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Dietary organosulfur
compounds: Emerging players
in the regulation of bone
homeostasis by plant-
derived molecules

Laura Gambari, Brunella Grigolo and Francesco Grassi*

Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
The progressive decline of bone mass and the deterioration of bone

microarchitecture are hallmarks of the bone aging. The resulting increase in

bone fragility is the leading cause of bone fractures, a major cause of disability.

As the frontline pharmacological treatments for osteoporosis suffer from low

patients’ adherence and occasional side effects, the importance of diet

regimens for the prevention of excessive bone fragility has been increasingly

recognized. Indeed, certain diet components have been already associated to a

reduced fracture risk. Organosulfur compounds are a broad class of molecules

containing sulfur. Among them, several molecules of potential therapeutic

interest are found in edible plants belonging to the Allium and Brassica

botanical genera. Polysulfides derived from Alliaceae and isothiocyanates

derived from Brassicaceae hold remarkable nutraceutical potential as anti-

inflammatory, antioxidants, vasorelaxant and hypolipemic. Some of these

effects are linked to the ability to release the gasotrasmitter hydrogen sulfide

(H2S). Recent preclinical studies have investigated the effect of organosulfur

compounds in bone wasting and metabolic bone diseases, revealing a strong

potential to preserve skeletal health by exerting cytoprotection and stimulating

the bone forming activity by osteoblasts and attenuating bone resorption by

osteoclasts. This review is intended for revising evidence from preclinical and

epidemiological studies on the skeletal effects of organosulfur molecules of

dietary origin, with emphasis on the direct regulation of bone cells by plant-

derived polysulfides, glucosinolates and isothiocyanates. Moreover, we

highlight the potential molecular mechanisms underlying the biological role

of these compounds and revise the importance of the so-called ‘H2S-system’

on the regulation of bone homeostasis.

KEYWORDS

organosulfur compounds (OSCs), osteoporosis, hydrogen sulfide (H2S), Brassicaceae,
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Highlights

A literature search was conducted using MEDLINE

database. Relevant pre-clinical and clinical studies were

selected using a combination of keywords including bone, diet

and/or organosulfur compounds, Allium, Brassicaceae, alliin,

allicin, garlic, ajoene, diallyl trisulfide, diallyl disulfide, S-

allylcysteine, diallyl sulfide, glucosinolate, thiosulfinate,

sulforaphane, broccoli, methyl sulfide, isothiocyanates.

Additional studies were identified by an extensive manual

search of bibliographic references in original papers and

reviews. Abstracts and non-English papers were not included.

This study selected a total of in vitro studies (10 Alliaceae, 9

Brassicaceae); in vivo studies (17 Alliaceae, 11 Brassicaceae) and

population-based studies (4 Alliaceae, 1 Brassicaceae).
Introduction

Osteoporosis (OP) is a chronic metabolic bone disease

characterized by the deterioration of bone microarchitecture

and a reduction in bone mass, leading to decreased bone

strength and increased risk of bone fracture (1) .

Approximately 6 % of men and 21 % of women aged 50–

84 years are diagnosed with OP and the number of fragility

fractures in Europe has increased from 3.1 to nearly 4.3 million

in 20 years since year 2000 (2); due to the strong correlation with

the ageing of the population, the prevalence of OP is projected to

further increase over the next decades (3).

At the bone tissue level, OP is characterized by increased

bone porosity which results from the loss of balance between

bone formation and bone resorption as aging, disuse,

inflammatory diseases, hormonal imbalance or the effect of

glucocorticoids impair the ability of osteoblast to keep up with

the pace of bone resorption by the osteoclasts (4). Importantly,

aging is associated with a decreased number of osteoprogenitor

cells, inhibited proliferation, decreased mineralizing capacity,

and a shift of osteogenic differentiation toward adipogenesis in

senescent mesenchymal stromal cells (MSCs) (5–7).

Pharmacotherapy helps patients to prevent the occurrence

or recurrence of fragility fractures and to manage symptoms.

However, drugs are mostly used in patients who already show

severe bone loss, and the existence of side effects, although very

limited in prevalence, often leads to low patient’s adherence to

anti-OP drugs (8, 9). In this context, non-pharmacological

strategies aimed at preventing excessive bone loss hold

relevance given that OP remains in most cases a subclinical

condition until fracture occurs.

One safe way to prevent bone loss and reduce the risk of

bone fracture is to positively impact bone mass through healthy

lifestyles and nutrition (10, 11). In particular, the importance of

defining specific diet regimens for the prevention of excessive
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bone fragility has been increasingly recognized (12–15).

Adherence to Mediterranean diet lowered hip fracture risk

(16) and certain micronutrients contained in fruit and

vegetables contributed to delay bone fragility in ageing and to

decrease the incidence of bone fractures (17–20). Moreover, a

dietary pattern consisting of a high consumption of fruits,

vegetables and seafood, has been shown to be directly

associated with increased bone mineral density (BMD),

independent of dietary calcium intake (21, 22).

Phytochemicals are defined as the chemical bioactive

components of nutrient plants that may provide desirable

health benefits beyond basic nutrition to reduce the risk of

major chronic diseases. They include several classes of

compounds: terpenoids, polyphenols, alkaloids, organosulfur

compounds (OSCs) and phytosterols (23). Concerning OSCs,

much of the research on their health benefits has been in the

areas of cardiovascular diseases, cancer and neurological

disorders (24–26). However, a growing body of scientific

evidence supports the idea that dietary OSCs may play an

important role for skeletal health by favoring bone anabolism,

inhibiting bone catabolism, and preventing pathological

bone loss.

This manuscript intends to provide an up-to-date review of

the current evidence from preclinical (both in vitro and in vivo)

and clinical studies on the skeletal effects of OSCs of dietary

origin, discussing the chemical nature, the mechanism of action

and the potential role of hydrogen sulfide (H2S) in their

biological action. A specific focus is given to the pair

glucoraphanin (GRA)-sulforaphane (SFN) as a paradigm of

OSCs-H2S system in bone tissue. Finally, implications and

future challenges in the field will be discussed considering the

potential translation of OSCs-containing dietary components to

clinical studies.
Dietary sources and chemical nature
of OSCs

Naturally derived OSCs are a broad class of molecules

containing sulfur, predominantly found in edible plants

belonging to the Allium and Brassica (also known as cruciferous

vegetables) genera. These plants have been widely used

throughout the centuries either as vegetables for culinary

purposes as well as in folk and traditional medicine, given their

renowned medicinal properties and therapeutic effects. Allium

genus consists of more than 600 species which are among the

oldest cultivated vegetables used as food and still represent one of

the main components of the Mediterranean diet (27). Brassica

genus consists of 37 species; among them, several species are

known for their nutritional and therapeutic properties (28, 29). A

partial list of edible plants belonging to the Allium and Brassica

genera, and their main content in OSCs, is reported in Table 1.
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In Allium, over half of the total sulfur content within the

mature garlic bulb is found in the form of S-alk(en)yl cysteine

sulfoxides (ASCOs) (69), non-protein sulfur amino acids which

are converted to their respective thiosulfinates or propanethial-

S-oxide upon tissue damage (70).

The synthesis of ASCOs in Allium species starts with the

transformation of g-glutamyl peptides (such as g-L-glutamyl-S-

methyl-L-cysteine) into sulfur-containing g-glutamyl-S-alk(en)

yl-cysteines such as g-glutamyl-S-methyl-cysteines, g-glutamyl-

S-allyl-cysteine, g-glutamyl-propenyl-L-cysteine sulfoxide

(PeCSO). These are further deglutamylated and S-oxygenated

to yield S-alk(en)yl-L-cysteine sulfoxides (71, 72). These

reactions are catalyzed by g-glutamyl transpeptidase, L-

glutaminases, and oxidase in the cytoplasm of plant cells. The

intact garlic bulbs contain alliin, g-glutamyl-S-allyl-L-cysteine

(GSAC), methiin, S-trans-1-propenyl-L-cysteine sulfoxide, S-2-

carboxypropylglutathione, S-allylcysteine (SAC) (37).

When the bulbs are cut, crushed, chopped or chewed, the

enzyme alliinase (a vacuolar lyase) is released from vacuoles and

catalyzes the formation of sulfenic acids from L-cysteine sulfoxides:

S-allyl-L-cysteine sulfoxide (alliin); S-methyl-L-cysteine sulfoxide

(methiin); S-propyl-L-cysteine sulfoxide (propiin); S-trans-1-

propenyl-L-cysteine sulfoxide (isoallin) (71, 72). Sulfenic acids

spontaneously react with each other to form unstable compounds

called thiosulfinates (69): eg. alliin is converted into allicin (alkenyl

alkene thiosulfinate - diallyl thiosulfinate). Allicin immediately

decomposes into allyl sulfide (AS), diallyl disulfide (DADS),

diallyl trisulfide (DATS), diallyl tetrasulfide, dipropyl disulfide

(DPDS), ajoenes, and vinyldithiins (72). The direct catabolism of

g-glutamylcysteine by g-glutamyltranspeptidase leads to the

formation of SAC and S-allylmercaptocysteine (SAMC). Allicin

can react with glutathione and L-cysteine to produce S-

allylmercaptoglutathione (SAMG) and SAMC, respectively (69, 72).

Among Allium, the most common ASCOs are alliin,

methiin, propiin and isoalliin (70, 73, 74). However, they are

differentially expressed in specific edible plants. The most

abundant in garlic is alliin; in onion isoalliin, methiin, propiin

are predominantly detected.

In Brassica vegetables two different kinds of OSCs are

present: methiin, mainly known from Allium vegetables, and

glucosinolates (S-b-thioglucoside N-hydroxhysulfates, GLS).

Methiin is metabolized to (+)-S-alk(en)yl-L-cysteine sulfoxides

which can degrade to volatile organosulfur compounds (VOSCs)

such as S-methyl methane thiosulfinate, which is converted to

dimethyl trisulfide and dimethyl disulfide.

GLS are sulfur-based compounds that consist of b-
thioglycoside N-hydroxysulfates with various side chains and a

sulfur-linked b-D-glycopyranose moiety. A very different profile

of GLS may be found in different Brassica extracts (75). Natural

isothiocyanates (ITCs) are bioactive OSCs derived from the

hydrolysis of GLS by the enzyme myrosinase. In plant cells,

GLS are physically separated from myrosinases and come in

contact only upon tissue damage or crushing. Importantly,
Frontiers in Endocrinology 03
myrosinase is not expressed by mammalian cells; however, a

small proportion is converted in the mouth by action of plant

myrosinase released by chewing (76); moreover, the gut

microbiota is entailed with myrosinase activity and constitutes

the major site in humans where GLS are hydrolyzes to ITCs (77).

While GLS are chemically stable and are characterized by a

relatively long half-life, ITCs are highly reactive and short-lived

in vivo (75, 78).
Effect of OSCs on bone tissue:
Preclinical evidence

The effect of OSCs in bone tissue has been investigated in

several preclinical models, revealing a strong potential to

preserve skeletal health by stimulating the bone forming

activity of osteoblasts and inhibiting the bone resorbing

activity of osteoclasts, two of the key processes of bone

remodeling (79).

Figures 1, 2 provide a graphical summary, respectively, of the

main biological processes and molecular targets regulated by

OSCs within MSCs/osteoblasts and monocytes/osteoclasts. A

detailed description of these mechanisms is provided in the

next paragraphs.

Tables 2–5 summarize data from preclinical studies showing

an effect of extracts rich in OSCs or individual OSCs molecules

derived from Allium (Tables 2, 3) and Brassica vegetables

(Tables 4, 5).

Importantly, while data obtained from studies on purified

molecules (labeled with * in the tables) clearly attest to the

effectiveness of individual OSCs, the effect of OSCs-rich extracts

may result from the combined action of other phytochemicals

contained in the extracts. Indeed, Allium species contains

polyphenols, flavonoids, flavanols, anthocyanins, tannins,

ascorbic acid, saponins and fructans (109–111); Brassica

species contains ascorbic acid, phenolics, carotenoids, terpenes,

phytoalexins and alkaloids (29, 112).
Regulation of osteogenesis and bone
formation

Osteoblasts, the bone forming cells, regulate bone homeostasis

by synthesizing a wide variety of extracellular protein of bone

matrix. They differentiate from MSCs through the osteogenic

differentiation process which is regulated by an orchestrated

activation of several pathways. The master regulator of

osteogenic differentiation is runt-related transcription factor 2

(RUNX-2), which is expressed in the early stages of differentiation

and is at the intersection of several signaling pathways among

which growth hormone-janus Kinase 2 (GH-JAK2), bone

morphogenetic protein-SMAD (BMP-SMAD), canonical

Wingless/Integrated (Wnt) and Notch signaling (113, 114).
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TABLE 1 Most common OSCs found in edible Allium and Brassica vegetables.

