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Abstract: The cytochrome P450 2D6 (CYP2D6) genotype is the single most important determinant of
CYP2D6 activity as well as interindividual and interpopulation variability in CYP2D6 activity. Here,
the CYP2D6 activity score provides an established tool to categorize the large number of CYP2D6
alleles by activity and facilitates the process of genotype-to-phenotype translation. Compared to
the broad traditional phenotype categories, the CYP2D6 activity score additionally serves as a
superior scale of CYP2D6 activity due to its finer graduation. Physiologically based pharmacokinetic
(PBPK) models have been successfully used to describe and predict the activity score-dependent
metabolism of CYP2D6 substrates. This study aimed to describe CYP2D6 drug–gene interactions
(DGIs) of important CYP2D6 substrates paroxetine, atomoxetine and risperidone by developing a
substrate-independent approach to model their activity score-dependent metabolism. The models
were developed in PK-Sim®, using a total of 57 plasma concentration–time profiles, and showed
good performance, especially in DGI scenarios where 10/12, 5/5 and 7/7 of DGI AUClast ratios and
9/12, 5/5 and 7/7 of DGI Cmax ratios were within the prediction success limits. Finally, the models
were used to predict their compound’s exposure for different CYP2D6 activity scores during steady
state. Here, predicted DGI AUCss ratios were 3.4, 13.6 and 2.0 (poor metabolizers; activity score = 0)
and 0.2, 0.5 and 0.95 (ultrarapid metabolizers; activity score = 3) for paroxetine, atomoxetine and
risperidone active moiety (risperidone + 9-hydroxyrisperidone), respectively.

Keywords: physiologically based pharmacokinetic (PBPK) modeling; paroxetine; atomoxetine;
risperidone; cytochrome P450 2D6 (CYP2D6)

1. Introduction

Differences in CYP2D6 activity have been described as early as the 1970s [1,2] and have
since been a major focus of clinical research, as CYP2D6 is involved in the metabolism of
approximately 20% of clinically relevant drugs [3]. Polymorphic expression of the CYP2D6
gene has been identified as the single most important determinant of CYP2D6 activity
leading to a substantial interindividual and interpopulation variability observed in the
pharmacokinetics of CYP2D6 substrates [4]. For instance, homozygous carriers of loss-of-
function alleles (genetic poor metabolizers) show no detectable CYP2D6 activity [3] and
are consequently unable to biotransform drugs via CYP2D6 [4]. In contrast, individuals
carrying multiple copies of a normal function allele (genetic ultrarapid metabolizers)
generally display increased CYP2D6 activity compared to homozygous carriers of wildtype
alleles (genetic normal metabolizers) [5] and show accelerated biotransformation of CYP2D6
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substrates. Both poor and ultrarapid metabolizers are at an increased risk for experiencing
dose-dependent adverse drug effects or a lack of response, depending on the CYP2D6
substrate [4].

To address this issue, pharmacogenetic testing for variants in CYP2D6 has become
an important cornerstone for personalized drug therapy [6] with the overall aim to im-
prove efficacy and patient safety while simultaneously reducing costs of drug therapy,
for example, due to hospitalizations caused by adverse drug reactions (ADRs) [7]. Here,
the CYP2D6 activity score system serves as an indispensable tool to translate genotype
data into phenotypes. Moreover, the activity score system can provide more fine-grained
estimations of CYP2D6-dependent drug clearance [8], and, by extension, serves as an
important basis for the development of actionable clinical guidelines [9]. Its main benefit
is the aggregation of the >10,000 possible CYP2D6 [10–13] genotypes into a manageable
scoring system by assigning a numeric value ranging from 0 to 1 to CYP2D6 alleles based
on their in vitro and in vivo CYP2D6 activity [8]. Based on their genetic makeup, an indi-
vidual’s activity score can subsequently be translated into one of the following metabolizer
phenotypes: poor (AS = 0), intermediate (0 < AS ≤ 1), normal (1 < AS ≤ 2.25) or ultrarapid
metabolizer (AS > 2.25) [5]. Importantly, these phenotype categories are not identical to
the “traditional” phenotype definitions, determined using phenotyping methods (e.g., cal-
culating urinary metabolic ratios or screening for null alleles [8,14,15]). Consequently, the
“traditional” extensive metabolizer and the normal metabolizer categories only display a
limited intersection in terms of CYP2D6 activity [16].

While the activity score system’s main purpose is the facilitation of genotype-to-
phenotype translation, it has been suggested to provide an even finer graduated scale
of CYP2D6 activity, allowing to infer a percentage of CYP2D6 activity (relative to activ-
ity score = 2) compared to the broad categories of traditional phenotypes [5]. Findings
obtained from previously published physiologically based pharmacokinetic (PBPK) mod-
els of important CYP2D6 substrates dextromethorphan and metoprolol demonstrated a
possibility to translate the CYP2D6 activity score into an apparent CYP2D6 clearance, re-
flected in increasing CYP2D6 catalytic rate constant (kcat) values with increasing activity
scores [15,17]. Here, drug–gene interaction (DGI) PBPK models provide a practical ap-
proach to mechanistically implement the activity score-dependent metabolism of CYP2D6
substrates [18].

