
risk of CAD patients are restricted to coronary computer
tomography, angiography, and intravascular ultrasound. Our
results showed that the K-means clusters were associated with
coronary atherosclerotic burden in GSE90074, including the data
of atherosclerosis patients with CAD class > 0 (n = 125). To
further construct a signature AMDE gene-based classifier for
atherosclerotic subtypes, SAM and PAM were implemented to
select the signature AMDE genes. Eight signature AMDE gene-
derived classifiers showed an outstanding discriminative ability
for atherosclerosis subtypes in both GSE90074 and GSE34822.
Hence, detection the eight signature AMDE genes expression
in a clinical situation could contribute to risk stratification of
atherosclerosis patients.

Obesity has been considered a risk factor for CVD for
several decades (Van Gaal et al., 2006). However, subtype B
patients, who showed much worse coronary atherosclerotic
severity, were found to be less likely to develop obesity. Hence,
we assumed that subtype B patients were more vulnerable to
atherosclerosis-related CVD events, such as obstructive CAD.
Therefore, these high-risk patients could benefit from early
appropriate medication, including statins and anti-platelet drugs.

The variation in the different atherosclerosis subtypes could
be explained by the signature AMDE genes significantly
involved in atherosclerosis progression. Among these genes,
only STAU1, SERGEF, and PDGFD are known to be associated
with atherosclerosis. Microvesicles containing STAU1-microRNA
were found to significantly delay atherosclerosis development by
mitigating dyslipidemia, hypertension, and heart wall remodeling
(Alexandru et al., 2020). In addition, large cohort genome-wide
admixture and association studies demonstrated that SNPs in

SERGEF gene region were strongly associated with common
carotid artery intima-media thickness (Shendre et al., 2017).
Several studies have demonstrated that PDGFD plays a vital
role in atherosclerosis development (Karvinen et al., 2009; Lee
and Li, 2018). Moreover, PDGFD mRNA and protein expression
were induced after the differentiation of THP-1 monocytes into
macrophages, while PDGFD enhanced matrix metalloproteinase-
2 mRNA expression in a concentration-dependent manner
(Wagsater et al., 2009). Furthermore, the secretion of PDGFD by
macrophages could attenuate the expression of smooth muscle
(SM) α-actin, SM-myosin heavy chains in smooth muscle cells,
and phenotypic conversion (Thomas et al., 2009). Additionally,
a genome-wide association study revealed that SNPs in the
PDGFD locus are related to CAD (Coronary Artery Disease
(C4D) Genetics Consortium, 2011).

Although many interesting points have been demonstrated
in our study, there are still some limitations. Firstly, more
homogenous samples for methylation and transcription datasets
should be obtained in a further study to more precisely identify
the genes involved in the atherosclerotic development. Secondly,
the atherosclerosis development-related CpG sites, especially in
the promoter and the enhancer regions of the genes, should be
further demonstrated.

In conclusion, the expression and the methylation microarray
analyses of mRNAs and lncRNAs were performed, and then
K-means clustering analysis revealed high-risk atherosclerosis
subtypes, which are characterized by AMDE genes. Eight
signature AMDE genes were recognized as potential key
molecules in atherogenesis progression and could be used as
the classifier for risk stratification for atherosclerosis patients.
Nevertheless, further in vitro and in vivo studies are required
to provide additional details on the molecular mechanisms of
the underlying role of the eight signature AMDE genes in
atherosclerosis development and progression.

WEB OF RESOURCES

Enrichr database: https://maayanlab.cloud/Enrichr/
Cytoscape software: https://cytoscape.org/
R software: https://www.r-project.org/
Venn diagram online programs: http://bioinformatics.psb.ugent.
be/webtools/Venn/

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This
data can be found here: https://www.ncbi.nlm.nih.gov/geo/.
And the detailed information has been listed in Supplementary
Tables 1, 2.

AUTHOR CONTRIBUTIONS

YX and SL drafted the manuscript. JS revised the manuscript
critically. WZ, JX, YZ, and ZX downloaded and analyzed the data.
JS, YX, and YG designed the study. JS revised the final version

Frontiers in Genetics | www.frontiersin.org 10 December 2020 | Volume 11 | Article 569572

https://maayanlab.cloud/Enrichr/
https://cytoscape.org/
https://www.r-project.org/
http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/
https://www.ncbi.nlm.nih.gov/geo/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-569572 December 8, 2020 Time: 12:2 # 11

Xue et al. AMDE Genes Reveal Risk Subtypes of Atherosclerosis

of the manuscript. All the authors read and approved the final
version of the manuscript.

