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Lipopolysaccharide (LPS) is an endotoxin and bacterial cell wall component that is capable of inducing inflammation and
immunological activity. Muramyl dipeptide (MDP), the minimal essential structural unit responsible for the immunological
activity of peptidoglycans, is another inflammation-inducing molecule that is ubiquitously expressed by bacteria. Several studies
have shown that inflammation-related biological activities were synergistically induced by interactions between LPS and MDP.
MDP synergistically enhances production of proinflammatory cytokines that are induced by LPS exposure. Injection of MDP
induces lethal shock in mice challenged with LPS. LPS also induces osteoclast formation and pathological bone resorption; MDP
enhances LPS induction of both processes. Furthermore, MDP enhances the LPS-induced receptor activator of NF-κB ligand
(RANKL) expression and toll-like receptor 4 (TLR4) expression both in vivo and in vitro. Additionally, MDP enhances LPS-
induced mitogen-activated protein kinase (MAPK) signaling in stromal cells. Taken together, these findings suggest that MDP
plays an important role in LPS-induced biological activities. This review discusses the role of MDP in LPS-mediated biological
activities, primarily in relation to osteoclastogenesis.

1. Introduction

Lipopolysaccharide (LPS) is a major component of the cell
wall of Gram-negative bacteria and is an inflammation-
inducing endotoxin [1–6]. Exposure to LPS can induce pro-
inflammatory cytokines, such as tumor necrosis factor-
(TNF-) α and interleukin- (IL-) 1, from macrophages or
other cells in the affected area [7, 8]. Peptidoglycan (PGN)
is a major component of the cell membranes of both Gram-
negative and Gram-positive bacteria. Muramyl dipeptide
(MDP) is the minimal essential structural unit of PGN
responsible for its immunological activity. Coinjection of
MDP and LPS into mice enhances production of proinflam-
matory cytokines, compared with monoinjection of LPS [9].
Further, it has been reported that injection of MDP induces
lethal shock in mice challenged with LPS [10]. Furthermore,
LPS and MDP synergistically induce proinflammatory cyto-
kine expression in monocyte cell culture [11].

Osteoclast formation is dependent upon stimulation by
receptor activator of NF-κB ligand (RANKL) and macro-
phage colony-stimulating factor (M-CSF) [12]. Additionally,
it has been reported that TNF-α induces osteoclast formation
[13–16] and induces in vivo [17, 18]. These cytokines also con-
tribute to LPS-induced osteoclast formation and bone
destruction [1, 2, 19–23]; MDP has also been shown to
enhance LPS-induced osteoclast formation [24]. These find-
ings suggest that MDP might play an important role in LPS-
induced biological activities. Therefore, LPS and MDP are
targets of therapies against bacterially induced inflammation.

This review discusses the role of MDP in LPS-mediated
biological activities, primarily in relation toosteoclastogenesis.

2. Biological Effect of LPS and MDP

LPS localizes within the outer layer of the membrane and is
present on the cell surface of Gram-negative bacteria. LPS
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molecules are made up of three structural components: lipid
A, a hydrophobic lipid section, which is responsible for the
toxicity of the molecule; a hydrophilic polysaccharide chain
that serves as the core of the molecule; and a repeating hydro-
philic O-antigenic oligosaccharide side chain that is specific
to each bacterial species [25, 26].

LPS induces its action through interactions with toll-like
receptor 4 (TLR4) on the cell membrane of a target host cell.
First, LPS binds to the serum protein LPS-binding protein
(LBP) [27, 28]; then, LPS is transferred to CD14 by the
catalytic activity of LBP [29, 30]. Although this LPS-CD14
complex binds to TLR4, the MD-2 molecule is essential for
the recognition of LPS by TLR4 [31]. Thus, LPS ultimately
binds a CD14/TLR4/MD-2 receptor complex; this is present
in many cell types, including monocytes, dendritic cells, mac-
rophages, and B cells. When stimulated by LPS, these cells
produce inflammatory cytokines, nitric oxide, and prosta-
glandin (PGE) [32–36]. Through this mechanism, LPS
induces production of many local factors, including TNF-α
and IL-1, from macrophages and other cells involved in
mediating the inflammatory response within tissues [37, 38].