The objective of this study was to implement the activity score-dependent metabolism
in PBPK models of various important CYP2D6 substrates. For this, new models were
developed for the selective serotonin reuptake inhibitor (SSRI) and CYP2D6 inhibitor
paroxetine and the norepinephrine reuptake inhibitor (NRI) atomoxetine. The continuous
scale of activity score-dependent metabolism derived from PBPK models of CYP2D6
substrates dextromethorphan and metoprolol was additionally implemented in these
new PBPK models as well as an established PBPK model of the atypical antipsychotic
risperidone, originally based on traditional phenotype categories.

2. Materials and Methods
2.1. Workflow

The overall workflow for this study included (I) the collection of clinical study data,
(II) PBPK base model building (paroxetine, atomoxetine) and (III) PBPK base model
evaluation (paroxetine, atomoxetine. Published PBPK DGI models (metoprolol, dex-
tromethorphan) were used to (IV) derive the scale of their CYP2D6 activity score-dependent
metabolism and implement it during the (V) DGI model building process (paroxetine, ato-
moxetine, and risperidone). After (VI) DGI model evaluation (paroxetine, atomoxetine, and
risperidone), the models were applied to (VII) simulate steady-state exposure in different
DGI scenarios (paroxetine, atomoxetine, and risperidone). Figure 1 schematically depicts
the workflow for this study.



Pharmaceutics 2022, 14, 1734 3 of 20

Pharmaceutics 2022, 14, 1734 3 of 22 
 

 

different DGI scenarios (paroxetine, atomoxetine, and risperidone). Figure 1 schematically 

depicts the workflow for this study. 

 

Figure 1. Workflow of the literature search of clinical study data, PBPK base model building, PBPK 

base model evaluation, DGI model building, DGI model evaluation and DGI model application pro-

cesses for the modeled compounds. 

2.2. Software 

PBPK models were developed in PK-Sim®  (Open Systems Pharmacology Suite 10, 

www.open-systems-pharmacology.org, 2021). Clinical study data from the literature 

were digitized with GetData Graph Digitizer 2.26.0.20 (©  S. Fedorov, http://www.getdata-

graph-digitizer.com/index.php, 2013) according to best practices [19]. Sensitivity analyses 

and model parameter optimizations (Monte Carlo algorithm) were performed within PK-

Sim® . Pharmacokinetic parameters, model performance metrics and plots were calculated 

and generated using Python (version 3.10.4, Python Software Foundation, Wilmington, 

DE, USA, 2022). Regression analyses were performed using ordinary least squares (OLS) 

regression utilizing the statsmodels package (version 0.13.2, https://github.com/stats-

models/statsmodels, 2021) [20]. 

2.3. Clinical Study Data 

An extensive literature search was conducted to gather individual and aggregated 

plasma concentration–time profiles after intravenous and oral administrations in single 

Figure 1. Workflow of the literature search of clinical study data, PBPK base model building, PBPK
base model evaluation, DGI model building, DGI model evaluation and DGI model application
processes for the modeled compounds.

2.2. Software

PBPK models were developed in PK-Sim® (Open Systems Pharmacology Suite 10,
www.open-systems-pharmacology.org, 2021). Clinical study data from the literature were
digitized with GetData Graph Digitizer 2.26.0.20 (© S. Fedorov, http://www.getdata-graph-
digitizer.com/index.php, 2013) according to best practices [19]. Sensitivity analyses and
model parameter optimizations (Monte Carlo algorithm) were performed within PK-Sim®.
Pharmacokinetic parameters, model performance metrics and plots were calculated and
generated using Python (version 3.10.4, Python Software Foundation, Wilmington, DE,
USA, 2022). Regression analyses were performed using ordinary least squares (OLS) re-
gression utilizing the statsmodels package (version 0.13.2, https://github.com/statsmodels/
statsmodels, 2021) [20].

2.3. Clinical Study Data

An extensive literature search was conducted to gather individual and aggregated
plasma concentration–time profiles after intravenous and oral administrations in single
and multiple-dose regimes of paroxetine, atomoxetine, and risperidone. Additionally,
population or individual demographics (sex, age, weight, and height) alongside CYP2D6
activity (phenotype, genotype, or activity score) were extracted from the respective studies.
The collected plasma concentration–time profiles were split into a training dataset for model

www.open-systems-pharmacology.org
http://www.getdata-graph-digitizer.com/index.php
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development, and a test dataset for model performance evaluation. Studies for model
training were selected to include sufficient data covering different routes of administration
(intravenous and oral), formulations (oral solution or solid dosage forms), a wide range of
doses as well different CYP2D6 genotypes, activity scores or phenotypes.

2.4. PBPK Base Model Building

The paroxetine and atomoxetine PBPK base models were developed using a sequential
approach. First, appropriate quantitative structure–activity relationship (QSAR) methods
to estimate partition coefficients and cellular permeabilities were selected by the smallest
residual error for fitting simulations of intravenous administrations (paroxetine) or all
studies of the training dataset (atomoxetine) to their observed data. Second, simulations
of administrations of oral solutions were optimized against the respective clinical data to
estimate intestinal permeability. Third, parameters for CYP2D6-independent metabolism
were informed by fitting simulations of single and multiple-dose oral administrations in
poor metabolizers of CYP2D6 to their respective observed data. Finally, parameters for
CYP2D6-mediated metabolism were optimized for studies of the training dataset where the
volunteers were extensive metabolizers. Here, the term “extensive metabolizers” was used
to group populations that were either phenotyped via traditional phenotyping methods or
populations, which were not phenotyped.

For the risperidone base model, a published PBPK model by Kneller et al. [21]
was used.