ACKNOWLEDGMENTS

The results shown here are, in whole or part, based on data
publicly available at the GEO database (https://www.ncbi.nlm.
nih.gov/geo/).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fgene.
2020.569572/full#supplementary-material

Supplementary Figure 1 | Measuring consensus and determining the number of
subtypes (optimal k) in the validation dataset (Gse28829). Heat map of the
consensus matrix for (A) k = 2, (B) k = 3, and (C) k = 4. (D) Empirical cumulative
distribution functio plot of the k value ranging from 2 to 10 in Gse28829. (E)
Tracking plot of the k value ranging from 2 to 10 in Gse28829.

Supplementary Figure 2 | Validation of the preservation of the discovery clusters
in the validation dataset. The two clusters in Gse40231 were identified as
“Gse40231 subtypeA” and “Gse40231 subtypeB.” The two clusters in Gse28829
were also identified as “Gse28829 subtypeA” and “Gse28829 subtypeB.” Then,
we calculated the module eigengene of core Amde genes in each subtype and
then generated the module membership (Kme). (A) Scatter plots of Kme in
Gse40231 subtypeA vs. Gse28829 subtypeA, (B) scatter plots of Kme in
Gse40231 subtypeB vs. Gse28829 subtypeB; network plot of the module of core
aberrantly methylated–differentially expressed genes in (C) Gse28829 subtypeA,
(D) Gse40231 subtypeA, (E) Gse40231 subtypeB, and (F) Gse28829 subtypeB.

Supplementary Figure 3 | Prediction analysis of microarrays of signature
aberrantly methylated–differentially expressed (Amde) genes in blood samples
(Gse34822). (A) Signature Amde genes of the different atherosclerosis subtypes
obtained by prediction analysis of microarrays (Gse34822) and (B) raw expression
levels of the eight signature Amde genes in the given specific
threshold (Gse34822).

Supplementary Figure 4 | The first 100 differentially expressed genes between
Aaw and Naaw samples (Gse40231).

Supplementary Table 1 | Group information of Gene Expression Omnibus
datasets.

Supplementary Table 2 | Baseline characteristics of validation data by subtype
(pam clusters).

Supplementary Table 3 | Classification performance of the resultant gene
signature having all the features and samples for Gse34822.

Supplementary Table 4 | Sample information of each Gene Expression Omnibus
accession (Gse40231, Gse46394, Gse28829, Gse90074, and Gse34822) used in
the study.

Supplementary Table 5 | Aberrantly methylated–differentially expressed (Amde)
genes (including eight Amde lncRnas and 1,569 Amde mRnas).

Supplementary Table 6 | Core aberrantly methylated–differentially expressed
genes and their information of the node degree through a co-expression network
analysis.

Supplementary Table 7 | Subtype information of Gse40231 and Gse90074.

Supplementary Table 8 | Expressions of core Amde genes in atherosclerostic
samples of Gse40231.

Supplementary Table 9 | Information on the aberrantly methylated CpG sites of
the eight signature aberrantly methylated–differentially expressed genes.

REFERENCES
Alexandru, N., Andrei, E., Safciuc, F., Dragan, E., Balahura, A. M., Badila, E.,

et al. (2020). Intravenous administration of allogenic cell-derived microvesicles
of healthy origins defend against atherosclerotic cardiovascular disease
development by a direct action on endothelial progenitor cells. Cells 9, 423
doi: 10.3390/cells9020423

Chan, Y., Fish, J. E., D’Abreo, C., Lin, S., Robb, G. B., Teichert, A. M., et al. (2004).
The cell-specific expression of endothelial nitric-oxide synthase: a role for DNA
methylation. J. Biol. Chem. 279, 35087–35100. doi: 10.1074/jbc.M405063200

Coronary Artery Disease (C4D) Genetics Consortium (2011). A genome-wide
association study in Europeans and South Asians identifies five new loci for
coronary artery disease. Nat. Genet. 43, 339–344. doi: 10.1038/ng.782

