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Objectives The purpose of this study is the development
of novel fluorine-18-fluorodeoxyglucose (18F-FDG)-PET and
99mTc-hexamethylpropylene amine oxime (HMPAO) SPECT
methods with free-moving apparatus on conscious rats to
investigate brain activity without the effects of anesthesia
and tactual stimulation. We also assessed the sensitivity of
the experimental system by an intervention study using
fluoxetine as a reference drug.

Materials and methods A catheter was inserted into the
femoral vein and connected to a free-moving cannula
system. After fluoxetine administration, the rats were given
an injection of 18F-FDG or 99mTc-HMPAO via the intravenous
cannula and released into a free-moving cage. After the
tracer was trapped in the brain, the rats were anesthetized
and scanned with PETor SPECTscanners. Then a volume of
interest analysis and statistical parametric mapping were
performed.

Results We could inject the tracer without touching the
rats, while keeping them conscious until the tracers were
distributed and trapped in the brain using the developed
system. The effects of fluoxetine on glucose uptake and
cerebral blood flow were perceptively detected by volume of
interest and statistical parametric mapping analysis.

Conclusion We successfully developed free-moving
18F-FDG-PET and 99mTc-HMPAO-SPECT imaging systems
and detected detailed glucose uptake and cerebral blood
flow changes in the conscious rat brain with fluoxetine
administration. This system is expected to be useful to
assess brain activity without the effects of anesthesia and
tactual stimulation to evaluate drug effect or animal brain
function. Nucl Med Commun 39:753–760 Copyright ©
2018 The Author(s). Published by Wolters Kluwer Health,
Inc.
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Introduction
Imaging of the brain activities, including oxygen meta-

bolism, glucose metabolism, and cerebral blood flow

(CBF), has been effectively used for diagnosis, brain

research, and clinical trials [1–5]. Combination of these

imaging techniques and voxel-based comprehensive

analysis, such as statistical parametric mapping (SPM),

has been used and is useful to understand the patho-

physiology of diseases and neural activity about brain

function [6–8].

Imaging has been widely recognized as a translational

technology because the same tracers and modalities can

be used in both preclinical and clinical studies. In

addition, the advantage of being noninvasive enables

longitudinal evaluation of disease progress or drug effect.

However, there are some discrepancies to be matched for

the translational research, especially in drug evaluation

using imaging biomarkers. The major discrepancy is

anesthesia, which is required to immobilize the animals

in preclinical studies, whereas clinical brain imaging is

performed in the conscious state without anesthesia.

Anesthetization before tracer injection can affect brain

metabolism and CBF, and also has some interactions with

central nervous system-acting drugs [9,10]. It indicates

that there might be discrepancies between the imaging

data and general pharmacological or pharmacokinetic

data also in preclinical research. To avoid this problem,

there have been some reports of preclinical imaging using

pharmacological MRI, fluorine-18-fluorodeoxyglucose

(18F-FDG)-PET and 99mTc-hexamethylpropylene amine

oxime (HMPAO)-SPECT in conscious animals [11–14].
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However, in most of these studies, the animals are

exposed to the stress of physical restraint, which has a

huge effect on the brain function [15–17].

In the present study, we tried to develop a new imaging

system to deal with these problems, namely, we combined

femoral cannulation techniques and a free-moving device

commonly used for microdialysis. We implanted poly-

ethylene cannulas into femoral veins of rats and connected

them to a free-moving device, which enabled tracer

injection without touching conscious rats. Regarding tra-

cers, we used 18F-FDG and 99mTc-HMPAO with a

metabolic trapping mechanism so that accumulation of the

tracer was kept at a steady level after uptake and dis-

tribution in the brain [18,19]. The rats were conscious

during the tracer uptake period and were then anesthetized

immediately before the scans, so that the image would

reflect the brain condition in the conscious state based on

the tracer trapping mechanism. Then, we assessed the

detectability of the experimental system by the detection

of the effect of fluoxetine, a selective serotonin reuptake

inhibitor (SSRI). Fluoxetine was used as a reference drug

because fluoxetine has been widely used in preclinical and

clinical and has been reported to affect glucose metabolism

in brain [20–23]. The effects of fluoxetine were investi-

gated by volume of interest (VOI) analysis and SPM. In the
99mTc-HMPAO-SPECT study, we also calculated regional

cerebral blood flow (rCBF) with VOI analysis and input

function data measured by serial blood sampling.