Edible plants Genus Main OSCs REF

Garlic (Allium sativum L.) Allium • g-glutamyl-S-allyl-L-cysteine
• allicin
• alliin
• methiin
• S-trans-1-propenylcysteine sulfoxide
• S-2-carboxypro-pylglutathione
• S-allylcysteine
• ajoene
• vinyldithiins
• diallyl sulfide
• diallyl disulfide
• diallyl trisulfide

• S-allylcysteine
• S-allylmercaptocysteine
• S-allylmercaptoglutathione
• methyl allyl disulfide
• methyl allyl trisulfide
• S-allylmercaptocysteine
• dipropyl disulfide
• dipropyl trisulfide
• 1-propenylpropyl disulfide
• dimethyl disulfide
• allyl mercaptan
• propyl propane thiosulfonate

(30–
39)

Onion (Allium cepa L.) Allium • isoalliin
• methiin
• propiin
• diallyl disulfide
• diallyl trisulfide
• g-L-glutamyl-trans-S-1-propenyl-L-cysteine sulfoxide

• onionin A
• cycloalliin
• S-methyl cysteine sulfoxide
• S-propenyl cysteine sulfoxide
• S-alk(en)yl cysteine sulfoxides
• dipropyl disulfide
• cycloalliin

(40–
45)

Welsh onion (Allium fistulosum L.) Allium • g-glutamyl-S-allyl-L-cysteine
• allicin

• alliin
• diallyl disulfide

(46,
47)

Hooker’s Onion (Allium hookeri) Allium • alliin
• methiin

• cycloalliin
• S-propyl-L-cysteine sulfoxide

(48–
50)

Long-stamen chive (Allium
macrostemon)

Allium • alliin
• methyl alliin

(51)

Leek (Allium ampeloprasum var.
porrum)

Allium • methiin
• isoalliin

(52)

Shallot (Allium ascalonicum) Allium • isoalliin
• methiin

• propiin
• g-glutamyl-S-alk(en)ylcysteines

(53)

Turnip (Brassica rapa L.) Brassica • glucoraphanin & sulforaphane
• gluconapin & 3-butenyl isothiocyanate
• glucobrassicanapin & 4-pentenyl isothiocyanate/gluconapoleiferin
• gluconasturtiin & 2-phenethyl isothiocyanate
• goitrin
• berteroin

• progoitrin
• glucoalyssin
• glucoerucin
• glucobrassicin & 4-
hydroxyglucobrassicin/
4-methoxyglucobrassicin
• glucoberteroin
• neoglucobrassicin

(54,
55)

Broccoli (Brassica oleracea var.
italica L.)

Brassica • sulforaphane
• glucoiberin
• 3-hydroxy,4(a-L-rhamnopyranosyloxy) benzyl glucosinolate

(56–
58)

Water cress (Lepidum sativum L.) Brassica • glucotropaeolin (59)

Cabbages (Brassica oleracea var.
capitata L.)

Brassica • glucoraphanin
• progoitrin
• sinigrin
• gluconapin
• glucoerucin

• glucobrassicin & 4-
hydroxyglucobrassicin/• 4-
methoxyglucobrassicin
• neoglucobrassicin
• glucoiberin

(60,
61)

Rocket (Eruca sativa) Brassica • glucoraphanin
• glucoraphenin
• glucosativin
• glucoerucin
• 4-hydroxyglucobrassicin
• glucotropaeolin

• glucolepiidin
• glucoiberverin
• glucoalyssin
• diglucothiobeinin
• glucoibarin

(62)

Kohlrabi (Brassica oleracea var.
gongylodes)

Brassica • glucoraphanin & sulforaphane
• glucoerucin & methylthiobutyl isothiocyanate
• benzyl isothiocyanate
• gluconasturtiin & phenylethyl isothiocyanate

• sinigrin & allyl isothiocyanate
• glucobrassicin &
hydroxyglucobrassicin
• neoglucobrassicin
• methiin

(63,
64)

(Continued)
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Among the genes targeted by RUNX-2 are osteocalcin (OCN),

collagen I (Col I), bone sialoprotein (BSP), osteopontin (OPN),

alkaline phosphatase (ALP). BSP, OPN and ALP are correlated to

matrix mineralization; Coll I and OCN are among the major

components of bone matrix. Wnts-b-catenin signal activates

osteogenic target genes such as distal-less homeobox 5 (Dlx5)

and osterix (Osx) (115) and suppresses the transcription of

adipogenic transcription factors such as peroxisome

proliferator-activated receptor-g (PPAR-g) (116). SMAD family

number 1 (SMAD-1) is a critical immediate downstreammediator

of BMP receptor transduction (117). Among downstream targets

of canonical Wnt and BMP signaling is WNT1-inducible

signaling pathway protein 1 (WISP-1), which is involved in the

positive regulation of osteogenesis and negative regulation of

adipogenesis (118). Interestingly, the expression of H2S

generating enzymes, cystathionine-b-synthase (CBS) and

cystathionine-g-lyase (CSE), was found to be transcriptionally

up-regulated during osteogenesis and to correlate with the

biosynthesis of mineral matrix (119), thus suggesting a role for

endogenous H2S in osteogenic differentiation. Osteogenic

differentiation is associated to increased ALP activity and

mineralization in vitro and increased BMD in vivo. Osteoblast

finally differentiate toward osteocytes, multifunctional bone cells

that are embedded in mineralized bone matrix. Osteocytes act as

orchestrators of bone remodeling, through regulation of both

osteoclast and osteoblast activity; as regulators of phosphate

metabolism and calcium availability, by functioning as an

endocrine cell; as mechanosensory cells (120). Key factors

produced by osteocytes are sclerostin (a negative regulator of

bone mass), FGF-23 (a regulator of phosphate metabolism), and

the key regulator of osteoclast differentiation receptor activator of

nuclear factor kb ligand (RANKL), also produced by osteoblasts

and MSCs (120, 121).

Most studies investigating OSCs extracts focused on a

commonly used human osteoblastic model, the human
Frontiers in Endocrinology 05
osteosarcoma cell line (MG-63 cells). They showed increased

cell proliferation and increased osteogenesis/mineralization by

Allium Hookeri roots treatments (48); increased osteogenesis by

Allium fistulosum (80) and Brassica Rapa L. (Jeong); while no

effect on proliferation and differentiation was shown by

treatment with water solution of onion crude powder (81).

However, MG-63 cells are osteoblasts derived from

osteosarcoma, a malignant bone tumors, thus are not fully

representative of physiological osteoblasts (122). Increased

cells proliferation by Allium genus was also shown by ginger

and garlic extracts released by 3D-printed calcium phosphate

scaffolds on human fetal osteoblast cells (82); increased

osteogenesis by Allium fistulosum was also shown in the

mouse C57BL/6 osteoblastic calvaria cell line (MC3T3-E1)

(80). Up to date no studies on primary cultures of human

MSCs have been performed with extracts derived from

Alliaceae or Brassicaceae.

Treatment with Alliaceae extracts improved bone formation

in normal control rats (41, 48, 88) and mitigated the bone loss

due to several pathological conditions among which

osteoporosis (47, 80, 94). Similarly, extracts from Brassicaceae

induced bone formation in control rats (54) and prevented bone

loss in several models of osteoporosis (59, 99, 106–108).

Interestingly, treatment with Lepidium sativum resulted in

improved fracture healing (28, 123).

Notably, several studies focused on purified OSCs

molecules , revea l ing a specific e ffec t of OSCs on

prol i ferat ion, osteogenic di fferent iat ion, and bone

formation. Behera et al. showed increased proliferation,

ALP activity and mineralization in murine MSCs derived

from femur bone marrow (BMMSCs) upon allyl sulfide

stimulation, with a mechanism implicating increased

RUNX-2 and OCN express ion (83) . Thaler e t a l .

demonstrated increased mineralization in mouse MSCs and

in an ex vivo culture of calvariae explants treated with SFN
TABLE 1 Continued

Edible plants Genus Main OSCs REF

Radish (Raphanus sativus) Brassica • 3-butenyl isothiocyanate
• glucobrassicin/4-methoxyglucobrassicin/4- hydroxyglucobrassicin/
indole-3-carbinol

• glucodehydroerucin
• glucoraphasatin
• glucoraphenin/sulforaphene
• sulforaphane

(65)

Tuscan black kale (Brassica oleracea
L.)

Brassica • glucoerucin
• glucobrassicin
• glucoraphanin

(66)

Rapes (Brassica napus L.) Brassica • glucoalyssin
• glucobrassicin & hydroxyglucobrassicin
• neoglucobrassicin

• gluconasturtin
• gluconapin
• glucobrassicanapin
• progoitrin

(61,
67)

Arugula (Eruca Sativa Mill.) Brassica • glucoraphanin & sulforaphane • glucoerucin & erucin (68)
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FIGURE 1

Regulation of bone remodeling processes by purified OSCs molecules. Bone remodeling is governed by the balance between bone formation
by the osteoblasts (left side) and bone erosion by the osteoclasts (right side). Ancillary processes are shown. OSCs specifically regulate the
following processes: promote cells proliferation and viability of mesenchymal stromal cells (1) while inhibit the proliferation and viability of
monocytes (5); promote the osteogenic differentiation (2) and bone formation (3); inhibit at different stages osteoclast differentiation (6) and
reduce bone erosion (7); inhibit the viability of osteocytes (4). Among the OSCs which modulate bone processes are allicin, allyl sulfide (AS),
sulforaphane (SFN), glucoraphanin (GRA), diallyl sulfide (DADS). See the text for details.
FIGURE 2

Molecular targets of purified OSCs molecules in bone cells. Osteoblastogenesis and osteoclastogenesis are the two key processes of bone
remodeling and are regulated by a tightly organized activation of specific molecular targets. This figure shows a schematic representation of a
mesenchymal stromal cells/osteoblast and a monocyte/osteoclast to highlight the specific molecular targets regulated by OSCs at different
stages of differentiation from precursors to fully differentiated cells. Among the OSCs which drives the modulation of specific molecular targets
are allicin, allyl sulfide (AS), sulforaphane (SFN), glucoraphanin (GRA) and diallyl sulfide (DADS). The overall effects are an activation of osteogenic
differentiation in mesenchymal stromal cells and both a direct and indirect inhibition of osteoclast differentiation. Follows a list of the molecular
targets shown in the figure. Markers of osteoblastogenesis: osteocalcin (OCN), runt-related transcription factor 2 (RUNX-2), alkaline
phosphatase (ALP), WNT1-inducible-signaling pathway protein 1 (WISP-1), bone sialoprotein (BSP), cystathionine-b-synthase (CBS), SMAD family
member 1 (SMAD-1). Markers of regulators of osteoclastogenesis produced by mesenchymal stromal cells or osteoblasts: receptor activator of
nuclear factor-kB ligand (RANKL), osteoprotegerin (OPG). Marker of cells survival and stress response: FAS, caspase 3/7, nuclear factor
erythroid-derived 2-related factor 2 (NRF2), NAD(P)H: quinone oxidoreductase 1 (NQO1), heme oxygenase-1 (HO1), glutamate cysteine ligase
catalytic subunit (GCLC), glutamate-cysteine ligase modifier subunit (GCLM), peroxiredoxin 1 (PRDX-1). Markers of osteoclasts: nuclear factor of
activated T-cells cytoplasmic 1 (NFATc1), cathepsin K (CTSK), receptor activator of NF-KB (RANK), osteoclast stimulatory transmembrane protein
(OC-STAMP), dendritic cell specific transmembrane protein (DC-STAMP), osteoclasts-specific activating receptor (OSCAR), tartrate-resistant acid
phosphatase (TRAP), calcitonin receptor (CTR), c-fos, tartrate-resistant acid phosphatase 5b (TRAP-5b), matrix metallopeptidase 9 (MMP-9). See
the text for details.
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TABLE 2 Alliaceae-derived OSCs: effects on in vitro models of osteoclastogenesis and osteoblastogenesis.