Döring, Y., Manthey, H. D., Drechsler, M., Lievens, D., Megens, R. T.,
Soehnlein, O., et al. (2012). Auto-antigenic protein-DNA complexes stimulate
plasmacytoid dendritic cells to promote atherosclerosis. Circulation 125, 1673–
1683. doi: 10.1161/circulationaha.111.046755

Dunn, J., Qiu, H., Kim, S., Jjingo, D., Hoffman, R., Kim, C. W., et al. (2014). Flow-
dependent epigenetic DNA methylation regulates endothelial gene expression
and atherosclerosis. J. Clin. Invest. 124, 3187–3199. doi: 10.1172/jci74792

Dunn, J., Thabet, S., and Jo, H. (2015). Flow-dependent epigenetic DNA
methylation in endothelial gene expression and atherosclerosis. Arterioscler.
Thromb. Vasc. Biol. 35, 1562–1569. doi: 10.1161/atvbaha.115.305042

Fiedler, D., Hirsch, D., El Hajj, N., Yang, H. H., Hu, Y., Sticht, C., et al. (2019).
Genome-wide DNA methylation analysis of colorectal adenomas with and
without recurrence reveals an association between cytosine-phosphate-guanine
methylation and histological subtypes. Genes Chromosomes Cancer 58, 783–
797. doi: 10.1002/gcc.22787

Fukuoka, K., Mamatjan, Y., Tatevossian, R., Zapotocky, M., Ryall, S., Stucklin,
A. G., et al. (2020). Clinical impact of combined epigenetic and molecular

analysis of pediatric low grade gliomas. Neuro. Oncol. 22, 1474–1483. doi:
10.1093/neuonc/noaa077

Goldberg, A. D., Allis, C. D., and Bernstein, E. (2007). Epigenetics: a landscape
takes shape. Cell 128, 635–638. doi: 10.1016/j.cell.2007.02.006

Grimaldi, V., Vietri, M. T., Schiano, C., Picascia, A., De Pascale, M. R., Fiorito, C.,
et al. (2015). Epigenetic reprogramming in atherosclerosis. Curr. Atheroscler.
Rep. 17:476. doi: 10.1007/s11883-014-0476-3

Guttmann-Raviv, N., Shraga-Heled, N., Varshavsky, A., Guimaraes-Sternberg, C.,
Kessler, O., and Neufeld, G. (2007). Semaphorin-3A and semaphorin-3F work
together to repel endothelial cells and to inhibit their survival by induction of
apoptosis. J. Biol. Chem. 282, 26294–26305. doi: 10.1074/jbc.M609711200

Hägg, S., Skogsberg, J., Lundström, J., Noori, P., Nilsson, R., Zhong, H., et al. (2009).
Multi-organ expression profiling uncovers a gene module in coronary artery
disease involving transendothelial migration of leukocytes and LIM domain
binding 2: the Stockholm Atherosclerosis Gene Expression (STAGE) study.
PLoS Genet. 5:e1000754. doi: 10.1371/journal.pgen.1000754

Heo, K. S., Berk, B. C., and Abe, J. (2016). Disturbed flow-induced endothelial
proatherogenic signaling via regulating post-translational modifications and
epigenetic events. Antioxid Redox Signal 25, 435–450. doi: 10.1089/ars.2015.
6556

Karvinen, H., Rutanen, J., Leppanen, O., Lach, R., Levonen, A. L., Eriksson, U.,
et al. (2009). PDGF-C and -D and their receptors PDGFR-alpha and PDGFR-
beta in atherosclerotic human arteries. Eur. J. Clin. Invest. 39, 320–327. doi:
10.1111/j.1365-2362.2009.02095.x

Khyzha, N., Alizada, A., Wilson, M. D., and Fish, J. E. (2017). Epigenetics of
atherosclerosis: emerging mechanisms and methods. Trends Mol. Med. 23,
332–347. doi: 10.1016/j.molmed.2017.02.004

Kuleshov, M. V., Jones, M. R., Rouillard, A. D., Fernandez, N. F., Duan, Q., Wang,
Z., et al. (2016). Enrichr: a comprehensive gene set enrichment analysis web
server 2016 update. Nucleic Acids Res. 44, W90–W97. doi: 10.1093/nar/gkw377

Frontiers in Genetics | www.frontiersin.org 11 December 2020 | Volume 11 | Article 569572