PGN, another major component of the bacterial cell
membrane, is a crystal lattice structure formed by the combi-
nation of linear chains of two alternating amino sugars, N-
acetylglucosamine (GlcNAc) and N-acetylmuramic acid
(MurNAc) [39, 40]. MDP is the minimal essential structural
unit responsible for the immunological activity of a wide
variety of PGNs (Figure 1). Nucleotide-binding oligomeriza-
tion domain (NOD) 1 and NOD2 are involved in the recog-
nition of PGN in the cytosol of the cells. MDP is recognized
via NOD2 [41, 42]. MDP is also the most basic structure
required to maintain the efficacy of Freund’s complete adju-
vant (FCA). FCA induces both humoral and cellular immune
responses. However, the toxicity of FCA is very strong, which
makes it difficult to use for clinical applications. Therefore,
investigators determined that the smallest biologically active
component in FCA was tripeptide-monosaccharide MDP
[43] and that this compound maintains adjuvant activity.
Thus, MDP replaced FCA in protocols requiring the induc-
tion of both humoral and cellular activities. However, MDP

cannot induce immunoglobulin production when it is the
sole adjuvant [43–45].

When MDP is used as the sole adjuvant, it enhances the
expression of cell adhesion molecules and antigen presenta-
tion. Therefore, phagocytic activity, antimicrobial activity,
and antibody-mediated cytotoxicity are enhanced [46–51].
Additionally, MDP induces immune responses through
increased cytokine production, enhancing the differentiation
and proliferation of T lymphocytes and subsequent protec-
tion against foreign intruders [52–55]. Therefore, MDP
serves as an effective adjuvant and may be used to boost the
potency of drugs and vaccines.

It has been reported that preexposure to MDP increases
immune responses to later challenges. Notably, MDP
induced expression of TNF-α when injected into mice [9];
in subsequent studies, MDP-induced production of TNF-α
resulted in lethal shock in mice that were challenged with
LPS [10]. In addition, MDP has been shown to synergistically
enhance production of proinflammatory cytokines elicited by
LPS stimulation of human monocyte cells [11]. Several stud-
ies have reported this synergistic effect when MDP is com-
bined with LPS; it was observed in studies of primary cells,
such as peripheral blood mononuclear cells (PBMCs), puri-
fied monocytes, and various cell lines in vitro [11, 56–61].

In other investigations, MDP was reported to enhance
the protective response of interferon- (IFN-) α and IFN-β
against encephalomyocarditis virus infection [62]. MDP
conjugated to PolyG (a 10-mer polyguanylic acid) enhanced
the secretion of IL-6, IL-1, TNF-α, and nitric oxide; this
resulted in the activation of macrophages with tumoricidal
activity [63, 64]. Further, exposure to paclitaxel-conjugated
MDP increased antitumor activity [65] and enhanced the
expression of TNF-α and IL-12 by mouse peritoneal
macrophages [66].

MDP and its derivatives, such as murabutide (MB), have
potential for a variety of clinical applications. MB enhances
resistance against bacterial and viral infections, such as infec-
tion by human immunodeficiency virus (HIV) [67–72]. MB
stimulation inhibited HIV replication in macrophages via
NOD2 signaling [73]. Human PBMCs that were stimulated
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Figure 1: Schematic structure of peptidoglycan and MDP. PGN, a major component of the bacterial cell membrane, is a crystal lattice
structure formed by the combination of linear chains of two alternating amino sugars, GlcNAc and MurNAc. MDP consists of MurNAc
and two amino acids, L-Ala and D-Glu. M: MurNAc; G: GluNAc.
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in vitro with IL-2 and murabutide showed synergistic induc-
tion of IFN-γ expression [74]. Combined administration of
MB and IL-2 into Meth-A sarcoma-bearing mice resulted
in significant tumor inhibition and complete tumor regres-
sion in 70% of treated mice [74].