Molecule
tested

Experimental in
vitro model

Concentration Main effect Specific outcomes Authors Ref

Hot-water extract
and ethanol
extracts of Allium
hookeri roots

MG-63 cells line 0.1-0.5-1-5-10-25-50-100 mg/ml Increased
proliferation and
osteogenesis

• ↑ viability/proliferation;
no cytotoxicity (WST-8
assay)
• ↑ ALP activity (pNPP
detection)
• ↑ collagen (Sirius red
assay)
• ↑ mineralization
(Alizarin Red staining)

Park et al. (48)

Aqueous and
ethanolic extracts
of Allium
fistulosum

MG-63 cell line 1-4-8-10-16-32-50-63-125 mg/ml Increased
osteogenesis

• no cytotoxicity (MTT
assay)
• ↑ ALP activity (ALP
assay kit)

Ryuk et al. (80)

Water solution of
onion crude
powder

MG-63 cell line 300 mg/ml No effect on
proliferation or
differentiation

• ALP activity similar to
control cells (ALP assay
kit)
• Col I on cell lysate was
similar to control cells
(4-
hydroxyproline
quantification)
• OCN, OPN in cells
surnatants similar to
control cells (ELISA)

Tang et al. (81)

Aqueous and
ethanolic extracts
of Allium
fistulosum

MC3T3-E1 cell line 1-4-8-10-16-32-50-63-125 mg/ml Increased
proliferation and
osteogenesis

Ethanolic extracts:
• ↑ viability/proliferation;
no cytotoxicity (MTT
assay)
• ↑ALP activity (ALP
assay kit)
Water extracts:
• no cytotoxicity (MTT
assay)
• ↑ALP activity (ALP
assay kit)

Ryuk et al. (80)

Water Allium
sativum L. extract

Human fetal osteoblast
cells

3D-printed calcium phosphate scaffolds releasing
ginger and garlic extract

Increased
osteoblast
proliferation

• ↑ proliferation (MTT
assay)

Bose et al. (82)

Allyl sulfide (AS) * BMMSCs isolated from
Age-associated OP mice’s
femurs

Mice were fed by oral gavage with AS (200 mg/
kg) for 3-months

• Rescue of
proliferation and
osteogenesis
• Indirect
inhibition of
osteoclastogenesis

• ↑ proliferation as
compared to aged mice
(MTT assay)
• ↑ALP activity (ALP
staining), ↑
mineralization (Alizarin
red staining),
• ↑ RUNX-2 and OCN in
cells (western blot)
• ↑ OPG and ↓ RANKL
in surnatants (ELISA)

Behera et
al.

(83)

Allium cepa L.
extracts

In vitro bioactivity assay
(simulated body fluid)

Chitosan + Allium cepa L. (ChAC) and
Chitosan + Allium cepa L. + PLGA (ChPAC)

Improved natural
bioactivity of
chitosan

• Increased apatite
cristals in the surface
• Improved
Phosphorous/Calcium
ratio

Monárrez-
Cordero et
al.

(84)

Water Allium
sativum L. extract

Human osteoclast cells
from THP1 monocytes

3D-printed calcium phosphate scaffolds releasing
ginger and garlic extract

Inhibition of
osteoclast activity

• ↓ resorption (pit assay) Bose et al. (82)

Ethanolic extract
of
onion

RAW 264.7 cell line 0.1-0.2-0.4 mg/ml Inhibition of
osteoclastogenesis

• no cytotoxicity (MTT
assay)

Law et al. (85)
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TABLE 2 Continued

Molecule
tested

Experimental in
vitro model

Concentration Main effect Specific outcomes Authors Ref

• ↓ osteoclasts (TRAP
assay)

Freeze dried onion
juice

RAW 264.7 cell line 0.1-0.2-0.4 mg/ml Inhibition of
osteoclastogenesis

• no cytotoxicity (MTT
assay)
• ↓ osteoclasts (TRAP
assay)

Law et al. (85)

Water solution of
onion crude
powder

RAW 264.7 cell line 15-50-150-300 mg/ml Inhibition of
osteoclastogenesis

• no cytotoxicity (MTT
assay)
• ↓ osteoclasts (TRAP
assay)
• ↓ CD51/61 (vitronectin
receptor), MMP-9 and
TRAP mRNA (RT-PCR)
• ↓ ERK, p38 and NF-kB
(western blot)

Tang et al. (81)

Diallyl disulfide
(DADS) *

RAW 264.7 cell line 1-10-100-1000 mg/ml
20-40-60-80-100 mg/ml

Inhibition of
osteoclastogenesis
and bone
resorption

• ↓ cytotoxicity at
concentration higher to
100 mg/ml (CCK-8 assay)
• ↓ osteoclast and
resorption (TRAP assay
PIT assay)
• ↓ c-fos, NFATc1,
TRAP, MMP9, CTR,
CTSK, DC-STAMP, OC-
STAMP mRNA
• ↓ osteoclast fusion
(FAK staining)
• ↓ NF-ĸB, p-STAT3,
NFATc1, c-FOS (western
blot)

Yang et al. (86)

Alliin * RAW 264.7 cell line 0.1-0.5-1-5-10-100 mg/ml Inhibition of
osteoclastogenesis

• No cytotoxicity (CCK-8
assay)
• ↓ osteoclasts and
resorption (TRAP assay
and pit assay)
• ↓ c-fos, NFATc1,
MMP9, DC-STAMP,
OC-STAMP, RANK,
TRAP (RT-PCR)
• ↓ Nox-1, NFATc1, c-
fos (western blot)
• ↓ ROS (detection by
fluorescent probe)

Chen et al. (87)

Water solution of
onion crude
powder

Osteoclast derived from
bone marrow cells of
femurs of 6-8-week-old
Sprague–Dawley rats

15-50-150-300 mg/ml Inhibition of
osteoclastogenesis

• no cytotoxicity (MTT
assay)
• ↓ osteoclasts (TRAP
assay)

Tang et al. (81)

Water solution of
onion crude
powder

Osteoclast derived from
long bones of 6-day-old
rabbits

15-50-150-300 mg/ml Inhibition of bone
resorption

• ↓ resorption (pit assay) Tang et al. (81)

Commercial onion
powder (Chia Hui,
Taipei, Taiwan)

Osteoclast derived from
bone marrow cells of
femurs of 6-8-week-old
Sprague–Dawley rats

300 mg/ml Inhibition of
osteoclastogenesis

• ↓ osteoclasts (TRAP
assay)
• Inhibition of ERK, p38,
and NF-kB activation
(western blot)

Tang et al. (81)

GPCS isolated by
bioassay-guided
fractionation of

Osteoclasts derived from
femora and tibiae of 2-
days-old Wistar Hanlbm
rats

1-10-30 mg/ml
2-4-8 mM

Inhibition of
osteoclast
differentiation and
activity

• ↓ osteoclast
differentiation and
resorption by GPCS

Wetli et
al.

(41)
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TABLE 2 Continued

Molecule
tested

Experimental in
vitro model

Concentration Main effect Specific outcomes Authors Ref

Allium cepa L.
Bulbs *

(TRAP staining and pit
assays)

Diallyl disulfide
(DADS) *

BMMs obtained from the
femur and tibia bone
marrow of 6-wk-old
C57BL/6 mice

20-40-60-80-100 mg/ml Inhibition of
osteoclastogenesis

• ↓ cytotoxicity at
concentration higher to
100 mg/ml (CCK-8 assay)
• ↓ osteoclast (TRAP
assay)

Yang et al. (86)

Allyl sulfide (AS)* BM cells Cultured under 15% conditioned medium derived
from BMMSCs culture of Age-associated OP
mouse model (Fed by oral gavage with AS (200
mg/kg) for 3-months)

Inhibition of
osteoclastogenesis
via a paracrine
mechanism

• ↓ osteoclasts (TRAP
staining)
• ↓ TRAP-5b expression
in cells lysates (ELISA)
• ↓ NFATc1, CTSK,
RANK and OC-STAMP
mRNA (RT-PCR)

Behera et
al.

(83)
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Most in vitro studies were conducted by using water or ethanol extracts from Allium edible plants (4 studies, 13 in vitromodels; Allium hookeri roots, Allium fistulosum, Allium sativum L.,
Allium cepa L.); a few used purified OSCs (3 studies, 6 in vitromodels; diallyl disulfide (DADS), allyl sulfide (AS), g-glutamyl-trans-S-1-propenyl-L-cysteine sulfoxide – GPCS, alliin). Most
studies showed an increased osteoblast proliferation and osteogenesis and an inhibited osteoclastogenesis. Notably, only the effects of purified OSCs (labeled with * in the table) can be
attributable entirely to OSCs. The concentrations tested ranged from 0.1 to 300 mg/ml. Murine in vitro models of osteoclastogenesis: osteoclasts derived from bone marrow of femora and
tibiae of rats, rabbits, mice; RAW 264.7 cells. Human in vitromodels of osteoclastogenesis: osteoclast cells from human THP1 monocytes. Murine in vitromodels of osteoblastogenesis used:
MC3T3-E1 (mouse C57BL/6 calvaria cells line); murine bone marrow (BM) cells; bone marrow-derived mesenchymal stem cells (BMMSCs) isolated from age-associated (AG) osteoporosis
(OP) mice’s femurs. Murine in vitro models for studying indirect inhibition of osteoclastogenesis: bone marrow-derived mesenchymal stem cells (BMMSCs), bone marrow macrophages
(BMM) and murine bone marrow (BM). Human in vitro models of osteoblastogenesis: MG-63 cells line (human osteosarcoma cells line), human fetal osteoblast. Functional assays for
osteoclastogenesis used: tartrate-resistant acid phosphatase positive (TRAP staining); pit assay. Functional assays for osteoblastogenesis: alizarin red staining (marker of mineralization),
sirius red assay (marker of collagen I), p-nitrophenyl phosphate (pNPP) measurement. Proliferation/viability assays: 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
assay, cell counting kit-8 (CCK-8) cell viability assay, water-soluble tetrazolium-8 (WST-8) assay. Markers of osteoclasts: nuclear factor of activated T-cells cytoplasmic 1 (NFATc1),
cathepsin K (CTSK), receptor activator of NF-KB (RANK), osteoclast stimulatory transmembrane protein (OC-STAMP), tartrate-resistant acid phosphatase (TRAP), tartrate-resistant acid
phosphatase 5b (TRAP-5b), receptor activator of nuclear factor-kB ligand (RANKL), dendritic cell specific transmembrane protein (DC-STAMP), reactive oxygen species (ROS), calcitonin
receptor (CTR), p-signal transducer and activator of transcription 3 (p-STAT3), NADPH Oxidase 1 (Nox-1), c-fos, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB),
p38, extracellular signal-regulated kinase (ERK), matrix metallopeptidase 9 (MMP-9), CD51/61 (vitronectin receptor). Markers of osteoblastogenesis: collagen I (Col I), osteocalcin (OCN),
osteopontin (OPN), runt-related transcription factor 2 (RUNX-2), osteoprotegerin (OPG), alkaline phosphatase (ALP). ↑ means up-regulation; ↓ means down-regulation.
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TABLE 3 Continued

Molecule
tested

Experimental
in vivo model
description

Mode of administration,
dose and duration

Main effect Specific outcomes Authors Ref

Ethanolic
extracts of
Allium cepa L.
bulbs

Male, 9-week-old, Wistar
Hanlbm rats

Orally given, one gram, daily
treatment, for 10 days

Inhibition of bone resorption ↓ bone resorption (urinary
excretion of tritium)

Wetli et al. (41)

Homogenized
of Allium
sativum L.

Hypercholesterolemic rat
model (Pregnant albinorat
Wistar fed with
hypercholesterolemic diet,
and their offspring)

Intragastrical injection, 100 mg/
kg, a week prior to onset of
feeding with
hypercholesterolemic diet

Improved endochondral
ossification

↑ ossification in mandibular,
humerus, radio-ulna, femur,
tibio-fibula, scapula and ilium
(Alizarin red S for
ossified skeletal bones in fixed
offspring)

El-Sayyad
et al.