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.frontiersin.org/articles/10.3389/fgene.2020.569572/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2020.569572/full#supplementary-material
https://doi.org/10.3390/cells9020423
https://doi.org/10.1074/jbc.M405063200
https://doi.org/10.1038/ng.782
https://doi.org/10.1161/circulationaha.111.046755
https://doi.org/10.1172/jci74792
https://doi.org/10.1161/atvbaha.115.305042
https://doi.org/10.1002/gcc.22787
https://doi.org/10.1093/neuonc/noaa077
https://doi.org/10.1093/neuonc/noaa077
https://doi.org/10.1016/j.cell.2007.02.006
https://doi.org/10.1007/s11883-014-0476-3
https://doi.org/10.1074/jbc.M609711200
https://doi.org/10.1371/journal.pgen.1000754
https://doi.org/10.1089/ars.2015.6556
https://doi.org/10.1089/ars.2015.6556
https://doi.org/10.1111/j.1365-2362.2009.02095.x
https://doi.org/10.1111/j.1365-2362.2009.02095.x
https://doi.org/10.1016/j.molmed.2017.02.004
https://doi.org/10.1093/nar/gkw377
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-569572 December 8, 2020 Time: 12:2 # 12

Xue et al. AMDE Genes Reveal Risk Subtypes of Atherosclerosis

Lancaster, M. C., Salem Omar, A. M., Narula, S., Kulkarni, H., Narula, J., and
Sengupta, P. P. (2019). Phenotypic Clustering of left ventricular diastolic
function parameters: patterns and prognostic relevance. JACC Cardiovasc.
Imaging 12(7 Pt 1), 1149–1161. doi: 10.1016/j.jcmg.2018.02.005

Langfelder, P., and Horvath, S. (2008). WGCNA: an R package for weighted
correlation network analysis. BMC Bioinformatics 9:559. doi: 10.1186/1471-
2105-9-559

Lee, C., and Li, X. (2018). Platelet-derived growth factor-C and -D in the
cardiovascular system and diseases. Mol. Aspects. Med. 62, 12–21. doi: 10.1016/
j.mam.2017.09.005

Lee, D. Y., and Chiu, J. J. (2019). Atherosclerosis and flow: roles of epigenetic
modulation in vascular endothelium. J. Biomed. Sci. 26:56. doi: 10.1186/s12929-
019-0551-8

Li, H., Han, S., Sun, Q., Yao, Y., Li, S., Yuan, C., et al. (2019). Long non-coding RNA
CDKN2B-AS1 reduces inflammatory response and promotes cholesterol efflux
in atherosclerosis by inhibiting ADAM10 expression. Aging (Albany N. Y.) 11,
1695–1715. doi: 10.18632/aging.101863

Mallik, S., and Zhao, Z. (2018). Identification of gene signatures from RNA-seq
data using Pareto-optimal cluster algorithm. BMC Syst. Biol. 12(Suppl. 8):126.
doi: 10.1186/s12918-018-0650-2

Meng, X. D., Yao, H. H., Wang, L. M., Yu, M., Shi, S., Yuan, Z. X., et al. (2020).
Knockdown of GAS5 inhibits atherosclerosis progression via reducing EZH2-
mediated ABCA1 transcription in ApoE(-/-) Mice. Mol. Ther. Nucleic Acids 19,
84–96. doi: 10.1016/j.omtn.2019.10.034

Moretti, S., Procopio, A., Lazzarini, R., Rippo, M. R., Testa, R., Marra, M., et al.
(2008). Semaphorin3A signaling controls Fas (CD95)-mediated apoptosis by
promoting Fas translocation into lipid rafts. Blood 111, 2290–2299. doi: 10.
1182/blood-2007-06-096529

Nilsson, J. (2017). Atherosclerotic plaque vulnerability in the statin era. Eur. Heart
J. 38, 1638–1644. doi: 10.1093/eurheartj/ehx143

Nührenberg, T. G., Langwieser, N., Binder, H., Kurz, T., Stratz, C., Kienzle, R. P.,
et al. (2013). Transcriptome analysis in patients with progressive coronary
artery disease: identification of differential gene expression in peripheral blood.
J. Cardiovasc. Transl. Res. 6, 81–93. doi: 10.1007/s12265-012-9420-5

Rangel-Salazar, R., Wickstrom-Lindholm, M., Aguilar-Salinas, C. A., Alvarado-
Caudillo, Y., Dossing, K. B., Esteller, M., et al. (2011). Human native
lipoprotein-induced de novo DNA methylation is associated with repression
of inflammatory genes in THP-1 macrophages. BMC Genomics 12:582. doi:
10.1186/1471-2164-12-582