Materials and methods
Animal preparation

Totally 52 Wistar rats (male, 13 weeks old; Japan

SLC Inc., Shizuoka, Japan) were used in this study

(Tables 1 and 2). Twenty-six rats were used for the
18F-FDG-PET study (control, n= 12; fluoxetine, n= 14),

and 26 rats were used for the 99mTc-HMPAO-SPECT

study (control, n= 14; fluoxetine, n= 12). The rats were

kept under environmentally controlled conditions (12-h

normal light/dark cycles, 20–23°C and 50% relative

humidity) with standard rat chow and water ad libitum.
Every rat had surgical catheterization into the right

femoral vein under 2–5% isoflurane anesthesia. For
99mTc-HMPAO-SPECT, the left femoral artery was also

catheterized for serial blood sampling. The catheters

were led out to the back of neck via subcutaneous

tunnels. At least 2 days were allowed for recovery from

the surgery before 18F-FDG-PET and 99mTc-HMPAO-

SPECT. After confirming that no abnormal behavior was

noticed in the rats, they were fasted 18 h before the tracer

injection (Fig. 1). The Animal Care and Use Committee

of the Hamamatsu University School of Medicine

approved all of the PET and SPECT studies.

Tracers and drugs

Fluoxetine hydrochloride (Wako Pure Chemical

Industries Ltd, Osaka, Japan, 20mg/ml/kg suspended in

0.5% methylcellulose saline) was administered intraper-

itoneally 24, 19 and 1 h before injection of the tracer in

both 18F-FDG-PET and 99mTc-HMPAO-SPECT (Fig. 1)

[14]. The control group was given 0.5% methylcellulose

saline. 18F-FDG was obtained from Nihon Medi-Physics

Co. Ltd (Tokyo, Japan). 99mTc-HMPAO solution was

synthesized immediately before the injection using a

commercial kit (Cerebrotec kit; Nihon Medi-Physics

Co. Ltd) and 99Mo/99mTc generator (Nihon Medi-Physics

Co. Ltd). The radiochemical purity was measured by thin

layer chromatography (Table 2).

18F-FDG-PET scan

The study protocol is depicted in Fig. 1. Initially, 75 min

before 18F-FDG injection, blood was sampled from the

tail vein and the blood glucose was measured by a blood

glucose analysis system (ACCU-CHECK compact plus;

Roche Diagnostics, Basel, Switzerland). Then the rats

were placed in a free-moving catheter system (Sugiyama-

gen Co. Ltd, Tokyo, Japan) and habituated in the acryl

cylinder cages (20 cm diameter, 30 cm height) covered

with a black sheet. 18F-FDG (control: 182 ± 4 μCi,
fluoxetine: 184 ± 4 μCi, Table 1) was injected intrave-

nously in each rat from the tip of free-moving cannula

outside the cage. Thereafter, 25 min after the 18F-FDG

injection, the rats were anesthetized with propofol

(Maruishi Pharmaceutical Co. Ltd, Osaka, Japan) and

removed from the free-moving system. Then the head of

each rat was fixed to an acrylic head holder (Narishige

Japan Co. Ltd, Tokyo, Japan) on the animal bed of an FX

preclinical platform scanner (X-O•X-PET•X-SPECT;

Gamma Medica-Ideas, Northridge, Los Angeles, USA).

Table 1 Body weight, blood glucose level and injected radioactivity
in 18F-FDG-PET study

Control Fluoxetine

Animal (N) 12 14
Body weight (g) 268 ±5 269 ±11
Blood glucose (mg/dl) 93 ±4 92 ±7
Injected radioactivity (μCi) 182 ±4 184 ±4

Data are mean ±SEM.
There are no significant differences between the control and fluoxetine groups.
18F-FDG, fluorine-18-fluorodeoxyglucose.