2.5. PBPK Base Model Evaluation

The performance of the presented models was evaluated using graphical and statistical
methods. First, predicted plasma concentration–time profiles were compared graphically
with measured data from the respective clinical studies by plotting model population
predictions (arithmetic mean ± SD) together with observed data points. For this purpose,
virtual populations of 1000 individuals were created based on the population characteristics
reported in the respective publication. System-dependent parameters, such as age, body
weight, height, organ weights, blood flow rates, and tissue composition, were varied by
the implemented algorithm in PK-Sim®. Second, the plasma concentration values of all
studies using the predicted arithmetic mean of the population were plotted against the
corresponding observed values in goodness-of-fit plots. In addition, model performance
was evaluated by a comparison of predicted to observed area under the concentration–
time curve (AUC) and maximum plasma concentration (Cmax) values. All AUC values
(predicted as well as observed) were calculated from the time of the first concentration
measurement to the time of the last concentration measurement (AUClast).

Finally, as quantitative measures of the model performance, the mean relative devia-
tion (MRD) of all predicted plasma concentrations (Equation (1)) and the geometric mean
fold error (GMFE) of all predicted AUClast and Cmax values (Equation (2)) were calculated.

MRD = 10x; x =

√√√√ ∑k
i=1 (log 10ĉi − log10ci

)2

k
(1)

where ĉi = predicted plasma concentration that corresponds to the i-th observed concentra-
tion, ci = i-th observed plasma concentration, and k = number of observed values.

GMFE = 10x; x =
∑m

i=1

∣∣∣log10

(
ρ̂i
ρi

)∣∣∣
m

(2)

where P̂i = predicted AUClast or Cmax value of study, pi = corresponding observed AUClast
or Cmax value of study, i, and m = total number of studies.



Pharmaceutics 2022, 14, 1734 5 of 20

2.6. Local Sensitivity Analysis

Local sensitivity of the AUC0–24 h of paroxetine, atomoxetine, risperidone or 9-hydroxy-
risperidone to single parameter changes was analyzed for simulations of single orally
administered standard doses of paroxetine, atomoxetine, and risperidone, respectively.
Parameters were included in the analysis if they have been optimized (intestinal permeabil-
ities and kcat values), if they are associated with optimized parameters (KM values) or if
they might have a strong impact due to calculation and QSAR methods used (lipophilicities,
pKa values and fractions unbound (fu)). A detailed description of the model sensitivity
analysis is provided in Section S1.4 of Supplementary Materials S1. Overviews of all varied
parameters for the respective compounds are provided in Sections S2.2.3, S3.2.3 and S4.2.3
of Supplementary Materials S1.

2.7. DGI Model Building

CYP2D6-dependent clearance processes were modeled using Michaelis–Menten kinet-
ics according to Equation (3):

v =
Vmax · S
KM+S

=
kcat · E · S

KM+S
(3)

where v = reaction velocity at substrate concentration S, Vmax = maximum reaction velocity,
KM = Michaelis–Menten constant, kcat = catalytic rate constant, and E = enzyme concentration.

The CYP2D6 DGI models for paroxetine, atomoxetine, and risperidone were developed
based on two previously published models for the CYP2D6 substrates metoprolol [17]
and dextromethorphan [15]. Relative kcat values, defined as the ratio of kcat values for
populations with a variant activity score and the kcat for populations with an activity score
of 2 (corresponding to 100% of CYP2D6 activity), were calculated according to Equation (4):

kcat, rel, AS=i =
kcat, AS=i

kcat, AS=2
× 100% (4)

where kcat, rel, AS = i = kcat for the investigated activity score relative to AS = 2 and kcat, AS = i = kcat
for activity score i.

Activity scores were assigned according to the current consensus [5]. CYP2D6 kcat, rel
values used to describe the activity score-dependent metabolism of metoprolol [17] and
dextromethorphan [15] in their respective DGI PBPK models, were analyzed using OLS
regression (polynomial of degree 2, no intercept). For the paroxetine, atomoxetine and
risperidone models, CYP2D6 kcat values were optimized for studies, which reported plasma
concentration–time profiles of populations with two wildtype alleles (AS = 2) and were
set to 0 for poor metabolizers of CYP2D6 (AS = 0) as they were assumed to show no
CYP2D6 activity [3]. Subsequently, kcat values for all other modeled activity scores were
calculated using the polynomial equation obtained from the OLS regression of metoprolol
and dextromethorphan kcat values. Here, CYP2D6 KM values as well as CYP2D6 reference
concentrations were kept constant over the whole range of modeled activity scores.

2.8. DGI Model Evaluation

To evaluate the performance of the presented DGI models, as well as the implemented
scale of CYP2D6 activity score-dependent metabolism derived from the published metopro-
lol and dextromethorphan PBPK DGI models, predicted plasma concentration–time profiles
were plotted alongside their respective observed data. Plasma concentration–time profiles
for populations with variant activity scores were compared to profiles of a population with
normal activity (AS = 2) in studies reporting activity scores or genotypes, whereas plasma
concentration–time profiles for variant phenotypes were compared to those of the extensive
metabolizer phenotype, where only CYP2D6 phenotypes were reported. Furthermore,
predicted DGI PK ratios (AUClast and Cmax ratios) (Equation (5)) were evaluated for study
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populations with variant CYP2D6 activity scores or phenotypes alongside GMFE values
(Equation (2)) for the predicted PK ratios.