3. The Role of MDP and LPS in Osteoclast
Formation and Bone Remodeling

Osteoclasts develop from myeloid lineage cells; they function
to resorb bone and control bone remodeling [12]. In osteoly-
tic diseases, both the formation and activity of osteoclasts are
exceptionally stimulated [75]. The osteoclast is considered
central to diseases involving bone erosion, such as rheuma-
toid arthritis [75], periprosthetic bone loss [76], postmeno-
pausal osteoporosis [77, 78], and periodontal disease [1, 79].

LPS induces production of proinflammatory cytokines,
such as TNF-α and IL-1, from macrophages and other cells
in affected tissues [7]. The production of TNF-α and IL-1 is
associated with LPS-induced osteoclast formation and bone
destruction in vivo and in vitro [1, 2, 19–22]. Further, LPS
stimulates osteoblasts to produce RANKL [80].

In contrast, a variety of cytokines, including IL-4, IL-10,
IL-12, IL-13, IL-18, and IFN-γ, are able to inhibit osteoclast
formation [81]. Furthermore, some cytokines, such as IL-4,
have direct inhibitory effects on osteoclast formation by
modifying the effects of RANKL and TNF-α on osteoclast
precursor cells [82–85].

Several papers have reported that LPS-induced osteoclast
formation in vivo is inhibited by exposure to a variety of cyto-
kines, such as IL-4, IFN-γ, IL-12, and IL-37. IL-4 and IFN-γ
were found to directly inhibit LPS-induced differentiation of
osteoclast precursors into osteoclasts [86]. In vivo IL-12
stimulation inhibits LPS-induced osteoclastogenesis. mRNA
levels of both Fas and FasL increased in mice that were
coadministered LPS and IL-12; this might lead to apopto-
tic changes in osteoclastogenesis-related cells through Fas/
FasL interactions [87]. In vivo IL-37 stimulation inhibited
LPS-induced osteoclast formation and bone resorption
via inhibition of LPS-induced osteoclast-related cytokines.
However, IL-37 might act indirectly to inhibit osteoclast
formation by osteoclast precursor cells and RANKL
expression by stromal cells [88].

MDP stimulation can enhance osteoclast formation that
is initially induced by LPS, IL-1α, or TNF-α, but not by
1α,25-dihydroxy-vitamin-D3 (1α,25(OH)2D3) or PGE2.
Furthermore, MDP upregulated RANKL expression in
osteoblasts treated with LPS or TNF-α, but not with
1α,25(OH)2D3 [89]. However, MDP alone cannot induce
osteoclast formation in cocultures of primary murine osteo-
blasts and hematopoietic cells.

The in vitro effects of PGN on LPS-induced osteoclast
formation and bone resorption have been investigated. Fur-
thermore, during a set of in vivo studies, PGN significantly
induced osteoclast formation and bone resorption in mice
coinjected with LPS [90]. Since MDP is the minimal essential
structural unit responsible for the immunological activity of
PGN, we suspect that MDP plays an important role in the

ability of PGN to enhance LPS-induced osteoclast formation
and bone resorption.

Recently, the effect of MDP in LPS-induced osteoclast
formation and bone resorption has been reported. In that
study, LPS was administered as a monoinjection, or as a coin-
jection withMDP, into the supracalvariae of mice. Compared
with mice that received a monoinjection of LPS, mice that
received a coinjection of LPS and MDP exhibited an increase
in the following parameters: number of osteoclasts, levels of
cathepsin K mRNA and tartrate-resistant acid phosphatase
(TRAP) mRNA, ratio of bone destruction area and levels of
TRAP 5b (TRACP5b), and C-terminal telopeptide fragments
of type I collagen (a marker of bone resorption). In contrast,
exposure toMDP alone had no effect on osteoclastogenesis in
PTH-stimulated mice. These results suggest that MDP
enhances LPS-induced osteoclast formation and bone
resorption [24].