Table 2 Body weight, blood glucose level, blood PCO2, blood pH,
injected radioactivity, and radiochemical purity in 99mTc-HMPAO-
SPECT study

Control Fluoxetine

Animal (N) 14 12
Body weight (g) 272 ±2 276 ±2
Blood glucose (mg/dl) 114 ±4 104 ±3
PCO2 (mmHg) 38.7 ±0.4 40.0 ±1.0
pH 7.48 ±0.01 7.49 ±0.01
Injected radioactivity (mCi) 3.82 ±0.02 3.79 ±0.03
Radiochemical purity (%) 92.3 ±0.5 91.2 ±0.5

Data are mean ±SEM.
There are no significant differences between the control and fluoxetine groups.
HMPAO, hexamethylpropylene amine oxime.
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Then 30min after the tracer injection, 30-min static PET

scans were performed with 1.5% (v/v) isoflurane anes-

thesia and subsequent CT scans were performed with

the same scanner.

Data analyses of
18
F-FDG-PET

18F-FDG-PET tomographic images were reconstructed

from the projection data using ordered-subset expecta-

tion maximization with four iterations and 15 subsets,

with image matrix sizes of 256× 256× 256 voxels and voxel

sizes of 0.4× 0.4× 0.4mm. CT image data were recon-

structed with image matrix sizes of 512× 512× 512 voxels

and voxel sizes of 0.19× 0.19× 0.19mm. Standardized

uptake value of 18F-FDG was calculated according to the

following formula: brain radioactivity (kBq/ml)×body

weight (g)/injected radioactivity (kBq). For VOI analysis,

the radioactivity of the whole brain and each brain region

was obtained using PMOD software (version 3.2, PMOD

Group, Switzerland, 2009) and the accompanying VOI

templates. The VOI template was modified to major 13

regions [whole brain, whole cortex, cortex (anterior), cortex

(middle), cortex (posterior), midbrain, cerebellum, brain

stem, hippocampus, caudate putamen, thalamus, hypo-

thalamus, and amygdala]. The whole-brain ratio of each

VOI was calculated as the ratio of the radioactivity density

on each VOI to that for the whole brain. For SPM, the

preprocessed PET images were coregistered and extra-

brain voxels were masked. After the masking, the images

were registered and analyzed using the SPM2 software

package (SPM, Welcome Department of Cognitive

Neurology, London, UK) with an unpaired t-test (thresh-
old P< 0.001, height threshold at 75% of mean, extent four

voxels). The anatomical regions where the PET signals

changed were determined by coregistered SPM on the

MRI template and the rat brain atlas [24,25].

99mTc-HMPAO-SPECT scan

The study protocol is depicted in Fig. 1. Initially, 75 min

before 99mTc-HMPAO injection, blood glucose, pH and

partial pressure of carbon dioxide (PCO2) were deter-

mined with blood sampling from the tail vein by a blood

glucose analysis system and blood gas analyzer (i-STAT;

Abbott Laboratories, Abbott Park, Illinois, USA). Then

the rats were placed in a free-moving catheter system and

Fig. 1
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The study protocol of (a) 18F-FDG-PET and (b) 99mTc-HMPAO-SPECT. The cannulation surgery was performed into the femoral vein 2 days before
the scans. Control or fluoxetine was administered intraperitoneally 24, 19, and 1 h before the tracer injection. Overall, 75 min before the tracer
injection, the rats were attached to the free-moving system and habituated, and then tracer was injected. (a) 25min after 18F-FDG injection, the rats
were anesthetized with propofol and fixed to the animal bed of the PET scanner. Then, 30 min PET scan and sequential X-ray CTscan were performed.
(b) Serial arterial blood sampling was performed for 2 min after 99mTc-HMPAO injection, and 5min after 99mTc-HMPAO injection, the rats were
anesthetized with propofol and fixed to the animal bed of SPECT scanner. Then 60-min SPECT scan and sequential X-ray CT scan were performed.
CT, computed tomography; 18F-FDG, fluorine-18-fluorodeoxyglucose; HMPAO, hexamethylpropylene amine oxime.
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habituated as described previously. 99mTc-HMPAO

(control: 3.82 ± 0.02 mCi, fluoxetine: 3.79 ± 0.03 mCi,

Table 2) was injected intravenously, and then serial

arterial blood sampling (∼25 μl) was performed at 0, 4, 8,

12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 80, 100,

and 120 s after the tracer injection via a free-moving

arterial cannula outside the cage. Then, 5 min after
99mTc-HMPAO injection, the rats were anesthetized

with propofol and removed from the free-moving system

and placed on the scanner bed. Thereafter, 10 min after

the tracer injection, static SPECT scans were performed

for ∼ 60 min (1 min× 60 frames) with 1.5% (v/v) iso-

flurane anesthesia and subsequent CT scans were per-

formed with the same scanner.