DGI PK ratio =
PKDGI

PKreference
(5)

where PKDGI = AUClast or Cmax of either a variant activity score or a variant pheno-
type; PKreference = AUClast or Cmax of either AS = 2 or the extensive metabolizer pheno-
type, respectively.

Additionally, steady-state exposures (AUCss) of model compounds were predicted for
different CYP2D6 activity scores. Here, simulations were performed for individuals with
different activity scores after multiple oral doses of 40 mg paroxetine, 40 mg atomoxetine,
or 2 mg risperidone.

3. Results
3.1. PBPK Base Model Building

A total of 57 plasma concentration–time profiles obtained from 29 published clinical
trials were used for the development and the evaluation of the paroxetine, atomoxetine,
and risperidone PBPK models and are summarized in Table 1. Clinical study tables
providing comprehensive information such as individual and population demographics
(sex, age, weight, and height) and CYP2D6 activity (phenotype, genotype, or activity
score) as well as the assignment of the study to the respective dataset are presented in
Sections S2.1.2, S3.1.2 and S4.1.2 of Supplementary Materials S1 for paroxetine, atomoxetine,
and risperidone, respectively.

For the paroxetine PBPK model, a total of 33 plasma concentration–time profiles where
paroxetine was administered as an intravenous infusion (four profiles) or orally in single
(16 profiles) or multiple (13 profiles) doses were used to develop the paroxetine PBPK model.
Here, administered doses ranged from 10 to 70 mg of paroxetine. The paroxetine PBPK
model incorporates CYP2D6- and CYP3A4-dependent metabolism of paroxetine [22] as well
as irreversible inhibition of CYP2D6 and CYP3A4 [23]. Additionally, an unspecific hepatic
clearance process and renal elimination via passive glomerular filtration were included.
A schematic overview of implemented paroxetine metabolic pathways is provided in
Figure 2a. Drug-dependent model parameters for paroxetine are presented in Section S2.1.1
of Supplementary Materials S1.

The atomoxetine PBPK model was developed using 12 plasma concentration–time
profiles after oral administrations of atomoxetine in single (nine profiles) and multiple-
dose administrations (three profiles) with doses of administered atomoxetine ranging
between 20 and 50 mg. The atomoxetine PBPK model includes metabolism via CYP2D6
and CYP2C19 [24] as well as a passive glomerular filtration process. Figure 2b depicts the
pathways implemented in the atomoxetine model. Atomoxetine drug-dependent model
parameters are presented in Section S3.1.1 of Supplementary Materials S1.

An overview of risperidone model pathways as published by Kneller et al. [21] is
provided in Figure 2c. Risperidone and 9-hydroxyrisperidone drug-dependent parameters
are listed in Section S4.1.1 of Supplementary Materials S1.
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Table 1. Summary of clinical studies used for model development and evaluation.

Study Dose [mg] n Females [%] Age [Years] Weight [kg] CYP2D6 Status References

Paroxetine
Belle et al., 2002 20, p.o. (tab) 22 23 38 (20–49) - EM [25]
Calvo et al., 2004 20, p.o. (tab) 25 64 26 64 - [26]
Chen et al., 2015 25, p.o. (cr) 24 42 26 (18–45) 61 0.5, 1.0, 1.5, 2 [27]
Lund et al., 1982 23–28, i.v. (inf.); 45, p.o. (sol) 4 0 (24–28) (66–88) - [28]
Massaroti et al., 2005 20, p.o. (tab) 28 0 28 (18–42) 72 (57–87) - [29]
McClelland et al., 1984 70, p.o. (tab) 28 0 31 (22–44) - - [30]
Mürdter et al., 2016 40, p.o. (tab) 16 100 26 (21–43) 61 (48–74) 0, 0.5, 0.75, 1, 2, 3 [31–33]
Schoedel et al., 2012 20, p.o. (tab) 14 14 34 (19–55) 75 - [34]
Segura et al., 2005 20, p.o. (tab) 7 0 23 65 EM [35]
Sindrup et al., 1992 40, p.o. (tab) 17 0 25 (20–39) 77 (65–95) EM, PM [36]
van der Lee et al., 2007 20, p.o. (tab) 26 69 44 (18–64) 69 (51–89) EM [37]
Yasui-Furukori et al., 2006 20, p.o. (tab) 12 25 25 (20–35) 58 (46–75) 1.25 [38]
Yasui-Furukori et al., 2007 20, p.o. (tab) 13 23 24 (21–35) 57 (45–67) EM [39]
Yoon et al., 2000 40, p.o. (tab) 16 13 22 64 0, 0.5, 1.25, 2 [40]
Atomoxetine
Belle et al., 2002 20, p.o. (tab) 22 23 38 (20–49) - EM [25]
Byeon et al., 2015 40, p.o. (tab) 62 0 23 66 0, 1.25, 2 [41]
Cui et al., 2007 40-80, p.o. (tab) 16 33 (20–29) (53–72) 1 [42]
Kim et al., 2018 20, p.o. (tab) 19 0 (19–25) (49–73) 0.5, 2 [43]
Nakano et al., 2016 50, p.o. (tab, sol) 42 0 23 (20–37) 62 (52–76) EM [44]
Sauer et al., 2003 20, p.o. (tab) 7 0 41 (19–54) - EM, PM [45]
Todor et al., 2016 40, p.o. (tab) 30 0 (18–55) - EM, PM [46]
Risperidone
Bondolfi et al., 2001 2, p.o. (tab) 11 27 43 (18–63) - EM, PM [47]
Darwish et al., 2015 2, p.o. (tab) 36 33 32 79 - [48]
Kim et al., 2008 1, p.o. (tab) 10 0 (23–38) (65–80) 1.25 [49]
Markowitz et al., 2002 1, p.o. (tab) 11 21 28 (22–42) - - [50]
Mahatthanatrakul 2007 4, p.o. (tab) 10 0 31 (55–76) - [51]
Mahatthanatrakul 2012 2, p.o. (tab) 10 0 33 (23–44) 64 (55–76) - [52]
Nakagami et al., 2005 1, p.o. (tab) 12 0 24 (20–28) 65 (53–86) 1 [53]
Novalbos et al., 2010 1, p.o. (tab) 71 51 23 (19–34) 66 (43–106) 0, 1, 2, 3 [21,54]