(89)

Water Allium
sativum L.
extract

In vivo implants in
bicortical rat distal femur
defects (Sprague–Dawley
rats)

3D-printed calcium phosphate
scaffolds designed with a
bimodal pore distribution
releasing ginger and garlic
extract, implanted for 4-10 weeks

Increase in osteoinductivity • ↑ osteoid tissue formation,
mineralization (masson-
goldner trichrome assay)

• ↑ bone area, osteocytes
(haematoxylin and eosin)

• ↑ Col I (Col I staining)

Bose et al. (82)

Aqueous and
ethanolic
extracts of
Allium
fistulosum

CDD mice - Mice model
of bone loss due to
nutritional
deficiency (Male, 4-week-
old, C57BL/6 mice, fed
with a calcium- and
vitamin D-deficient diet
for 5 weeks)

Oral treatment, 150 and 450 mg/
kg, ad libitum feeding for 4
weeks

Prevention nutritional
deficiency-induced bone loss
and retarded bone growth

• ↑ serum calcium, OC and
Col I vs CDD mice (ELISA)

• ↑ serum ALP, OCN and Col
I vs normal control mice
(ELISA)

• ↑ femoral and tibial BMC
and BMD vs CDD mice and
similar to normal control
(DEXA)

• Thicker growth plates vs
CDD mice and similar to
normal control (measured
after hematoxylin and eosin
stain)

Ryuk et al. (80)

Water extract
of Allium
fistulosum
root

Rat model of OP and
osteoarthritis (Female, 8-
week-old, Sprague–Dawley
rats, ovariectomy and
MIA-induced OA)

Within rice porridge, 250 and
750 mg/kg, food supply was
replaced every two
days for 8 weeks

Prevention of bone loss • ↑ BMD in lumbar bone
spine, OA leg and control
leg (DEXA)

• ↓ serum ALP activity
(ELISA)

Yang et al. (47)

Oil extract of
Allium
sativum L.
from raw
cloves

Rat model of OP (Female
albinorats, ovariectomy)

Gavage, 100 mg/kg body wt/day,
single evening dose for 30 days

Prevention of bone loss • ↓ serum ALP activity (pNPP
measurements) and TRAP
activity (commercial kit)

• ↑ BMD of femur, thoracic
rib, thoracic vertebra and
lumbar vertebra (measured
by Archimedes’ principle)

Mukherjee
et al.

(90)
(91)

↑ calcium and phosphate content
in femur, lumbar vertebra,
thoracic vertebra, thoracic rib
(method of Adeniyi et al. (1993)
and Lowry and Lopez
(1946))

Mukherjee
et al.

(91)
(92)

• ↑ tensile strength of the
femur (method of Shapiro
and Heaney (2003)

• ↑ serum estradiol levels
(ELISA)

• serum PTH levels is not
affected (ELISA)

Mukherjee
et al.

(92)

Oil extract of
Allium
sativum L.

Rat model of OP (Female
Wistar, ovariectomy)

Gavage, 100 mg/kg body wt/day,
single evening dose for 30 days

Increase in bone strength and
inhibition of bone resorption

• ↑ tensile strength of the
femurs (method of Shapiro
and Heaney (2003)

Mukherjee
et al.

(93)

(Continued)
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TABLE 3 Continued

Molecule
tested

Experimental
in vivo model
description

Mode of administration,
dose and duration

Main effect Specific outcomes Authors Ref

from raw
cloves

• ↓ serum TRAP activity
(commercial kit)

Allium cepa L.
powder

Rat model of OP (Female,
14-week-old, Wistar rats)
treated or not with 1 mg/
kg/day alendronate

Dietary administration, diet
containing 3%, 7% and 14% (wt/
wt) Allium cepa L. powder, for 6
weeks

Prevention of Ovx-induced
bone loss and deterioration of
biomechanical properties
(efficacy was slightly inferior to
that of alendronate)

• ↓ serum calcium (measured
with an automatic chemistry
analyzer)

• ↑ serum OCN (ELISA)
• ↑ BV/TV, Tb.N, ↓ Tb.Sp

(histomorphometry on
histological specimen)

• ↓ osteoclasts (TRAP staining
on histological specimen)

• ↑ loading force to maximal
load and tissue fracture, ↑
stiffness (three-point bending
test)

Huang et
al.

(94)

Diallyl
disulfide
(DADS) *

A mouse calvarial
osteolysis model (Female,
6-wk-old, C57BL/6 mice,
LPS treatment 5 mg/kg)

Subcutaneous injections, 20-40
mg/kg DADS, every alternate
day for 14 days

Inhibition of LPS-induced
osteolysis

• ↓ bone erosion as compared
to LPS, ↑ BV/TV, ↓ porosity
(microCT)

• ↓ osteoclasts (histologic and
histomorphometric analysis
TRAP staining)

Yang et al. (86)

Allyl sulfide
(AS) *

Age-associated OP mouse
model (Female, 20-
months-old (aged),
C57BL/6 J mice)

Oral gavage, 200 mg/kg, 3-
months

Restored osteogenesis and bone
density

• ↑ plasma levels of P1NP and
CTX-I

• ↑ bone density in the
femur’s metaphyseal area (X-
ray in vivo imaging)

Behera et
al.

(83)

Allicin * Mice model of lead-
induced bone loss (Male,
3-weeks-old, C57BL/6 J
mice, 0.2% lead acetate in
drinking
water ad libitum for 12
weeks)

Intraperitoneally injection, 10
mg/kg, in the last 4 weeks

Prevention lead-induced bone
loss

• ↑ BMD, BVF, Tb.N, Tb.Th,
↓ Tb.Sp (microCT)

• ↑ CAT, SOD, reduced GSH;
↑ MDA on femur
homogenates (commercial
kits)

• ↓ TRAP, CTSK, NFATc1,
MMP-9 mRNA in femur
(RT-PCR)

• ↑ SIRT1 and ↓ of acetylated
FOXO1 on femur
homogenates (western blot)

Li et al. (95)

Allicin * Mice model of aging rats
(Male, 13 months-old,
F344 rats)

Intragastric administration, 4-8-
16 mg/kg, once daily for 8
months

Reverse aging-associated bone
loss and frailty

• ↑ femoral, spinal, tibial BMD
(DEXA)

• ↑ elastic load and maximum
load in femur - ↑ bone
strength (Three-Point
Bending Test)

• ↑ serum P1NP, ↑ serum
CTX-I (ELISA)

Liu et al. (96)

Most in vivo studies were conducted by using water or ethanol extracts of Allium edible plants (11 studies; Alliummacrostemon, Allium hookeri, Allium fistulosum, Allium sativum L., Allium
cepa L.). A few studies used Allium-derived OSCs (4 studies; diallyl sulfide, allyl sulfide, allicin). Most studies were performed in normal control mice showing improved bone formation and
inhibited bone resorption; and in osteoporosis mice showing prevention of bone loss. Notably, only the effects of purified OSCs (labeled with * in the table) can be attributable entirely to
OSCs. Markers of bone formation in serum: procollagen 1 intact N-terminal propeptide (P1NP); osteocalcin (OCN); collagen I (Col I), alkaline phosphatase (ALP), parathormone (PTH).
Markers of bone resorption in serum: serum type I collagen breakdown product (CTX-I). Markers of bone resorption in urine: urinary excretion of tritium. Bone microstructural parameters
analyzed by microCT analysis: BMD (bone mineral density), bone volume fraction (BVF), spine BMD (s-SMD), tibia BMD (t-BMD), BMC (bone mineral content), bone volume (BV), bone
volume/total volume (BV/TV), bone surface/bone volume (BS/BV), trabecular thickness (Tb.Th), trabecular number (Tb.N), trabecular space (Tb.Sp), bone volume fraction (BVF). Bone
mineral density analyzed by dual-energy X-ray absorptiometry (DEXA). Markers of bone formation in histological specimen: ALP, Col I. Osteoid tissue detection by masson-goldner
trichrome assay. Markers of osteoclasts/bone resorption in histological specimen: tartrate-resistant acid phosphatase (TRAP), nuclear factor of activated T-cells cytoplasmic 1 (NFATc1),
cathepsin K (CTSK). Markers of redox stress response: catalase (CAT), superoxide dismutase (SOD), reduced glutathione (GSH), malondialdehyde (MDA). Measurements of bone strength:
method of Shapiro and Heaney (2003); three-Point Bending Test. Other abbreviations: insulin-like growth factor 1 (IGF-1), bone morphogenetic protein 2 (BMP-2), lipopolysaccharide
(LPS), sirtuin (SIRT); forkhead box O (FOXO). ↑ means up-regulation; ↓ means down-regulation.
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TABLE 4 Brassicaceae-derived OSCs: effects on in vitro models of osteoclastogenesis and osteoblastogenesis.

Molecule
(organosulfur
compouds)

Experimental in vitro
model

Concentration Main effect Specific outcomes Authors Ref

Sulforaphane * MLO-Y4, an osteocyte – cell line 3-10-15-30-100
mM

Inhibits cells
proliferation; induces
apoptosis; and inhibits
osteoclastogenesis

• ↓ viability and metabolic activity (3-(4,5-
dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide-like assay
(EZ4U)
• ↑ in the activities of Caspase 3/7 and 8
(assay kit)
• ↑ Fas mRNA expression (RT-PCR)
• ↓ RANKL mRNA expression (RT-PCR)

Thaler et
al.

(97)

Glucoraphanin * In vitro culture of human
mesenchymal stromal cells from
tibial plateau

3.3-10-33-100 mM Induction of
osteogenesis

• ↑ mineralization (alizarin red staining)
• ↑ BSP, CBS, SMAD-1 mRNA (RT-PCR)
• ↓ ALP, WISP-1 mRNA (RT-PCR)

Gambari
et al.

(98)

Brassica rapa L.
root ethanol
extract

MG-63 cells line 1-5-10-25-50 mg/
ml

Increased osteogenesis • ↑ viability (Wst-8 assay)
• ↑ ALP activity (pNPP measurements)
• ↑ collagen (Sirius Red)
• ↑ mineralization (alizarin red staining)

Jeong et
al.

(54)

Sulforaphane * MC3T3-E1 3-10-15-20-30-100
mM SFN

Promotion osteoblast
differentiation and
induction of apoptosis

• ↓ cells proliferation (3-(EZ4U)
• ↑ in the activities of Caspase 3/7 and 8
(assay kit)
• ↑ Fas mRNA expression (RT-PCR)
• ↑ mineralization (alizarin red staining)
• ↑ RUNX-2 mRNA expression (RT-PCR)

Thaler et
al.

(97)

Sulforaphane * BMMSCs from long bones of 6-
week-old C57BL/6 mice

3 mM Promotes osteoblast
differentiation

• ↑ mineralization (alizarin red staining)
• ↑ RUNX-2 mRNA expression (RT-PCR)

Thaler et
al.

(97)

Hot water extract
of Brassica
oleracea

RAW 264.7 cell line 200 g/mL Inhibition of osteoclast
formation

↓ osteoclasts in femur, when in
combination with P. ginseng extract
(TRAP staining)

Kang et al. (99)

Sulforaphane * RAW 264.7 cell line 3-10-15-30-100
mM

Reduces proliferation
and induces apoptosis

• ↓ viability and metabolic activity (EZ4U)
• No alteration in Acp5, Clcr, and CTSK
mRNA expression (RT-PCR)
• ↑ Tet1 and Fas-Caspase 8-Caspase 3/7
pathway (western blot, assay kit)

Thaler et
al.

(97)

Sulforaphane * RAW 264.7 cell line 1-2-5-10 mM Inhibition of
osteoclastogenesis

• ↓osteoclasts (TRAP staining)
• ↑ NRF2 protein accumulation (western
blot); ↑ HO1, NQO1, GCLC and GCLM
mRNA (RT-PCR)
• ↓ ROS (2′,7′-Dichlorofluorescin
diacetate)
• ↓ NFATc1, C-FOS, TNFa, TRAP, CTSK,
MMP-9, DC-STAMP mRNA (RT-PCR)

Xue et al. (100)

Sulforaphane * RAW 264.7 cell line 0.01-0.1-0.5-1 mM 1. Inhibits
osteoclastogenesis
2. Inhibits osteoclasts
cells-fusion

• induced cytotoxicity at > 5 mM (CCK-8
assay)
• ↓ osteoclasts (TRAP assay)
• ↓NFATc1, TRAP, CTSK mRNA (RT-
PCR)
• ↓ OSCAR, DC-STAMP, OC-STAMP
mRNA (RT-PCR)
• ↑ phosphorylation of STAT1 (Tyr701)
(western blot)

Takagi et
al.