Data analyses in 99mTc-HMPAO-SPECT
99mTc-HMPAO-SPECT images were reconstructed from

the projection data using ordered-subset expectation

maximization with five iterations and four subsets, with

image matrix sizes of 256× 256× 256 voxels and voxel

sizes of 0.92× 0.91× 0.91 mm. CT image data were

reconstructed with image matrix sizes of 60× 60× 60

voxels and voxel sizes of 0.17× 0.17× 0.17 mm. SPECT

images were smoothed with a Gaussian kernel filter (full

width at half maximum= 2.0 mm) and VOI analysis and

SPM were performed with the same procedure as the
18F-FDG-PET. rCBF was calculated from the VOI

radioactivity and arterial blood radioactivity according to

following formula: regional brain radioactivity (kBq/ml)/

blood radioactivity AUC0–26 s (kBq/ml/min) [26]. Blood

outflow delay caused by the cannula length was esti-

mated at 8 s and taken into consideration to calculate

the AUC.

Statistical analyses

Data were represented as mean±SD. Statistical analyses

were performed with unpaired Student’s t-test. P value of

less than 0.05 was considered to be statistically significant.

Ethical approval

The study was approved by the Animal Care and Use

Committee of the Hamamatsu University School of

Medicine.

Results
Effect of fluoxetine on glucose uptake

There were no differences in the blood glucose levels

between either groups immediately before placing in the

free-moving system. The standardized uptake value of

the whole brain significantly decreased in the fluoxetine

group compared with the 0.5% methylcellulose saline-

administered control group (5.2 ± 0.2 and 8.5 ± 0.2,
respectively). The whole-brain ratio with VOI-based

analysis of each brain region is shown in Table 3.

Significant 18F-FDG uptake increases were observed in

the anterior cortex and hypothalamus (3.4%, both) in the

fluoxetine group. There were significant 18F-FDG

uptake decreases in the posterior cortex, midbrain, brain

stem and hippocampus (2.0, 6.4, 3.7 and 2.6%, respec-

tively) after fluoxetine administration. SPM analysis

showed fluoxetine-induced increased signals inside the

cerebellum and decreased signals in the large brain

region around the midbrain, including the periaqueductal

gray (PAG), a part of the hippocampus, the para-

hippocampal region, and the superior and inferior colli-

culi (Fig. 2).

Effect of fluoxetine on brain blood flow

There were no differences in the blood glucose levels,

pH or PCO2 between either groups (Table 2). Table 4

summarizes the effect of fluoxetine on rCBF calculated

with VOI analysis and arterial blood radioactivity. A sig-

nificant decrease of rCBF was detected in all brain

regions. SPM analysis based on global mean scaling

showed higher rCBF only in the bilateral small regions

around the primary somatosensory cortex after fluoxetine

administration (Fig. 3). In contrast, decrease in rCBF was

not detected in any cluster of voxels.

Discussion
Clinical PET/SPECT imaging is generally performed

without anesthesia and has the discrepancy of differences

with preclinical imaging derived from the use of anes-

thesia. Therefore, we combined 18F-FDG-PET and
99mTc-HMPAO-SPECT methodologies with a free-

moving cannula system to avoid the effect of anesthesia

on tracer distribution. This allowed injection of the tra-

cers to the rats while keeping the rats conscious and free

during the tracer uptake period, and then the brain

metabolism or CBF could be assessed with minimum

effect of anesthesia and tactual stimulation. In the pre-

sent study, we evaluated the SSRI (fluoxetine) effect on

brain glucose metabolism and CBF using this metho-

dology. SPM analysis showed significant increases in
18F-FDG uptake inside the cerebellum and decreases in

the brain region around the midbrain including the PAG,

a part of the hippocampus, the parahippocampal region,

Table 3 Whole-brain ratio of fluorine-18-fluorodeoxyglucose
uptake on each brain region