Demographic parameters are given as the mean (range). CYP2D6 status is reported as the mode of the study population phenotype or activity score or the different phenotypes and
activity scores reported for the respective study sub-populations. -: not given, cr: controlled release tablet, EM: extensive metabolizer, inf: infusion, i.v. intravenous, PM: poor metabolizer,
p.o.: oral, sol: oral solution, and tab: tablet.
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Figure 2. Implemented metabolic pathways for the modeled compounds. (a) Paroxetine is metab-
olized via CYP2D6, CYP3A4, and an unspecific clearance process [22]. Moreover, paroxetine is a
mechanism-based inhibitor of CYP2D6 and CYP3A4 resulting in an irreversible auto-inhibition of
paroxetine metabolism [23,55]. Paroxetine metabolites were not included as model compounds.
(b) Atomoxetine is metabolized via CYP2D6 and CYP2C19 [24]. Atomoxetine metabolites were
not included as model compounds. (c) Risperidone is metabolized to its active metabolite 9-
hydroxyrisperidone via CYP2D6 and CYP3A4 [56]. Moreover, other metabolites are formed via
CYP2D6- and CYP3A4-mediated metabolism [56]. 9-Hydroxyrisperidone is metabolized via an
unspecific hepatic clearance process. Other risperidone metabolites were not included in the model.
CLhep: unspecific hepatic clearance, and CYP: cytochrome P450.

3.2. PBPK Base Model Evaluation

The three presented models could accurately predict the plasma concentrations for
their respective model compounds. A representative selection of plots displaying predicted
compared to observed plasma concentration–time profiles for paroxetine (a–f), atomoxetine
(g–i) and risperidone and its metabolite 9-hydroxrisperidone (j–l) is shown in Figure 3.
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Figure 3. Plasma concentrations of the modeled compounds. (a–f) Model predictions of paroxetine
of selected (a–c) single-dose administrations of (a) an intravenous infusion, (b) an oral solution,
and (c) a normal release tablet. (d–f) Multiple-dose administrations of paroxetine as normal release
tablets [25,26,28,29,35]. (g–i) Model predictions of atomoxetine as (g,h) single-dose administrations
of (g) an oral solution, (h) a capsule and (i) multiple-dose administration of atomoxetine [25,44].
(j–l) Model predictions of risperidone and 9-hydroxyrisperidone (if available) of (j,k) single-dose ad-
ministrations and (l) a multiple-dose administration of risperidone [47,51,52]. Individual predictions
are shown as lines. Population predictions (n = 1000) are shown as lines with ribbons (arithmetic
mean ± standard deviation (SD)), and symbols present the corresponding observed data ± SD (if
available). Detailed information on all clinical studies is listed in Section S2.1.2 [27,30,33,34,36–40],
Section S3.1.2 [41–43,45,57] and Section S4.1.2 [48,49,53,54] of the Supplementary Materials S1. iv:
intravenous, and po: oral.
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Additionally, plots displaying predicted compared to observed plasma concentration–
time profiles of the three compounds alongside their respective GMFEs for AUClast and
Cmax values as well as MRD of predicted and observed plasma concentrations are given in
Sections S2.2.1, S3.2.1, and S4.2.1 of Supplementary Materials S1. Furthermore, goodness-
of-fit plots showing predicted compared to observed plasma concentrations, AUClast and
Cmax values are presented in Sections S2.2.2, S3.2.2, and S4.2.2 of Supplementary Materials
S1. Overall, 82.7%, 88.9% and 89.2% of predicted plasma concentrations were within two-
fold of their corresponding observed value for paroxetine, atomoxetine, and risperidone,
respectively. Mean (and range) model GMFEs for paroxetine, atomoxetine and risperidone
were 1.51 (1.06–3.02), 1.20 (1.00–1.88) and 1.21 (1.00–1.83) for AUClast values, and 1.41
(1.01–3.64), 1.18 (1.02–1.34) and 1.21 (1.01–2.02) for Cmax values.

3.3. Local Sensitivity Analysis

Local sensitivity analyses were performed using simulations after oral administra-
tions of the respective standard doses for paroxetine (20 mg), atomoxetine (40 mg) and
risperidone (2 mg). Parameters with associated sensitivity values >0.5 (100% parameter
value perturbation resulting in a >50% change of predicted AUC) were considered sensitive.
Here, lipophilicity (literature value) and fu (literature value) were sensitive parameters for
the paroxetine model. Lipophilicity (optimized value), fu (literature value), CYP2D6 kcat
(optimized) and CYP2D6 KM (literature value) were sensitive parameters for the atomoxe-
tine model. Lipophilicity (literature value), fu (literature value) and intestinal permeability
(optimized value) were sensitive parameters for the risperidone model. A quantitative and
visual representation of the local sensitivity analysis is provided in Sections S2.2.3, S3.2.3
and S4.2.3 of Supplementary Materials S1.