(101)

Sulforaphane * RAW 264.7 cell line 0.01-0.1-1-10 mM Inhibition of
osteoclastogenesis

• ↓ osteoclasts
• ↓NF-kappaB activation

Kim et al. (102)

Sulforaphane * RAW 264.7 cell line 0.5, 1, 2.5, 5, 10,
20 mM

Decreased viability and
osteoclastogenesis

• Marked cytotoxicity at concentration >
5 mM, low cytotoxicity 1-2.5 mM (CCK-8
assay)
• ↓osteoclasts (TRAP staining)

Luo et al. (103)

(Continued)
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(97); at the molecular level, SFN induced up-regulation of

RUNX-2 in mouse MSCs (97). Gambari et al. showed

increased mineralization and BSP, CBS and SMAD-1

mRNA up-regulation by GRA administration in primary

human MSCs (98). Finally, with regards to osteocyte

regulation, Thaler et al. showed that SFN inhibited

proliferation in murine osteocyte-like cell line (MLO-

Y4) (97).
Frontiers in Endocrinology 13
Purified OSCs have also been tested in in vivo models of

bone loss or osteolysis, showing beneficial effects on preserving

bone mass. Oral administration of allyl sulfide in an age-

associated osteoporosis mouse model resulted in increased

bone density at X-ray analysis and increased serum levels of

procollagen 1 intact N-terminal propeptide (P1NP; a marker

of bone formation) (83). Similarly, intragastric administration of

allicin increased BMD, as detected by dual energy X-ray
frontiersin.org
TABLE 4 Continued

Molecule
(organosulfur
compouds)

Experimental in vitro
model

Concentration Main effect Specific outcomes Authors Ref

• ↓ CTSK, MMP-9 mRNA and protein
(RT-PCR)
• ↓ in autophagosomes and LC3-II,
Beclin1, and Atg5–Atg12 mRNA and
protein; ↓ of JNK phosphorylation (RT-
PCR, western blot)
• ↓size of F-actin rings

Sulforaphane * Primary mouse osteoclasts from
tibial and femoral bone marrow of
8-week-old C57BL/6 mice

3 mM Inhibition of osteoclasts
resorption

↓ resorption activity Thaler et
al.

(97)

Sulforaphane * Primary osteoclast precursors
isolated from BM of tibias and
femurs of 8–12 weeks old male
C57BL/6 mice

1-5 mM Inhibition of
osteoclastogenesis

↓ osteoclasts (TRAP staining) Xue et al. (100)

Sulforaphane * BM cells obtained from the femur
and tibia of 7–10-week-old ddY
male mice

0.01-0.1-0.5-1 mM Inhibition of
osteoclastogenesis

• induced cytotoxicity at > 5 mM (CCK-8
assay)
• ↓ osteoclasts (TRAP staining)
• ↓ NFATc1, TRAP, CTSK mRNA
expression (RT-PCR)

Takagi
et al.

(101)

Sulforaphane * BM cells isolated from femora and
tibiae of 4- 6-week-old C57BL/6
mice

0.01-0.1-1-10 mM Inhibition of
osteoclastogenesis

• ↓ osteoclasts
• Early inhibition of osteoclastogenesis
• No effects on osteoclasts resorption
• No effects on RANK or c-fms mRNA

Kim et al. (102)

Sulforaphane * BMMs from 5-week-old C57BL/6
female mice

1, 2.5, 5 mM Decreased viability and
inhibition of
osteoclastogenesis

• Moderate cytotoxicity at concentration
>2.5 mM (CCK-8 assay)
• ↓ osteoclasts (TRAP staining)

Luo et al. (103)

Sulforaphane * Human monocytes isolated from
peripheral blood of healthy
volunteers

0.2-1-5 mM Inhibition of
osteoclastogenesis

• ↓ osteoclasts (TRAP staining)
• ↑NRF2 accumulation
(immunocytochemistry)
• ↑ NQO1 and PRDX1 mRNA expression
(RT-PCR)

Gambari
et al.

(104)
Most in vitro studies were conducted using purified OSCs (6 studies, 15 in vitro models; sulforaphane, glucoraphanin); while only a few used water or ethanol extracts
from Brassicaceae edible plants (2 studies, 2 in vitro models; Brassica rapa, Brassica oleracea). Most studies showed increased osteogenesis and decreased osteoclastogenesis. Notably,
only the effects of purified OSCs (labeled with * in the table) can be attributable to OSCs. The concentrations tested ranged from 0.01 to 100 mg/ml. Murine in vitro models of
osteoclastogenesis: osteoclasts derived from bone marrow of femora and tibiae of mice, RAW 264.7 cell line. Human in vitro models of osteoclastogenesis: human monocytes isolated from
peripheral blood of healthy volunteers. Murine in vitro models of osteoblastogenesis: MC3T3-E1 (Mouse C57BL/6 calvaria cells line); murine bone marrow (BM) cells; bone marrow-
derived mesenchymal stem cells (BMMSCs), bone marrow macrophages (BMMs). Human in vitro models of osteoblastogenesis: MC3T3-E1, MSCs isolated from human tibial plateau.
Osteocyte – cell line: MLO-Y4. Functional assays for osteoclastogenesis: tartrate-resistant acid phosphatase positive (TRAP staining); pit assay. Functional assays for osteoblastogenesis:
Alizarin red staining (marker of mineralization), Sirius red assay (marker of collagen I), p-nitrophenyl phosphate (pNPP) quantification. Proliferation/viability assays: cell counting kit-8
(CCK-8) cell viability assay, water-soluble tetrazolium-8 (WST-8) assay, 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide-like assay (EZ4U). Markers of osteoclasts: nuclear
factor of activated T-cells cytoplasmic 1 (NFATc1), cathepsin K (CTSK), receptor activator of NF-KB (RANK), osteoclast stimulatory transmembrane protein (OC-STAMP), tartrate-
resistant acid phosphatase (TRAP), receptor activator of nuclear factor-kB ligand (RANKL), dendritic cell specific transmembrane protein (DC-STAMP), reactive oxygen species (ROS), c-
fos, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB), matrix metallopeptidase 9 (MMP-9), osteoclasts-specific activating receptor (OSCAR), acid phosphatase 5,
tartrate resistant (ACP5), calcitonin receptor-like receptor (Clcr), colony-stimulating factor-1 receptor (c-fsm), c-fos. Markers of osteoblastogenesis: cystathionine-b-synthase (CBS), bone
sialoprotein (BSP), SMAD family member 1 (SMAD-1), alkaline phosphatase (ALP), WNT1-inducible-signaling pathway protein 1 (WISP-1), osteocalcin (OCN), runt-related transcription
factor 2 (RUNX-2). Markers of cell viability – apoptosis: Fas, Caspase 3/7 and 8, nuclear factor erythroid-derived 2-related factor 2 (NRF2), heme oxygenase-1 (HO1), NAD(P)H: quinone
oxidoreductase 1 (NQO1), peroxiredoxin-1 (PRDX-1), glutamate cysteine ligase catalytic subunit (GCLC), glutamate-cysteine ligase modifier subunit (GCLM), peroxiredoxin 1 (PRDX-1),
microtubule-associated protein 1A/1B-light chain 3 (LC3-II), beclin1, autophagy related 5 (ATG5), Jun N-terminal kinases (JNK), autophagy related 12 (Atg12). ↑ means up-regulation; ↓
means down-regulation
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TABLE 5 Brassicaceae-derived OSCs: effects on in vivo models of bone loss.

Molecule
tested

Experimental in vivo model
description

Mode of administration,
dose and duration

Main effect Specific features Authors Ref

Sulforaphane C57BL/6 mice, Mouse calvarial
models treated with LPS (10 mg/kg
body weight injected in calvaria)

Intraperitoneal injection, 10 mg/kg
body weight, the day before LPS
treatment for 6 days

Protection against
LPS-induced calvarial
bone erosion by
inhibition of
osteoclastogenesis

• ↑ BV/TV, Tb.N, ↓Tb.Sp
(microCT)
• ↓ osteoclasts (TRAP
staining in histological
samples)
• ↓ CTSK
(immunohistochemical and
immunofluorescence
analysis)

Luo et al. (103)

Sulforaphane Ex vivo culture of calvariae explants
of 2–3-day-old and 7-week-old,
C57BL/6 mice

3 mM Promotes osteogenesis
inhibits
osteoclastogenesis

• ↑ ECM mineralization
(alizarin red staining on
calvaria tissue)
• ↓ RANKL (RT-PCR on
calvariae lysates)

Thaler et
al.

(97)

Sulforaphane Mice model of OP (Female, 8-week-
old, C57BL/6 mice, ovariectomy)

Intraperitoneal injection, 7.5 mM
DL-SFN, every other day for 5
weeks

Prevention of bone
loss

• ↑ BV/TV, Tb.N ↓Tb.Sp,
no effect on Tb.Th or
Co.Th in tibiae (micro CT)

Thaler et
al.

(97)

SFX- 01® (a
stable form of
Sulforaphane)

Osteoarthritis model (Male, 26-
week-old, STR/Ortmice)

Oral administration, 100 mg/kg,
daily for 3 months

Improvements in
cortical bone mass

• ↑ TV, BV and BV/TV of
tibial epiphyseal trabecular
bone and metaphyseal
trabecular bone (micro CT)
• ↑serum P1NP (ELISA)
• ↓serum CTX-I (ELISA)

Javaheri et
al.

(105)

Brassica rapa L.
root ethanol
extract

Female, 3-week-old, Sprague-
Dawley rats

Oral administration, 500 mg/kg/
day, single daily dose for 6 weeks

Increased bone
formation

• ↑ BMD, BV, BV/TV,
Tb.N, Tb.Th., ↓Tb.Sp.
(microCT)
• ↑ serum OCN
(immunoassay)

Jeong et
al.

(54)

Lepidum sativum
seed extract

Rat model of OP (Female Wistar
rats, ovariectomy)

Oral gavage 50 and 100 mg/kg Prevention of bone
loss and bone
strengthening activity

• ↑ femur weight (weights
were calculated as wet
femur weight/body weight)
• ↑ femur compression
strength (hardness tester
(Erweka GmbH, Heusen-
stamm, Germany)
• ↑ ALP, OCN serum
levels; ↓ TRAP, CTX-I
serum levels (ELISA)
• ↓ RANKL, ↑ OPG mRNA
(RT-PCR)

Abdallah
et al.

(59)

Lepidum sativum
seed

Glucocorticoid-induced OP (GIO)
model (Female Wistar rat,
subcutaneous injection of
methylprednisolone 3.5 mg/kg per
day for 4 weeks)

Oral gavage, 6 g of LS seeds in
diet daily

Prevention of GIO-
dependent bone loss

• ↑ percentage of trabecular
bone vs GIO
(histopathological
examination and Image J
quantification)
• ↓ serum TRAP vs GIO
(commercial kit)
• ↑ serum b-ALP
(immunoassay), phosforous
and calcium (automated
analyser) vs GIO

Elshal et
al.

(106)

Lepidum sativum
seed

Fracture-induced healing model
(New Zealand White rabbits,
induced fractures in the midshaft of
the left femur)

Oral gavage, 6 g of Lepidum
sativum seeds in their food daily
after surgery

Increased healing of
fractures

Increased callus formation
in fractures (x-rays and
quantification)

Juma et al. (83)

Methanolic and
aqueous extract
of Lepidium
sativum seeds

Fracture healing model (Charles
foster rats, hand held three-point
bending technique)

Oral administration, methanolic
extracts 400 mg/kg or aqueous
extracts 550 mg/kg, from the day
of fracture induction for 2 months

Increased healing of
fractures

• Larger callus formation
(x-rays and quantification)
• ↑ calcium, phosphorus,

Dixit Jr Iii
et al.

(28)

(Continued)
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absorptiometry, and bone strength, as measured by three-point

bending assay, in a model of aging osteoporotic rats (96).

Intraperitoneal administration of allicin prevented the bone

loss in a mice model of lead-induced bone loss (osteoporosis

induced by a toxic heavy metal), as measured by increased BMD,

trabecular number (Tb.N), trabecular thickness (Tb.Th) and

decreased trabecular space (Tb.Sp), quantified using micro-CT

analysis (95). Finally, SFN showed to be protective against bone

loss in different in vivo models. Intraperitoneal injection of SFN

in lipopolysaccharide (LPS)-induced erosion of the mice calvaria

bone induced increased trabecular bone volume (BV/TV),

increased Tb.N and decreased Tb.Sp, as measured by micro-

CT analysis (103); moreover, intraperitoneal injection of SFN in

a mice model of ovariectomy-induced bone loss stimulated

trabecular bone formation, increased Tb.N and decreased
Frontiers in Endocrinology 15
Tb.Sp (97); finally, the oral administration of SFN-01 (a

stabilized form of SFN) in a mice model of osteoarthritis,

resulted in increased trabecular bone volume and serum

P1NP (105).
Regulation of osteoclastogenesis and
bone resorption

Osteoclasts are bone-resorbing cells which arise from

immature monocytes and mature tissue macrophages (124).