Brain region Control Fluoxetine P-value %Change

Cortex (whole) 1.13 ±0.01 1.13 ±0.00 0.199 0.78
Cortex (anterior)* 1.28 ±0.01 1.32 ±0.01 0.001 3.37
Cortex (middle) 1.20 ±0.01 1.22 ±0.01 0.163 1.14
Cortex (posterior) 0.97 ±0.01 0.95 ±0.00 0.012 −1.95
Midbrain* 1.19 ±0.01 1.11 ±0.00 0.000 −6.42
Cerebellum 0.86 ±0.01 0.87 ±0.01 0.614 0.61
Brain stem* 0.85 ±0.01 0.82 ±0.01 0.043 −3.67
Hippocampus* 1.24 ±0.01 1.21 ±0.00 0.005 −2.56
Caudate putamen 1.50 ±0.01 1.50 ±0.01 0.455 −0.46
Thalamus 1.26 ±0.01 1.28 ±0.01 0.132 1.13
Hypothalamus* 0.93 ±0.01 0.97 ±0.01 0.037 3.41
Amygdala 0.91 ±0.01 0.91 ±0.01 0.699 −0.50

Data are mean ±SEM. The regional volume of interest data were compared
between the control and fluoxetine groups.
*P<0.05.
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and the superior and inferior colliculi. The regions

detected have been reported to have relationship with

anxiety-related diseases, such as panic disorder and

obsessive-compulsive disorder [27–29]. In these reports,

neuronal activity in the hippocampus, parahippocampal

region and midbrain including the PAG might be

decreased by SSRI or cognitive behavioral therapies;

therefore, the 18F-FDG uptake changes we detected

could have the potential to reflect neuronal deactivation

in these regions. The reason for the increased 18F-FDG

uptake in the cerebellum is not clear; however, appar-

ently there might be activation compared with deacti-

vated region in the cerebellum because motor control

function in the cerebellum might be kept to control

motor activity under free-moving conditions [30,31].

Interestingly, the findings in these regions are in dis-

agreement with the serotonin transporter distribution

[32,33]. These results indicate that neuronal activation or

deactivation does not always occur in the site of action;

therefore, function-based comprehensive analysis like

the combination of 18F-FDG-PET and SPM could be

useful to target the region related to drug efficacy

[34–37]. Furthermore, functional response itself would

be an imaging biomarker especially in the case where

target-specific ligand is not available [38–41].

There have been some previous reports about the effect

of SSRI on rat brain. Freo et al. [22,23] reported detailed

regional cerebral metabolic rates of glucose change by

fluoxetine using 14C-2-deoxy-D-glucose. In terms of the

relative rate of regional cerebral metabolic rates of glu-

cose to the whole brain, there were some regions of the

brain that showed opposite changes compared with our

results. Their study was performed in conscious animals,

but their experimental procedure was different from our

protocol, in that they immobilized the rats. In another

report, Jang et al. [14] investigated the effect of fluoxetine

on rat brain without anesthesia and physical restraint

during 18F-FDG uptake. They detected increased
18F-FDG uptake in the dorsal hippocampus, which was

different from our results. Their experimental procedure

was similar to our procedure, but they restrained the rat

and injected 18F-FDG via the tail vein. The reasons for

the differences between our results and the previous

reports is not clear; however, there were methodological

differences such as animal immobilization and needle

stimulation, which might affect the brain activity fol-

lowed by the difference of regional FDG uptake chan-

ges. These discrepancies with our result indicate the

effect on brain activity and drug effect by the experi-

mental conditions.

Fig. 2
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SPM images showing the effects of fluoxetine on 18F-FDG uptake in the
rat brain. The red region indicates the voxel clusters with significant
increases and the blue region show voxel clusters with significant
decreases of 18F-FDG uptake compared with the control groups.
18F-FDG, fluorine-18-fluorodeoxyglucose; PAG, periaqueductal gray;
SPM, statistical parametric mapping.

Table 4 Whole-brain blood flow and regional cerebral blood flow in
each brain region

Brain region Control Fluoxetine P-value %Change

Whole-brain blood flow* 52.8 ±1.7 43.7 ± 1.5 0.001 −17.2
Cortex (whole)* 54.9 ±1.7 46.5 ± 1.6 0.002 −15.2
Cortex (anterior)* 59.9 ±1.9 51.0 ± 1.7 0.003 −14.9
Cortex (middle)* 55.8 ±1.7 48.5 ± 1.6 0.005 −13.1
Cortex (posterior)* 50.9 ±1.8 42.4 ± 1.5 0.002 −16.7
Midbrain* 61.0 ±2.3 49.8 ± 1.9 0.001 −18.4
Cerebellum* 43.2 ±1.5 36.6 ± 1.2 0.003 −15.3
Pons and medulla* 41.3 ±3.0 28.9 ± 1.8 0.002 −30.0
Hippocampus* 63.3 ±2.1 53.3 ± 1.9 0.002 −15.8
Caudate putamen* 75.3 ±2.6 65.7 ± 2.3 0.012 −12.8
Thalamus* 68.6 ±2.3 57.3 ± 2.1 0.001 −16.5
Hypothalamus* 66.5 ±2.2 52.9 ± 2.4 0.000 −20.4
Amygdala* 60.8 ±2.4 49.1 ± 2.1 0.002 −19.1