3.4. DGI Model Building

An OLS regression of CYP2D6 kcat, rel values was performed for the published meto-
prolol and dextromethorphan models to derive a substrate-independent scale of activity
score-dependent metabolism for the newly developed models of paroxetine, atomoxetine,
and risperidone. The results of the OLS regression are displayed in Figure 4.
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Figure 4. OLS regression of CYP2D6 kcat, rel values for the published DGI models of metoprolol and
dextromethorphan [15,17]. The solid line represents the regression curve (degree = 2, intercept = 0),
and symbols represent kcat, rel values for the different activity scores. AS: activity score, kcat, rel: kcat

relative to AS = 2, and R2: coefficient of determination.

Input values and results of the regression analysis as well as CYP2D6 model kcat values
for the modeled activity scores (calculated using the Equation given in Figure 4) are shown
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in Table 2. Here, paroxetine, atomoxetine, and risperidone CYP2D6 model kcat values were
calculated by multiplying interpolated kcat, rel values with the optimized baseline kcat value
(activity score 2).

Table 2. OLS regression input values and interpolated kcat, rel values alongside model CYP2D6 kcat

values for paroxetine, atomoxetine, and risperidone for different CYP2D6 activity scores.

CYP2D6
Activity Score

CYP2D6 kcat, rel [%] CYP2D6 kcat [1/min] a

MET DEX INTRPL PAR ATO RIS9HR RISother

0 0 0 0 0.00 0.00 0 0.00
0.25 - 2 8 0.30 7.63 0.23 0.14
0.5 19 14 17 0.66 16.79 0.52 0.31
0.75 - - 27 1.08 27.48 0.84 0.51

1 - 40 39 1.56 39.70 1.22 0.74
1.25 64 48 53 2.11 53.44 1.64 1.00
1.5 72 63 68 2.71 68.70 2.11 1.29
2 100 100 102 4.09 b 103.82 b 3.19 b 1.94 b

3 213 170 189 7.58 192.37 5.91 3.60
-: not available, a: values calculated as the product of the relative kcat value and the optimized kcat for populations
with an activity score of 2, b: optimized value, ATO: atomoxetine, DEX: dextromethorphan, INTRPL: interpolated
values using the polynomial equation of the OLS regression, kcat, rel: kcat relative to AS = 2, MET: metoprolol, PAR:
paroxetine, RIS9HR: risperidone→ 9-hydroxyrisperidone, and RISother: risperidone→ other metabolites.

3.5. DGI Model Evaluation

The newly developed DGI models were evaluated using clinical studies, which strati-
fied their subjects by CYP2D6 activity score or phenotype. These studies either provided
the activity score for the investigated population, the CYP2D6 phenotype, or CYP2D6
genotypes of all study participants. Simulations were performed using the corresponding
kcat values with respect to activity score (Table 2) or phenotype (Sections S2.1.1, S3.1.1 and
S4.1.1 of Supplementary Materials S1). DGI model performance is presented in Figure 5,
depicting representative predicted compared to observed plasma concentration–time pro-
files of populations with different activity scores for paroxetine (a–f), atomoxetine (g–i) and
risperidone (j–l). Plots depicting the model performance of all DGI studies are presented in
Sections S2.3.1, S3.3.1 and S4.3.1 of Supplementary Materials S1.

Overall, predicted DGI AUClast and Cmax ratios were in good agreement with ob-
served DGI ratios, highlighting the good performance of the DGI models predicting the
activity score-dependent metabolism of paroxetine, atomoxetine, and risperidone, with
22/24 DGI AUClast and 22/24 Cmax ratios within the prediction success limits proposed by
Guest et al. [58] as depicted in Figure 6. The predicted DGI AUClast ratios showed mean
GMFEs of 1.37, 1.25 and 1.11 whereas the overall GMFEs of predicted DGI Cmax ratios were
1.33, 1.28 and 1.16 for paroxetine, atomoxetine, and risperidone, respectively. Predicted
to observed DGI AUClast and Cmax ratios for all studies are presented in Sections S2.3.3,
S3.3.3, and S4.3.3 of Supplementary Materials S1.

Simulations of steady-state plasma concentration–time profiles and AUCss values in
individuals with different activity scores after multiple oral doses of 20 mg paroxetine,
40 mg atomoxetine or 2 mg risperidone and a comparison of the corresponding AUCss
values are given in Figure 7. Predicted DGI AUCss ratios were 3.4, 13.6 and 2.0 for poor
metabolizers (activity score 0) compared to normal metabolizers (activity score 2) for parox-
etine, atomoxetine and risperidone active moiety (risperidone + 9-hydroxyrisperidone),
respectively. Conversely, predicted DGI AUCss ratios were 0.2, 0.5 and 0.95 for ultrarapid
metabolizers (activity score 3).
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Figure 5. Simulated plasma concentrations of the modeled compounds for different CYP2D6 activity
scores. (a–f) Paroxetine [33,40], (g–i) atomoxetine [41] and (j–l) risperidone [54] plasma concentration–
time profiles of selected CYP2D6 DGI studies, compared to their observed data [33,40,41,54]. Individ-
ual predictions are shown as lines. Population predictions (n = 1000) are shown as lines with ribbons
(arithmetic mean ± standard deviation (SD)), and symbols represent the corresponding observed
data ± SD (if available).
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Figure 6. Comparison plot of predicted versus observed (a) DGI AUClast ratios and (b) DGI Cmax