Ravi, S., Schuck, R. N., Hilliard, E., Lee, C. R., Dai, X., Lenhart, K., et al. (2017).
Clinical evidence supports a protective role for CXCL5 in coronary artery
disease. Am. J. Pathol. 187, 2895–2911. doi: 10.1016/j.ajpath.2017.08.006

Rizzacasa, B., Amati, F., Romeo, F., Novelli, G., and Mehta, J. L. (2019). Epigenetic
modification in coronary atherosclerosis: JACC review topic of the week. J. Am.
Coll. Cardiol. 74, 1352–1365. doi: 10.1016/j.jacc.2019.07.043

Shendre, A., Wiener, H., Irvin, M. R., Zhi, D., Limdi, N. A., Overton, E. T.,
et al. (2017). Admixture mapping of subclinical atherosclerosis and subsequent
clinical events among african americans in 2 large cohort studies. Circ.
Cardiovasc. Genet. 10:e001569. doi: 10.1161/circgenetics.116.001569

Steucke, K. E., Tracy, P. V., Hald, E. S., Hall, J. L., and Alford, P. W. (2015). Vascular
smooth muscle cell functional contractility depends on extracellular mechanical
properties. J. Biomech. 48, 3044–3051. doi: 10.1016/j.jbiomech.2015.07.029

Tabaei, S., and Tabaee, S. S. (2019). DNA methylation abnormalities in
atherosclerosis. Artif Cells Nanomed. Biotechnol. 47, 2031–2041. doi: 10.1080/
21691401.2019.1617724

Thomas, J. A., Deaton, R. A., Hastings, N. E., Shang, Y., Moehle, C. W., Eriksson,
U., et al. (2009). PDGF-DD, a novel mediator of smooth muscle cell phenotypic

modulation, is upregulated in endothelial cells exposed to atherosclerosis-prone
flow patterns. Am. J. Physiol. Heart Circ. Physiol. 296, H442–H452. doi: 10.1152/
ajpheart.00165.2008

Tibshirani, R., Hastie, T., Narasimhan, B., and Chu, G. (2002).
Diagnosis of multiple cancer types by shrunken centroids of
gene expression. Proc. Natl. Acad. Sci. U.S.A. 99, 6567–6572.
doi: 10.1073/pnas.082099299

Tusher, V. G., Tibshirani, R., and Chu, G. (2001). Significance analysis of
microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci.
U.S.A. 98, 5116–5121. doi: 10.1073/pnas.091062498

Vadasz, Z., Haj, T., Kessel, A., and Toubi, E. (2013). B-regulatory cells in
autoimmunity and immune mediated inflammation. FEBS Lett. 587, 2074–
2078. doi: 10.1016/j.febslet.2013.05.023

Van Agtmael, T., Bailey, M. A., Schlotzer-Schrehardt, U., Craigie, E., Jackson,
I. J., Brownstein, D. G., et al. (2010). Col4a1 mutation in mice causes
defects in vascular function and low blood pressure associated with
reduced red blood cell volume. Hum. Mol. Genet. 19, 1119–1128.
doi: 10.1093/hmg/ddp584

Van Gaal, L. F., Mertens, I. L., and De Block, C. E. (2006). Mechanisms
linking obesity with cardiovascular disease. Nature 444, 875–880. doi: 10.1038/
nature05487

Wagsater, D., Zhu, C., Bjorck, H. M., and Eriksson, P. (2009). Effects of PDGF-
C and PDGF-D on monocyte migration and MMP-2 and MMP-9 expression.
Atherosclerosis 202, 415–423. doi: 10.1016/j.atherosclerosis.2008.04.050

Wang, Y., Ruan, Z., Yu, S., Tian, T., Liang, X., Jing, L., et al. (2019). A four-
methylated mRNA signature-based risk score system predicts survival in
patients with hepatocellular carcinoma. Aging (Albany N. Y.) 11, 160–173.
doi: 10.18632/aging.101738

Wilkerson, M. D., and Hayes, D. N. (2010). ConsensusClusterPlus: a class discovery
tool with confidence assessments and item tracking. Bioinformatics 26, 1572–
1573. doi: 10.1093/bioinformatics/btq170