Data are mean ±SEM values of cerebral blood flow (ml/min 100 g). The data were
compared between the control and fluoxetine groups.
*P<0.05.
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SPM analysis of 99mTc-HMPAO-SPECT showed dif-

ferent activated regions from the 18F-FDG study. We

detected global CBF changes in the whole brain and

relatively high rCBF only in bilateral regions around the

primary somatosensory cortex, and these changes were

not related to pH or PCO2. The noncorrespondence

between 18F-FDG-PET and 99mTc-HMPAO-SPECT

may be explained by drug-induced uncoupling [42–44].

It might reveal that region-specific 18F-FDG uptake

change was caused by factors other than rCBF change,

such as hexokinase activity. In the 99mTc-HMPAO-

SPECT study, we performed blood sampling to calculate

the absolute value of CBF using blood input function. In

all regions of the brain, the absolute value of rCBF

decreased with fluoxetine administration. On the con-

trary, we used global mean scaling for SPM analysis to

detect detailed comparative rCBF changes. Comparative

values, such as ratio to whole brain or some reference

region, are convenient to detect local changes and easy to

perform, although absolute values are necessary to detect

global changes. It is important to use both simple

methods and rigorous methods as necessary, and our free-

moving system enables use of both methods.

The effect of anesthesia and stimulation on brain activity

is thought to be huge as described before. Some groups

tried to minimize such effect, namely using short-time

anesthesia or customized animal holders. For example,

Mizuma et al. [12] used a customized head holder with an

adapter attached to the skull and reduced the effect of

stress by habituation to the experimental device. They

performed 18F-FDG-PET in conscious animals and

obtained different images from those under anesthesia.

Imaging of conscious rats immobilized with a head holder

has an advantage that dynamic scanning can be per-

formed, because the rat is restrained in the scanner dur-

ing the whole experimental procedure. On the contrary,

the advantage of our method is that the rats can move

freely during the tracer uptake period. Actually the rats

might not be completely free in aspect of catheterization

and harness connection; however, we confirmed no

abnormal behavior or active movement was not observed

during the experiments. As there has been no gold

standard imaging method under normal physiological

conditions, further studies such as head-to-head com-

parison with other nonanesthesia method would be

required to characterize our method. In spite of the

future task, our free-moving methodology yet has

potentials to be combined with other experimental

methodologies, such as behavioral tasks, sensory stimu-

lations, electroencephalogram or microdialysis. It would

be useful to reproduce the condition of the pharmacolo-

gical study to detect brain activation in specific

conditions.

We used cannulation in the femoral vein and artery for

tracer injection and blood sampling in the present study.

Furthermore, we can easily combine additional cannula-

tion for subcutaneous and/or intraperitoneal injection

based on the same free-moving concept. In addition, this

free-moving methodology has the potential to be applied

for other tracers or evaluation of other drugs. Such

extendibility potential is one of the appealing aspects of

our methodology.

Fig. 3
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SPM images showing the effects of fluoxetine on 99mTc-HMPAO uptake
in the rat brain. The red region indicates the voxel clusters with
significant increases of 99mTc-HMPAO uptake compared with the
control groups. HMPAO, hexamethylpropylene amine oxime; SPM,
statistical parametric mapping.
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Conclusion
We successfully developed a free-moving PET and

SPECT imaging system to evaluate rat brain function in

conscious rats, with minimum effect of anesthesia and

tactual stimulation. Using this methodology, we demon-

strated that we could evaluate cerebral glucose metabo-

lism and rCBF change by drug administration. This

methodology has large extendibility such as a combina-

tion study with behavior study or other tracer application.

Thus, our platform is expected to be useful to investigate

drug effect and brain function.
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