ratios for all analyzed CYP2D6 DGI studies. The straight black line indicates the line of identity,
curved black lines show prediction success limits proposed by Guest et al., including 1.25-fold
variability [58]. Solid gray lines indicate two-fold deviation, dashed gray lines show 1.25-fold
deviation. AUClast: area under the plasma concentration–time curve from the time of the first
concentration measurement to the time of the last concentration measurement, Cmax: maximum
plasma concentration, and DGI: drug–gene interaction.
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Figure 7. Model-based CYP2D6 DGI predictions. Left panel: simulations of drug exposure in indi-
viduals with different CYP2D6 activity scores after multiple oral doses of 40 mg paroxetine once daily
(a), 40 mg atomoxetine twice daily (c) or 2 mg risperidone twice daily (e). Right panel: comparison
of the corresponding AUCss values for the different activity scores for paroxetine (b), atomoxetine (d)
and risperidone active moiety ((f) risperidone and 9-hydroxyrisperidone concentrations). AUCss:
area under the plasma concentration–time curve during steady state (calculated for days 24–28), bid:
twice daily, and qd: once daily.



Pharmaceutics 2022, 14, 1734 14 of 20

4. Discussion

In this study, whole-body PBPK models of paroxetine, atomoxetine, and risperidone,
including its active metabolite 9-hydroxyrisperidone, are presented. A total of 57 studies
were used for model building and evaluation. CYP2D6 DGIs were modeled by implement-
ing CYP2D6 activity score-dependent metabolism of the respective compounds for activity
scores ranging from 0 to 3. Parameters for the CYP2D6 activity score-dependent metabolism
for the presented models were derived from previously published models [15,17] via inter-
polation and represent a substrate-independent approach of modeling CYP2D6 DGIs. All
three models showed good performance as highlighted in the model evaluation sections.

Previously published PBPK models of paroxetine, atomoxetine and risperidone typi-
cally implemented CYP2D6 DGIs by adjusting model parameters such as CLint, KM or kcat
values based on traditional CYP2D6 phenotypes (extensive and poor metabolizer) [59,60]
or specific CYP2D6 genotypes such as CYP2D6*1/*1 and CYP2D6*10/*10 [43], whereas the
presented model can accurately describe both traditional phenotypes as well as CYP2D6
activity scores, allowing the models to predict compound plasma concentrations for all
relevant genotypes to provide a finer graduation of CYP2D6 activity [17].

The CYP2D6 activity score-dependent metabolism was modeled by adjusting CYP2D6
kcat values based on the activity score of the respective individual or population. Hence,
the kcat value serves as a surrogate parameter, reflecting changes in both in vivo reference
concentration [61] and in vitro Vmax [62] that typically occur due to polymorphisms in
the CYP2D6 gene. Here, KM and CYP2D6 reference concentrations were fixed over the
whole range of modeled activity scores and phenotypes [18]. Model CYP2D6 kcat values for
extensive metabolizers were consistently lower compared to normal metabolizers (activity
scores 1.25–2, see Table 2 and Sections S2.1.1, S3.1.1 and S4.1.1 of Supplementary Materials
S1 for paroxetine, atomoxetine and risperidone, respectively). Specifically, the CYP2D6
kcat values for extensive metabolizers were 35%, 30% and 36% lower compared to activity
score 1.25 for paroxetine, atomoxetine and risperidone, respectively. This is caused by
the limited intersection between the aforementioned activities, mainly due to the often
arbitrary definition of the extensive metabolizer phenotype [16].

While the presented approach of modeling CYP2D6 DGIs based on the activity score
categories was a necessary simplification, it also represents one of the limitations of the
presented study and, by extension, the activity score system itself. As suggested by van der
Lee et al., CYP2D6 DGIs may be more accurately described using a continuous scale ap-
proach, reflecting the effect of CYP2D6 allelic variants on the pharmacokinetics of CYP2D6
substrates in vivo and in vitro compared to the activity score system [9]. Additionally,
certain CYP2D6 alleles have been described to display substrate-specific effects in vitro
and in vivo. For instance, the CYP2D6*17 allele, classified as a reduced function (activity
score 0.5) allele, shows increased activity in risperidone metabolism when compared to
the wildtype *1 allele [63]. These effects are not considered in the classification of alleles
using the activity score system [61]. Regardless, current clinical guidelines by the Dutch
Pharmacogenetics Working Group (DPWG), the Clinical Pharmacogenetics Implementation
Consortium (CPIC) and other major institutions in this field, are based on the activity score
system [5]. Moreover, a allele-specific modeling approach would drastically increase model
complexity and would require an extensive amount of in vitro and in vitro model input
data [18]. Hence, the approach presented in this study was deemed a more practical choice
in the context of PBPK modeling.