Osteoclasts differentiation stems from the signaling triggered

by two critical cytokines produced by MSCs, osteoblasts and

osteocytes: macrophage colony-stimulating factor (M-CSF) and

RANKL binding, respectively, to the receptors colony-
TABLE 5 Continued

Molecule
tested

Experimental in vivo model
description

Mode of administration,
dose and duration

Main effect Specific features Authors Ref

and ALP serum levels
(commercial kits)

Lepidium sativum
seeds

Glucocorticoid-induced OP (Adult
male guinea pigs, methyl
prednisolone 3.5 mg/kg per day for
4 weeks subcutaneously)

Oral administration trough a
gastric tube, 300 mg/kg, for 4
weeks

Prevention of bone
loss in femur

• Prevention of caspase-3
activation (caspase-3
immunostaining)
• Prevention of decrease of
OPN
(immunohystochemistry)
• Prevention of decrease in
osteoblast and Co.th. in
femur (histomorphometric
analysis)
• Prevention of increase of
osteoclasts in femur
(histomorphometric
analysis)

EL-
Haroun et
al.

(107)

Ethanol extracts
of Maca root
(Lepidium
meyenii Walp.)

Rat model of OP (Female, 90-day-
old, Sprague-Dawley rats,
ovariectomy)

Oral gavage, 0.096 and 0.24 g/kg,
for 28 weeks

Prevention of estrogen
deficient bone loss

• ↑ calcium content of
femur (Atomic Absorption
Spectrophotometer)
• ↑ BMD and trabecular
bone of the lumbar
vertebrae (DEXA)
• ↑ serum OCN
(radioimmunoassay
commercial kit)

Zhang et
al.

(108)

Hot water extract
of Brassica
oleracea (Bo)

Mice model of OP (Female, 7-week-
old, C57BL/6 mice, ovariectomy)

Oral administration, 500 mg/kg,
daily for 10 weeks

Inhibits OVX-induced
bone loss

• ↑ BMD when in
combination with Panax
ginseng (DEXA)
• ↓ osteoclast number
when in combination with
Panax ginseng
(immunohistochemistry,
TRAP staining)

Kang et al. (99)
frontiersi
Most in vivo studies were conducted by using water or ethanol extracts of Brassica edible plants (8 studies; Brassica rapa, Lepidum sativum, Lepidum meyenii Walp, Brassica oleracea). A
minority of studies used Brassicaceae-purified OSCs (3 studies; 4 models; SFN, SFX-01). Most studies were performed in osteoporosis mice showing prevention of bone loss. Notably, only
the effects of purified OSCs (labeled with * in the table) can be attributable entirely to OSCs. The route of administration was mainly by oral administration. Markers of bone formation in
serum: procollagen 1 intact N-terminal propeptide (P1NP); osteocalcin (OCN). Markers of bone resorption in serum: serum type I collagen breakdown product (CTX-I), tartrate-resistant
acid phosphatase (TRAP), osteoprotegerin (OPG), cortical thickness (Co.Th). Bone microstructural parameters analyzed by microCT analysis: BMD (bone mineral density), bone volume
(BV), bone volume/total volume (BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N), trabecular space (Tb.Sp.). Bone mineral density analyzed by Dual-energy X-ray
absorptiometry (DEXA). Markers of bone formation in histological specimen: alkaline phosphatase (ALP), osteopontin (OPN). Markers of osteoclasts / bone resorption in histological
specimen: tartrate-resistant acid phosphatase (TRAP), cathepsin K (CTSK). Measurements of bone strength: Erweka GmbH, Heusen-stamm Germany. Extracellular matrix (ECM).
Markers of osteoclast in histological specimen: receptor activation of nuclear factor-kB ligand (RANKL). ↑ means up-regulation; ↓ means down-regulation.
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stimulating factor-1 receptor (c-fms) and receptor activator of

nuclear factor k B (RANK) (125, 126). RANKL signaling

activation induces various intracellular signal transduction

cascades such as tumor necrosis factor receptor-associated
Frontiers in Endocrinology 16
factor 6 (TRAF-6), NADPH oxidase 1 (NOX-1), RAC family

small GTPase 1 (RAC1), nuclear factor kappa-light-chain-

enhancer of activated B cells (NF-kB), and nuclear factor-

activated T cells c1 (NFATc1), c-fos (127–129). Other
FIGURE 3

H2S release by OSCs derived from Alliaceae and Brassicaceae. The known reactions occurring for H2S release by polysulfides and
isothiocyanates are shown. Among garlic-derived polysulfides, diallyl disulfide (DADS) and diallyl trisulfide (DATS) have been shown to release
H2S by reaction with glutathione (GSH) by polarographic H2S sensor (154) (147) (148). Among glucosinolates, GRA has been found to release H2S
by amperometric approach (149). Similarly, several isothiocyanates showed H2S-releasing activity: allyl isothiocyanate (AITC), 4-hydroxybenzyl
isothiocyanate (HBITC), benzyl isothiocyanate (BITC), erucin (ER), sulforaphane (SFN) (149) (150). While the mechanism of release is unknown for
glucosinolates, the mechanism of release by isothiocyanates is dependent on L-cysteine reaction (155). Moreover, different OSCs have different
kinetics of H2S release.
TABLE 6 Clinical studies on musculoskeletal effects of OSCs-rich food and extracts.

Molecule
tested

Patients data Mode of administration,
concentration, treatments

Main effect Specific features Authors Ref

Onion Perimenopausal and
postmenopausal non-Hispanic
white women, 50 years and older

Onion consumption ≥ once a day; 3-
5 a week; 2 a month to 2 a week, 1 a
month or less

Prevention of
bone loss

↑ BMD by increased
consumption

Matheson et
al.

(179)

Onion juice Healthy subjects, male and female,
40-80 years

100 mL of onion juice or placebo for
8 weeks

Decreased bone
anabolic markers

• ↓ALP serum level
(commercial kit)

Law et al. (85)

Onion juice Postmenopausal women 100 mL of onion juice or placebo for
8 weeks

Mild changes in
BMD

• ↓ALP serum levels
(commercial kit)

• Mildly improved BMD
(DEXA of the lumbar,
right and left hip)

Law et al. (85)

Allium vegetables
(onion, leek, and
garlic)

Women, ≥70 years Habitual intakes of Allium intake Inversely
associated with
all fractures

Inversely associated with all
fractures

Blekkenhorst
et al.

(18)

Cruciferous
(cabbage, brussel
sprouts,
cauliflower, and
broccoli)

Women
aged >70 years

Cruciferous vegetables intake Inversely
associated with
all fractures

Inversely associated with all
fractures

Blekkenhorst
et al.

(18)

Raw garlic
consumption

28958 patients (males and females) Habitual intakes of raw garlic Positive
correlation with
handgrip strength

Gu et al. (139)
frontiersi
Analysis of bone mineral density (BMD) by Dual-energy X-ray absorptiometry (DEXA). Measurement of alkaline phosphatase (ALP). ↑ means up-regulation; ↓ means down-regulation.
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receptors involved in osteoclastogenesis are calcitonin receptor

(CTR), ITAM bearing Fc receptor standard g chain (FcRg),
osteoclasts-specific activating receptor (OSCAR) (126, 130); key

signaling is mediated by mitogen-activated protein kinases

(MAPK), and includes extracellular signal-regulated kinase

(ERK), c-Jun N-terminal kinase (JNK), and p38 activation.

Moreover, critical to osteoclast differentiation and function

are: intracellular reactive oxygen species (ROS) generation,

which act as key signaling molecules (82, 88, 94); osteoclast

fusion mediated among other factors, by the fusogenic molecules

osteoclasts-stimulatory transmembrane protein (OC-STAMP)

and dendritic cell-specific transmembrane protein (DC-

STAMP) (126, 131, 132); and expression of specific enzymes

such as tartrate-resistant acid phosphatase (TRAP), cathepsin K

(CTSK) (126, 130), tartrate-resistant acid phosphatase 5b

(TRAP5b) (83) and matrix metallopeptidase 9 (MMP-9).

Extracts from both Allium and Brassica species were shown

to attenuate osteoclast differentiation in vitro in the murine

macrophage cell line, RAW 264.7. In particular, extracts of onion

(85), freeze dried onion juice (85), solution of onion crude

powder (81) inhibited osteoclastogenesis, as measured by

TRAP staining in vitro. A similar effect was achieved by an

extract of Brassica oleracea but only in combination with extract

from Panax ginseng (99). Using human THP1 monocytes, Bose

et al. showed that ginger and garlic extracts reduce the frequency

and the size of resorption pits carved by osteoclasts (82);

inhibition of osteoclast number was found also by onion and
Frontiers in Endocrinology 17
commercial onion extracts in rat and rabbit osteoclasts (81).

Notably, Wetli et al. demonstrated that onion extract reduced rat

osteoclast differentiation and were able to isolate a specific

sulfoxide component of onion powder, g-glutamyl-trans-S-1-

propenyl-L-cysteine sulfoxide (GPCS), which the authors found

to be the key responsible of this biological activity (41).

In vivo administration of extracts rich in OSCs decreased

osteoclastogenesis and bone erosion in rodent model of

osteoporosis; Huang et al. showed that ovariectomized rats fed

with different concentrations of onion extracts (up to 14% wt/wt

in the diet powder) were partly protected against loss of bone

mass and bone material properties (94); moreover,

histomorphometry revealed that treatment with onion extracts

was associated with a lower number of osteoclasts in vivo (94).

Similar findings were reported by Kang et al. using

ovariectomized mice fed with a combination of extracts

obtained from Panax ginseng and Brassica oleracea (99).

Furthermore, Abdallah HM et al. reported that ovariectomized

rats treated with extracts of Lepidium sativum were partly

protected against osteoporosis and showed a sharply decreased

RANKL/osteoprotegerin (OPG) ratio in femur bones (59).

Studies that used purified OSCs molecules further supported

efficacy and specificity. Yang et al. demonstrated a dose-

dependent inhibition of osteoclast differentiation and a

decreased bone resorption by mature osteoclasts upon

treatment with DADS (86). Monocytes proliferation and

viability was inhibited by SFN (97).
FIGURE 4

A general model describing the routes of absorption of GRA and SFN and a proposed mechanism of action on bone cells based on H2S-release.
Briefly, upon chewing of plants belonging to Brassica genus, myrosinase (MYR, green) is released and can convert glucoraphanin (GRA) to
sulforaphane (SFN) (1). GRA can be adsorbed in the stomach or in the small intestine (2). Microbacterial thioglucosidases (MYR, red) converts
GRA to SFN which is further adsorbed in large quantities (3). SFN and GRA are released by circulation in bone tissue where can release H2S and
exert anabolic and anticatabolic properties on bone cells (4). The mechanism by which H2S can be directly released from GRA has not been
clarified yet.
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Luo et al. (103) and Xue et al. (100) showed that SFN

inhibits osteoclast differentiation in RAW 264.7 murine

macrophagic cell line; Takagi et al. (101) and Kim et al. (102)

showed similar findings in murine BM cells and so did

Gambari et al. (104) in a model of osteoclast derived from

human monocytes. Moreover, Chen et al. reported the

inhibition of osteoclast differentiation by alliin in RAW 264.7

via scavenging of ROS signaling (87).

Mechanisms of regulation of osteoclastic differentiation by

OSCs involved different molecular targets. Li et al. reported that

the anti-osteoclastogenic activity of allicin in mice is associated to

the activation of the SIRT1/FOXO1 pathway and ROS scavenging

(95). Similarly, one key mechanism of action of SFN is the

activation of the master regulator of the antioxidant defense

system, nuclear factor erythroid-derived 2-related factor 2

(NRF2), and its downstream target antioxidant and detoxifying

enzymes (133), which is known to actively inhibit mouse osteoclasts

differentiation in vitro (104, 134). SFNmodifies sulfhydryl groups in

kelch-like erythroid-cell-derived protein with CNC homology

(ECH)-associated protein (KEAP-1), causing KEAP-1 dislocation,

NRF2 stabilization and nuclear translocation (135); moreover, SFN

regulates NRF2 expression via epigenetic mechanisms (136).

Coherently, SFN was shown to increase NRF2 protein

accumulation in RAW 264.7 murine cell line, to increase the

expression of some NRF2-mediated antioxidant genes (heme

oxygenase-1, HO1; NAD(P)H: quinone oxidoreductase 1, NQO1;

glutamate cysteine ligase catalytic subunit, GCLC; ligase modifier

subunit, GCLM) and decrease intracellular ROS production, and

the overall number of osteoclasts as shown by Xue et al. (100).