LPS has been shown to enhance the production and
secretion of RANKL by osteoblasts [80]. A later in vitro study
of osteoblasts that were cultured with LPS alone, or with a
combination of LPS and MDP, indicated that MDP stimula-
tion enhances LPS-induced expression of RANKL mRNA in
osteoblasts [89]. Another study showed that MDP
enhances LPS-induced expression of RANKL mRNA in
stromal cells [24], which supported previous findings.
However, these results indicate that MDP alone cannot
induce RANKL expression, either in vitro or in vivo, and
that MDP is only able to enhance the effects of LPS expo-
sure (e.g., RANKL expression). In contrast, MDP cannot
enhance PTH-induced osteoclast formation and bone
resorption, suggesting that MDP affects LPS signaling but
not PTH-induced signaling [24].

LPS is recognized by TLR4 on the host cell surface
[91–93]. TLR4 signaling generates proinflammatory host
defense processes [94–97]. During osteoclast formation,
stromal cells, such as osteoblasts, express RANKL. It has been
reported that LPS induces an increase in TLR4 expression in
stromal cells. Furthermore, MDP has been shown to enhance
LPS-induced upregulation of TLR4 expression in stromal
cells. However, PTH stimulation does not enhance TLR4
expression, suggesting that MDP enhances LPS signaling by
increasing TLR4 expression [24]. Taken together, these
results indicate that MDP enhances LPS-induced RANKL
expression and TLR4 expression in stromal cells.

Costimulation of osteoblasts, using a combination of
NOD1 or NOD2 ligands and TLR2 or TLR4 ligands, has been
reported to enhance the expression of cyclooxygenase-
(COX-) 2, PGE2, IL-1β, IL-6, and IL-8 through an increase
in TRAF6 expression [98]. MDP stimulation synergistically
increased RANKL expression in osteoblasts that were costi-
mulated with LPS, IL-1α, and TNF-α; this costimulation
enhances osteoclast formation [89]. LPS has been reported
to induce the phosphorylation of MAPKs (ERK, P38, and
JNK) in osteoblasts [99, 100]. MDP has also been reported
to enhance LPS-stimulated ERK1/2 phosphorylation in
osteoblasts [89]. Furthermore, although MDP alone cannot
activate MAPKs, MDP enhances LPS-induced MAPK phos-
phorylation in stromal cells. Thus, MDP appears to enhance
LPS-related signal transduction.
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LPS exposure induces TNF-α expression in macrophages
and other immune cells; MDP exposure enhances this LPS-
induced TNF-α expression. TNF-α stimulation increases
RANKL expression by stromal cells [18, 101–103]. There-
fore, LPS-induced TNF-α, which has been further enhanced
by MDP, may greatly increase RANKL expression by stromal
cells. Furthermore, LPS acts to induce RANKL expression
in stromal cells, and MDP also enhances this LPS-
induced RANKL expression. TNF-α promotes osteoclast for-
mation by osteoclast precursors by synergizing with RANKL
[104, 105] at the signal transduction level [15, 18, 104–106].
This suggests that TNF-α synergistically increases RANKL-
induced osteoclast formation. Therefore, LPS-induced
TNF-α production is enhanced by MDP and synergistically
interacts with RANKL, leading to a large induction of
osteoclastogenesis (Figure 2). Thus, the role of MDP in
LPS-induced osteoclast formation in vivo may be to strongly
promote the induction of this process.

4. Conclusions

LPS plays a key role in the induction of important biological
activities such as inflammation. LPS induces osteoclast for-
mation during inflammatory processes, such as periodontal
disease. MDP exposure enhances LPS-induced biological
activities, including osteoclast formation and bone destruc-
tion, through a mechanism that is gradually becoming clear.
Therefore, targeted therapies against LPS and MDP could
serve an important role in management of inflammatory
disease processes. Further studies are required to fully

understand the mechanisms of LPS- and MDP-mediated
biological activities, especially osteoclast formation.
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