The presented paroxetine model includes metabolism via CYP2D6 and CYP3A4 and an
unspecific hepatic clearance pathway as a surrogate pathway for metabolism via other CYP
enzymes that were reported to metabolize paroxetine in vitro [22]. Here, additional experi-
mental in vitro data such as KM and Vmax values were available for paroxetine metabolism
via CYP1A2, CYP2C19 and CYP3A5. However, these enzymes were described to have a
smaller effect on paroxetine kinetics compared to CYP2D6 and CYP3A4 [22]. Furthermore,
CYP3A4 was implemented to describe the effect of auto-inhibition via CYP3A4 on the
pharmacokinetics of paroxetine [23,55], especially in poor metabolizers of CYP2D6. No
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metabolite of paroxetine was implemented in the model due to a lack of reported metabo-
lite plasma concentrations in the published literature, presumably due to the chemical
and metabolic instability of major metabolite paroxetine-catechol [22,35]. Furthermore,
paroxetine has been suggested as a substrate of P-glycoprotein (P-gp) in the published
literature [39,64]. However, while a moderate affinity of paroxetine to P-gp was observed
in in vitro experiments [65], genetic polymorphisms in the ABCB1 gene were described to
have no significant on paroxetine plasma concentrations in vivo [66]. Hence, the authors
did not implement active transport via P-gp in the model. Regardless, the model was able
to describe paroxetine plasma concentrations for all doses (20–70 mg) in published clinical
studies.

CYP2D6 has been described to be mainly responsible for atomoxetine metabolism, as
atomoxetine AUC was found to be increased by 400% in poor metabolizers of CYP2D6
compared to extensive metabolizers [45]. In the presented PBPK model, atomoxetine
metabolism was described by implementing CYP2D6 and CYP2C19. Although 4-hydroxya-
tomoxetine has been reported to be primarily formed via CYP2D6, only a total of four
plasma concentration–time profiles of 4-hydroxyatomoxetine were reported in the pub-
lished literature [41,67]. Thus, the metabolite was not explicitly modeled. However, as
more clinical studies reporting 4-hydroxyatomoxetine plasma concentrations become avail-
able, the presented PBPK model of atomoxetine can be extended to cover the formation of
4-hydroxyatomoxetine.

While CYP1A2, CYP2B6, CYP2C9 and CYP3A4 were also described to contribute to
the metabolism of atomoxetine in vitro, their relative contribution to atomoxetine depletion
was found to be far smaller compared to CYP2C19 [24]. Hence, CYP2C19 serves as a
surrogate pathway for multiple CYP enzymes in the presented model. While CYP2C19 is
also polymorphically expressed, and CYP2C19 DGIs in CYP2C19 have been described in the
literature [68], they were considered negligible, as CYP2D6 accounts for approximately 90%
of atomoxetine oral clearance in normal metabolizers of CYP2D6 [45] and the CYP2C19
kcat value was below the sensitivity threshold for atomoxetine model parameters (see
Section S3.2.3 of Supplementary Materials S1).

To describe the activity score-dependent metabolism of risperidone, an established
parent-metabolite model was used [21] and adapted. The model includes metabolism
via CYP2D6 and CYP3A4 for risperidone as well as active transport via P-gp for both
risperidone and its active metabolite 9-hydroxyrisperidone [69].

Simulations of steady-state plasma concentrations for the modeled compounds re-
vealed that, although kcat, rel values implemented in the respective DGI models for the
different activity scores were the same, AUCss values behaved differently between the
three compounds. For instance, AUCss DGI ratios for CYP2D6 poor metabolizers (activity
score 0) were 3.4, 13.6 and 2.0, whereas AUCss DGI ratios for ultrarapid metabolizers (activ-
ity score 3) were 0.2, 0.5 and 0.95 for paroxetine, atomoxetine and risperidone, respectively.
Here, different model-specific factors might influence predicted AUCss DGI ratios. For
risperidone, the total active moiety was considered (risperidone + 9-hydroxyrisperidone).
Here, a decrease in the risperidone AUC with increasing activity scores typically infers
an increase in 9-hydroxyrisperidone AUC, partially compensating the effect of CYP2D6
DGIs on the AUC of the total active moiety, and the overall pharmacodynamic effect of
risperidone, as 9-hydroxyrisperidone has similar activity compared to risperidone [70].
Conversely, the paroxetine model includes auto-inhibition via mechanism-based inhibition
of CYP2D6 and CYP3A4, reducing the differences between DGI AUCss values for the
different modeled activity scores.

5. Conclusions

This study presents whole-body PBPK models of paroxetine, atomoxetine, and risperi-
done. The models implement CYP2D6 activity score-dependent metabolism informed from
previously published PBPK models of CYP2D6 substrates and have been successfully used
to predict the plasma concentrations of their model compounds both in non-DGI and DGI
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scenarios with various CYP2D6 activity scores. The final PBPK model files will be made
publicly available in the Clinical Pharmacy Saarland University GitHub model repository
(http://models.clinicalpharmacy.me/). Due to the mechanistic implementation of human
physiology and important pharmacokinetic pathways, the models allow for knowledge-
based scaling to special populations and can serve as the basis for future investigations of
CYP2D6 drug-drug–gene interaction (DDGI) scenarios.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pharmaceutics14081734/s1, Supplementary Materials S1: Meth-
ods (Addendum); Supplementary Materials S2: Paroxetine; Supplementary Materials S3: Atom-
oxetine; Supplementary Materials S4: Risperidone; Supplementary Materials S5: Abbreviations.
References [71–93] are cited in the Supplementary Materials.
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