Similarly, SFN was shown to inhibit the osteoclast differentiation of

human monocytes while increasing NRF2 nuclear translocation

and protein expression of NRF2-mediated antioxidant genes

(NQO1; Peroxiredoxin 1, PRDX-1), as published by Gambari

et al. (104). Finally, SFN induces Caspase 8 and 3/7, thus

inducing apoptosis in a RAW 264.7 murine cell line as shown by

Thaler et al. (97).

Moreover, downregulation of the key transcription factor

NFATc1 is implicated in several studies showing inhibition of

osteoclast development: Yang et al. reported a dose-dependent

down-regulation of NFATc1 in a RAW 264.7 murine cell line

after DADS treatment (86); Xue et al. (100) and Takagi et al.

(101), respectively, reported similar findings in RAW 264.7

murine cell line and in murine BM cells after SFN treatment;

Behera et al. in murine BM cells after allyl sulfide treatment (83).

The inhibition of other key transcription factor c-Fos and Nf-kB

was shown by Yang et al. in a RAW 264.7 murine cell line after

DADS treatment (86).

Several other proteins implicated in the adhesion and

proteolytic extracellular matrix degradation, such as TRAP,

CTSK, CTR or MMPs were shown to be affected by OSCs,

specifically by allicin, DADS, SFN, allyl sulfide (83, 95, 100, 137),

in RAW264.7 cells and murine BM and are detailed in

Tables 2, 4.
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OSCs can modulate the expression of osteoclasts-specific

activating receptors, necessary for the co-stimulatory signaling

with immunoreceptors and prevented osteoclast fusion by

inhibiting fusogenic molecules. Takagi et al. showed in RAW

264.7 murine cell line that OSCAR is inhibited by SFN (101).

DC-STAMP was found inhibited in RAW 264.7 murine cell line

after SFN treatment as shown by Takagi et al. (101) and by Xue

et al. (100) and after DADS treatment as shown by Yang et al.

(86). OC-STAMP was found inhibited in RAW 264.7 murine

cell line after SFN treatment as shown by Takagi et al. (101).

Finally, OSCs compounds were shown to inhibit osteoclast

differentiation via a paracrine mechanism, acting on osteoclasts-

supporting cells. Thaler et al. showed that RANKL was inhibited

by SFN in a murine osteocytes cell line (MLO-Y4) (97). Behera

et al. showed that RANKL was inhibited while OPG was

increased in supernatants of murine MSCs cells culture treated

with allyl sulfide (83); and that treatment with this conditioned

medium inhibited the expression of RANK and osteoclast

differentiation of murine bone marrow (BM) cells (83).

Only a few in vivo studies used purified OSCs to investigate

bone metabolism. In a mice model of lead-induced bone loss,

intraperitoneal injection of allicin alleviates bone loss by

preventing oxidative stress and osteoclastogenesis by

modulating SIRT1/FOXO1 pathway (95). SFN treatment in a

mouse calvaria model treated with LPS decreased the number of

osteoclasts (103). Treatment of Lepidium sativum in a rat model

of ovariectomy-induced osteoporosis improved mechanical

properties of femurs while decreasing TRAP, serum type I

collagen breakdown product (CTX-I), RANKL (59) and the

number of osteoclasts (107).
H2S release from OSCs as a
potential mechanism of bioactivity
in bone

H2S is a pleiotropic molecule which provides numerous health

benefits by improving hypertension and cardiometabolic

disorders (138) (139), relieving pain (140, 141), and increasing

insulin sensitivity (142); protecting against neurological diseases

including Alzheimer disease (143). Moreover, H2S is critically

involved in the extension of lifespan provided by caloric

restriction (144, 145). Supraphysiological levels of H2S may be

generated in certain pathological conditions and lead to toxicity,

inducing inflammation or tissue damage (146).

The intriguing overlap between biological effects attributed

to some Allium and Brassica species and those exhibited by the

gasotransmitter H2S prompted several researchers to verify the

H2S releasing capacity of those molecules. Recently, the ability of

releasing H2S was found as a distinctive feature of several OSCs,

and a plausible mechanism for their biological effects across

different organs and tissues was described. The biological

relevance of H2S release by OSCs was first demonstrated by
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Benavides et al. in the context of a study on the vasoactivity of

garlic. The authors showed that garlic polysulfides DATS and

DADS, the downstream metabolites of alliin, released H2S in red

blood cells; importantly, pre-treating the cells with the thiol-

blocking reagent iodoacetamide inhibited the release of H2S,

thereby demonstrating that the mechanism by which

polysulfides release H2S is dependent on intracellular thiols,

such as glutathione (GSH) (147). Chemically, this reaction

involves a nucleophilic substitution from thiol at the a carbon

of the H2S-donor moiety and a subsequent release of H2S (148).

This mechanism is biologically relevant as the relaxation

induced by both garlic extract and DADS on isolated rat aortic

rings strongly correlated to the amount of H2S released. In the

wake of this work, Citi et al. first revealed that a similar

mechanism accounts for the ability of several Brassicaceae-

derived ITCs to release pharmacologically relevant

concentrations of H2S in an L-cysteine dependent manner

(149): allyl isothiocyanate (AITC), 4-hydroxybenzyl

isothiocyanate (HBITC), benzyl isothiocyanate (BITC), erucin

(ER), SFN (149, 150). The same group reported that H2S-release

is associated with the in vivo anti-hypertensive, hypoglycemic,

pain-relieving, and anti-inflammatory effects of OSCs derived

from the Brassicacea Eruca Sativa (138, 151–153). Interestingly,

Lucarini et al. first demonstrated that GRA, a GLS, can release

H2S in aqueous solution independent of myrosinase, but the

chemical mechanism underlying this phenomenon is still

unclear (150). Whether other Alliaceae or Brassicaceae-derived

OSCs releases H2S is still unknown.

Figure 3 summarizes the known reactions leading to H2S

release from polysulfides, GLS or ITCs.

This mechanism holds important implications for bone.

Recent findings by our group and others demonstrated that H2S

plays an important role in the regulation of bone cell

differentiation and function. In vitro, H2S-donors promote

osteogenic differentiation and stimulate mineralization by

increasing calcium intake (156) and the expression of genes

directly involved in the biosynthesis of hydroxyapatite, such

BSP (157). Furthermore, the expression of the enzymes CBS

and CSE, which are responsible for endogenous H2S

production, steadily increased during osteogenic differentiation

and correlated to mineral apposition (119). Moreover, H2S-

donors inhibit osteoclast maturation and resorption by

activating the antioxidant response elicited by the NRF2

transcription factor (104, 158). Further attesting to the relevance

of H2S in bone homeostasis, evidence from several in vivo

preclinical models showed that the depletion of H2S levels is

associated with loss of bone mass; similar findings were reported

in ovariectomized mice (157), in H2S-deficient CBS+/− mice

(156), in glucocorticoids-induced osteoporosis (159).

Interestingly, when animals were treated with pharmacological

H2S-donors to normalize the plasma level of H2S, bone loss was

prevented or reversed (156, 157). The ability of H2S to stimulate

bone formation appears to be maintained across various
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conditions, even unrelated to systemic or genetic disfunctions:

for example, the exogenous administration of H2S by means of the

pharmacological donor GYY4137 was effective to attenuate the

bone loss induced bymodelled microgravity (160) and to promote

osteogenesis in a model of distraction osteogenesis (161).

Overall, these data demonstrate that H2S regulates

osteogenesis and bone formation in both healthy and

pathological conditions.

Therefore, H2S release by OSCs could account, at least in

part, for their biological properties. However, up to date no

clinical or preclinical in vivo studies have investigated the effect

of OSCs by correlating their bioactivity to the H2S levels.
The GRA/SFN system: A case-model
for OSCs bioactivity based on H2S
release

GRA is a glucosinolate abundant in aerial portions,

developing florets (flower buds), sprouts, seeds and mature

plants of cabbage, broccoli, cauliflower, kale and Brussels

sprouts (77). GRA conversion to SFN, an ITC, requires the

enzyme myrosinase, an intracellular thioglucosidase, which

catalyzes its hydrolysis to an unstable aglucone that

spontaneously rearranges to give rise to a range of products,

including SFN. SFN is the progenitor of a family of compounds

widely studied in the literature mostly due to their antioxidant and

anticancer properties. In mammalians, GRA conversion to SFN is

primarily mediated by bacterial microflora of the gastrointestinal

tract; while a small proportion is generated in the mouth by plant

myrosinase when released by plants after chewing. Our current

knowledge on the bioavailability and the rate of conversion of GSL

into ITCs are largely based on studies on the GRA/SFN system.

Although most of GRA introduced with diet undergoes

hydrolysis in the gut by microbial thioglucosidases, a fraction

of GRA (around 10-15%) is absorbed directly in the stomach

and in the small intestine, before the catabolic breakdown to

SFN is triggered by gut microbiota (77, 162).

Gastric acidity appears to attenuate GSL bioavailability (163).

However, GRA is not destroyed by digestive enzymes during

passage through the digestive tract and is able to reach the rat

cecum intact, when is hydrolyzed to SFN which is able to cross the

cecal enterocyte for systemic absorption and enterohepatic

circulation (164, 165). Conversion of GRA to bioactive SFN by

the rat cecal microbiota requires four or more days after broccoli

consumption and is reversible (166); however, recent randomized

clinical trials have ascertained that upon ingestion of GRA-

enriched soups, increased SFN levels were detectable as early as

30’ in plasma and 1h in the urine of patients (162). Attesting the

tissue systemic absorption of SFN and ITCs in general, they have

been detected in both plasma and synovial fluid of osteoarthritis

patients undergoing consumption of GLS-rich diets for 2 weeks
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(167). On the other hand, the direct delivery of SFN from foods is

possible and was demonstrated in recent clinical studies (168, 169)

where SFN was shown to be readily bioavailable (170); however,

SFN is unstable, requires storage at freezing temperature, and

SFN-enriched extracts are difficult to prepare and very

expensive (163).

Although most of the research on the biological effects of

SFN is focused on cancer because of its effect on cell cycle and

apoptosis (171–173), it also regulates bone cells: in vitro, SFN

inhibits monocyte cell proliferation and osteoclast differentiation

in multiple ways, detailed above (100–104), while increases

mineralization in mouse MSCs and in an ex vivo culture of

calvariae explants (97). Notably, in one in vivo study the

administration of SFN for 5 weeks to normal and

ovariectomized mice lead to an approximate 20% increase in

bone mass (97), shifting the balance of bone homeostasis and

favoring bone acquisition and/or mitigation of bone resorption.

Of note, our group recently demonstrated that GRA

obtained from Tuscan black kale promotes osteogenesis in

human MSCs, independent of SFN, and this effect is

associated to the release of H2S and an increased H2S uptake

inside the cells (98). This is relatively unexpected as GLS have

been considered for many years a relatively inert precursor of

reactive derivatives ITCs. Although the chemistry underlying

this phenomenon is still unclear and will require further

investigation, this finding suggests that GLS may exert

inherent biological activity based on their capacity to

release H2S.

As the hydrolytic product of GRA, SFN, had been already

shown to inhibit the activity of osteoclast in bone, it can be

suggested that the ‘GRA-SFN system’ exerts a beneficial effect on

bone both at level of GLS and of its cognate ITC. The routes of

absorption of GRA and SFN as well as the proposed mode of

action on bone cells is summarized in Figure 4.
Clinical studies

OSCs and chronic diseases

Despite this review focuses primarily on the skeletal effects of

OSCs, much of the clinical research on the health benefits of

OSCs is aimed at metabolic or cardiovascular disease and cancer.

Vegetables or extracts rich in OSCs improved dyslipidemia,

insulin resistance, hypertension and cardiovascular risk linked to

atherosclerotic plaques in human studies.

Among interventional, randomized clinical trials, Jeon et al.

evidenced that ethanol extracts from Brassica rapa ,

administrated as a part of the diet of overweight human for 10

weeks, induce a significant increase in the HLDL-cholesterol

concentration and a significant reduction in the total cholesterol/

HDL-cholesterol ratio, free fatty acid, and adipsin levels (174). A
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randomized double-blind trial, performed by Bahadoran et. al.,

investigated the effects of broccoli sprouts powder containing

high concentration of SFN for four weeks in type 2 diabetic

patients and showed that broccoli sprouts improve insulin

resistance by decreasing serum insulin concentration and

‘homeostatic model assessment for insulin resistance’ (HOMA-

IR) score (175).