Yideng, J., Jianzhong, Z., Ying, H., Juan, S., Jinge, Z., Shenglan, W., et al. (2007).
Homocysteine-mediated expression of SAHH, DNMTs, MBD2, and DNA
hypomethylation potential pathogenic mechanism in VSMCs. DNA Cell Biol.
26, 603–611. doi: 10.1089/dna.2007.0584

Zaina, S., Heyn, H., Carmona, F. J., Varol, N., Sayols, S., Condom, E., et al. (2014).
DNA methylation map of human atherosclerosis. Circ. Cardiovasc. Genet. 7,
692–700. doi: 10.1161/circgenetics.113.000441

Zaina, S., and Lund, G. (2014). Cardiovascular epigenome-wide association studies:
is epigenetics falling short? Curr. Opin. Lipidol. 25, 474–475. doi: 10.1097/mol.
0000000000000133

Zhao, Q. Q., Jiang, C., Gao, Q., Zhang, Y. Y., Wang, G., Chen, X. P., et al. (2020).
Gene expression and methylation profiles identified CXCL3 and CXCL8 as key
genes for diagnosis and prognosis of colon adenocarcinoma. J. Cell. Physiol. 235,
4902–4912. doi: 10.1002/jcp.29368

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Xue, Guo, Luo, Zhou, Xiang, Zhu, Xiang and Shen. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Genetics | www.frontiersin.org 12 December 2020 | Volume 11 | Article 569572

https://doi.org/10.1016/j.jcmg.2018.02.005
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1016/j.mam.2017.09.005
https://doi.org/10.1016/j.mam.2017.09.005
https://doi.org/10.1186/s12929-019-0551-8
https://doi.org/10.1186/s12929-019-0551-8
https://doi.org/10.18632/aging.101863
https://doi.org/10.1186/s12918-018-0650-2
https://doi.org/10.1016/j.omtn.2019.10.034
https://doi.org/10.1182/blood-2007-06-096529
https://doi.org/10.1182/blood-2007-06-096529
https://doi.org/10.1093/eurheartj/ehx143
https://doi.org/10.1007/s12265-012-9420-5
https://doi.org/10.1186/1471-2164-12-582
https://doi.org/10.1186/1471-2164-12-582
https://doi.org/10.1016/j.ajpath.2017.08.006
https://doi.org/10.1016/j.jacc.2019.07.043
https://doi.org/10.1161/circgenetics.116.001569
https://doi.org/10.1016/j.jbiomech.2015.07.029
https://doi.org/10.1080/21691401.2019.1617724
https://doi.org/10.1080/21691401.2019.1617724
https://doi.org/10.1152/ajpheart.00165.2008
https://doi.org/10.1152/ajpheart.00165.2008
https://doi.org/10.1073/pnas.082099299
https://doi.org/10.1073/pnas.091062498
https://doi.org/10.1016/j.febslet.2013.05.023
https://doi.org/10.1093/hmg/ddp584
https://doi.org/10.1038/nature05487
https://doi.org/10.1038/nature05487
https://doi.org/10.1016/j.atherosclerosis.2008.04.050
https://doi.org/10.18632/aging.101738
https://doi.org/10.1093/bioinformatics/btq170
https://doi.org/10.1089/dna.2007.0584
https://doi.org/10.1161/circgenetics.113.000441
https://doi.org/10.1097/mol.0000000000000133
https://doi.org/10.1097/mol.0000000000000133
https://doi.org/10.1002/jcp.29368
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

	Aberrantly Methylated-Differentially Expressed Genes Identify Novel Atherosclerosis Risk Subtypes
	Introduction
	Materials and Methods
	Study Datasets and Design
	Data Preprocessing
	Differential Analysis
	WGCNA
	Functional and Co-expression Analyses
	K-Means Clustering of the Training (GSE40231) and Validation (GSE28829) Datasets
	Clinical Analysis
	Significance Analysis of Microarrays
	Signature Selection and Validation Using a Classifier

	Results
	Identifying the Aberrantly Methylated DEGs
	WGCNA and Functional Analysis
	Co-expression Network and K-Means Clustering in AAW Samples
	Clinical Implication of the Signature AMDE Genes in Blood Sample Datasets

	Discussion
	Web of Resources
	Data Availability Statement
	Author Contributions
	Acknowledgments
	Supplementary Material
	References