In a prospective cohort study on Australian women aged

70 years and older, without clinical atherosclerotic vascular

disease (ASVD) or diabetes mellitus at baseline, Blekkenhorst

et al. investigated the occurrence of ASVD‐related deaths

during 15 years of follow‐up and correlated it with several

dietary intake, through a multivariable‐adjusted model.

Among the nutrients tested, intakes of cruciferous and

Allium vegetables were inversely associated with ASVD

mortality supporting the evidence that the effect of increased

intake of cruciferous and Allium vegetables lowered

cardiovascular disease risk (176).

In cancer, treatment with OSCs-rich food showed promising

results as chemopreventive.

A placebo double-blind randomized controlled trial on men

scheduled for prostate biopsy and treated with broccoli sprout

extract (BSE) supplementation (providing SFN and myrosinase)

for 4.4 wk, performed by Zhang et. al., showed that BSE

supplementation correlated with changes in gene expression but

not with other prostate cancer immunohistochemistry biomarkers

(173). In a double-blind placebo randomized clinical trial in

patients with colorectal adenomas-precancerous lesions of the

large bowel treated with aged garlic extract (AGE), Tanaka et al.

demonstrated that AGE significantly reduced the size and number

of colon adenomas in patients after 12 month (25). Several

epidemiological studies showed that SFN consumption has been

reported to be associated with a lower risk of cancer development

(breast, lung, stomach, esophagus, mammary glands, gastric,

colorectal, prostate, skin, head and neck, and liver) (172). In a

large cohort studyMillen et al. correlated the presence of adenoma

with food intake of several fruit and vegetables, as assessed by a

food-frequency questionnaire, and showed that onions and garlic

were significantly related to lower risk of adenoma (177). Notably,

a randomized double-blinded intervention study, performed by

Traka et. al., showed that consuming GRA-rich broccoli for 12

months reduced the risk of prostate cancer progression (178). In

particular, patients administrated with a weekly portion of soup

made from a standard broccoli or 2 experimental broccoli

genotypes with enhanced concentrations of GRA, showed dose-

dependent attenuated activation of gene expression associated to

oncogenic pathways in transperineal biopsies; and an inverse

association between consumption of cruciferous vegetables and

cancer progression was observed (178).

Overall, these studies highlighted the significant role of diet

administration of OSCs in several chronic diseases and

substantiate the relevance of creating specific dietary regimen

for their prevention.
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OSCs in the prevention of bone loss and
skeletal frailty

A few clinical trials or population-based studies have

revealed positive relationships between the consumption of

vegetables, bone density, muscle strength and fractures in

women/men, as summarized in Table 6.

Matheson et al. used a food frequency questionnaire added

to the Nutritional Health and Nutrition Examination Survey

(2003–2004) to examine the correlation between habitual

consumption of onion over the past 12 months to BMD (N

unweighted =507; N weighed =35.7 million). They found that

higher consumption of onion increased the BMD by 5% (179).

Law et al. administrated onion juice to healthy men and women

and post-menopausal women for 8 weeks and investigated the

association with bone BMD; the results found that the BMD of 3

postmenopausal women was mildly improved at the end of the

treatment (85).

In an intriguing study, Blekkenhorst et al. used a food

frequency questionnaire to examine the associations of

vegetable and fruit intakes, separately, and specific types of

vegetables and fruits with fracture-related hospitalizations in a

prospective cohort of elderly women (mean age ≥ 70; n=1468);

the authors found that the consumption of vegetable, but not

fruit, is associated to a lower incidence of fracture; of note, the

habitual consumption of cruciferous vegetables and Allium

vegetables was significantly inversely associated with all

fractures (18); importantly, these results were adjusted for

energy intake and physical activity.

In musculoskeletal ageing, sarcopenia and declining physical

activity are often associated with osteoporosis as the clinical

hallmarks of frailty (180).

Interestingly, a prospective cohort study performed on elderly

women (mean age ≥ 70; n=1429) investigated the correlation

between vegetable consumption and incident falls-related

hospitalization over a time-period of 14 years. The authors found

that hospitalizations were lower in participants consuming more

vegetables, but the consumption of cruciferous vegetables was most

strongly associated with lower falls-related hospitalization (181) and

was associated with increased muscle strength.

Finally, cross-sectional study, by Gu et. al., demonstrated a

positive correlation between raw garlic consumption, assessed

using a food frequency questionnaire, and handgrip strength in

both males and females (182). The results were adjusted for age,

body mass index, smoking status, alcohol-consumption status,

education levels, employment status, household income, family

history of diseases (cardiovascular disease, hypertension,

hyperlipidemia, and diabetes), metabolic syndromes, physical

activity, total energy intake, dietary pattern, onion intake.

Although this study did not directly assess indexes of bone

quantity, it supports an overall protective effect of OSCs-rich

vegetables on the musculoskeletal system (181).
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Perspectives and challenges

The present literature revision stems from the increasing

appreciation of the link between dietary habits, and particularly

the use of phytochemicals, and bone health. We show that a

growing body of evidence supports a beneficial effect of dietary

OSCs on skeletal health. Of note, although a few population-

based studies offer interesting clues on the clinical relevance of

OSCs-rich vegetables for the prevention of bone fragility (18, 85,

179, 183), no clinical studies have been performed yet to

specifically address the potential protective role of OSCs

against osteoporosis or bone fractures; this goal would require

a study design including a controlled intake of OSCs-rich

nutrients for long time-periods and/or the evaluation of

purified OSCs molecules.

The ability of OSCs to work a as dietary source of the

bioact ive molecule H2S provide interest ing future

perspectives. OSCs-rich vegetables appear as the ideal

candidate for clinical investigations on whether nutrients

rich in sulfur can affect the pool of circulating reactive

sulfur species (RSS), which include H2S; this may have a

broad implication for the prevention of those pathologies,

sometimes referred to as ‘H2S-poor diseases’, where the onset

of the disease was associated to a lower systemic

concentration of RSS compared to healthy controls.

Increasing systemic RSS levels may also have important

implication for bone-wasting diseases such as osteoporosis:

indeed, animal studies have established that the bone loss

associated to estrogen deficiency or to corticosteroid therapy

is associated to a low systemic level of H2S (157, 159).

However, these preclinical data still await confirmation in

observational clinical studies in humans. To obtain reliable

data on this topic, it will be critical to include in the study

design a robust analytical methodology to quantitatively

measure the different sulfur species in human serum or

plasma since they may hold different importance in

different pathologies (184, 185) and the high reactivity of

these gaseous molecules implies a complex chemistry (186).

Further investigations may be addressed to the evaluation of

the effect of these compounds on the gut-bone axis. OSCs show a

considerable ability to modulate the gut microbiome and its

secondary metabolites (187–190) and to mitigate the gut-based

inflammatory response; given the paramount importance of

metabolites and cytokines originated from the gut on the

regulation on bone metabolism (191), it is conceivable that

dietary OSCs may modulate the bone-bioactive components of

the microbiota.

In the end, it is apparent that members of the OSCs family

of phytochemicals affect bone homeostasis in several ways and

may provide new insights into the potential bone health

benefits of plant-derived food and leading to a more effective

prevention of osteoporosis by non-pharmacological tools.
frontiersin.org

https://doi.org/10.3389/fendo.2022.937956
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Gambari et al. 10.3389/fendo.2022.937956
This review may be useful to fuel clinical trials that may use a

robust set of outcome measurements, aiming at assessing both

bone quantity and bone quality before and after specific

nutrition protocols; correlation between nutrients intake,

H2S blood levels and bone status would help to define

preventive/clinical dietary protocols for patients with an

increased risk of bone fragility.
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ACP5 Acid phosphatase 5, tartrate resistant

AG Age-associated

AGE Aged garlic extract

AITC Allyl isothiocyanate

ALP Alkaline phosphatase

ASCOs S-alk(en)yl cysteine sulfoxides

AS Allyl sulfide

ASVD Atherosclerotic vascular disease

Atg5 Autophagy related 5

Atg12 Autophagy related 12

BITC Benzyl isothiocyanate

BM Bone marrow

BMD Bone mineral density

BMM Bone marrow macrophages

BMMSCs Bone marrow-derived mesenchymal stem cells

BMP Bone morphogenetic protein

BS/BV Bone surface/bone volume

BSE Broccoli sprout extract

BSP Bone sialoprotein

BV Bone volume

BVF Bone volume fraction

BV/TV Bone volume / trabecular volume

CAT Catalase

CBS Cystathionine beta synthase

Clcr Calcitonin receptor-like receptor

CCK-8 Cell counting kit-8

c-fms Colony-stimulating factor-1 receptor

Col I Collagen I

CSE Cystathionine-g-lyase

CTR Calcitonin receptor

CTX-I Serum type I collagen breakdown product

CTSK Cathepsin K

DADS Diallyl disulfide

DATS Diallyl trisulfide

DC-
STAMP

Dendritic cell-specific transmembrane protein

DEXA Dual-energy X-ray absorptiometry

Dlx5 Distal-Less Homeobox 5

DPDS Dipropyl disulfide

ECM Extracellular matrix

ER Erucin

ERK Extracellular signal-regulated kinase

EZ4U 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide-like
assay

FcRg Fc receptor standard g chain

FOXO Forkhead box O

GCLC Glutamate cysteine ligase catalytic subunit

GCLM Glutamate-cysteine ligase modifier subunit
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GH Growth hormone

GLS S-b-thioglucoside N-hydroxhysulfates; glucosinolates

GPCS g-glutamyl-trans-S-1-propenyl-L-cysteine sulfoxide

GRA Glucoraphanin

GSAC g-glutamyl-S-allyl-L-cysteine

GSH Glutathione

HBITC 4-hydroxybenzyl isothiocyanate

HO1 Heme oxygenase-1

HOMA-
IR

Homeostatic Model Assessment for Insulin Resistance

H2S Hydrogen sulfide

IGF-1 Insulin-like growth factor 1

ITCs Isothiocyanates

JAK2 Janus Kinase 2

JNK Jun N-terminal kinases

KEAP-1 Kelch-like erythroid-cell-derived protein with CNC homology
(ECH)-associated protein

LC3-II Microtubule-associated protein 1A/1B-light chain 3

LPS Lipopolysaccharide

MAPK Mitogen-activated protein kinase

M-CSF Macrophage colony-stimulating factor

MMP-9 Matrix metallopeptidase 9

MDA Malondialdehyde

MSC Mesenchymal stromal cells

MTT 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NFATc1 Nuclear factor-activated T cells c1

NF-kB Nuclear factor kappa-light-chain-enhancer of activated B cells

NQO1 NAD(P)H: quinone oxidoreductase 1

NOX-1 NADPH oxidase 1

NRF2 Nuclear factor erythroid-derived 2-related factor 2

OCN Osteocalcin

OC-
STAMP

Osteoclast-stimulatory transmembrane protein

OP Osteoporosis

OPG Osteoprotegerin

OPN Osteopontin

OSCAR Osteoclasts-specific activating receptor

OSCs Organosulfur compounds

OSX Osterix

P1NP Procollagen 1 intact N-terminal propeptide

PeCSO g-glutamyl-propenyl-L-cysteine sulfoxide

pNPP p-nitrophenyl phosphate

PPAR-g Proliferator-activated receptor-g

PRDX-1 Peroxiredoxin 1

PTH Parathormone

RAC1 RAC family small GTPase 1

RANK Receptor activator of nuclear factor k B

RANKL Receptor activator for nuclear factor k B ligand

RUNX-2 Runt-related transcription factor 2

ROS Reactive oxygen species

RSS Reactive sulfur species
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SAC S-allylcysteine

SAMC S-allylmercaptocysteine

SAMG S-allylmercaptoglutathione

SFN Sulforaphane

SIRT Sirtuin

SMAD-1 SMAD family member 1

STAT3 Signal transducer and activator of transcription 3

Tb.N Trabecular number

Tb.Th Trabecular thickness

Tb.Sp Trabecular space

TRAF-6 Tumor necrosis factor receptor-associated factor 6

TRAP Tartrate-resistant acid phosphatase

TRAP5b Tartrate-resistant acid phosphatase 5b

VOSCs Volatile organosulfur compounds

WISP-1 WNT1-inducible-signaling pathway protein 1

Wnt Wingless/Integrated

WST-8 Water-soluble
tetrazolium-8
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