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The type VI secretion system (T6SS) is a toxic effector delivery apparatus widely
distributed in Gram-negative bacteria. The opportunistic pathogen Pseudomonas
aeruginosa encodes three T6SSs, namely H1-, H2-, and H3-T6SS. Each T6SS
possesses its own effectors and their roles are not yet fully understood. Here,
we report that an H3-T6SS deletion mutant PAO1(1clpV3) significantly affected
the virulence-related phenotypes including pyocyanin production, biofilm formation,
proteolytic activity, and motilities. Most interestingly, the expression of T3SS genes was
markedly affected, indicating a link between H3-T6SS and T3SS. RNA-Sequencing
was performed to globally identify the genes differentially expressed when H3-T6SS
was inactivated and the results obtained correlated well with the observed phenotypes.
Interestingly, the expressions of T2SS, T3SS, H2-T6SS, and H3-T6SS were all
significantly decreased, while H1-T6SS was increased in the PAO1(1clpV3) strain. We
also observed that the intracellular concentration of secondary messenger cAMP was
reduced in PAO1(1clpV3), and the c-di-GMP level was also decreased as indicated
by the decreased cdrA reporter activity. Finally, by using a Galleria mellonella infection
model, we show that H3-T6SS plays a key role in the pathogenicity of P. aeruginosa
in vivo. Overall, our study highlights the unique connection of H3-T6SS in P. aeruginosa
with T3SS, pyocyanin production, biofilm formation and in vivo pathogenicity.

Keywords: Pseudomonas aeruginosa, secretion system, ClpV3, virulence factors, signal molecules

INTRODUCTION

Pseudomonas aeruginosa is an important human pathogen capable of growing in a wide range
of environmental conditions (Arai, 2011). On the list of antibiotic-resistant “priority pathogens”
published by World Health Organization, P. aeruginosa is classified as one of the critical pathogens
that pose the greatest threat to human health (Willyard, 2017). P. aeruginosa especially affects
patients who are immunocompromised or suffer with burn wounds, urinary tract infections, and
cystic fibrosis (Mittal et al., 2009; Migiyama et al., 2016; Stefani et al., 2017). P. aeruginosa has an
arsenal of virulence factors and pathogenic mechanisms, such as toxic protein secretion systems,
quorum sensing systems (QS), biofilm formation, and antibiotic resistance (Lau et al., 2005;
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Bleves et al., 2010; Singh et al., 2017). Among these, the contact-
dependent type VI secretion system (T6SS) directly translocates
toxic effectors into prokaryotic or eukaryotic target cells (Ho
et al., 2014; Jiang et al., 2014; Cianfanelli et al., 2016).

The structure of T6SS consists of a phage like tail as well as
several sub-complexes that secrets toxins into target cells in a
one-step manner (Bleves et al., 2010). Thirteen essential genes are
conserved in all T6SSs (Filloux et al., 2008). These proteins named
from TssA to TssM. TssJ, TssL, and TssM make up the membrane
core complex that serves as a platform for baseplate assembly and
a T6SS docking station (Durand et al., 2012; Logger et al., 2016).
The T6SS baseplate complex is composed of TssE, TssF, TssG, and
TssK, which facilitates the correct assembly of inner tubes and
contractile sheath (Zoued et al., 2013; Brunet et al., 2015). Type VI
secretion system sheath consists of two contractile proteins, TssB
and TssC, forming tubular structures (Zoued et al., 2016; Gallique
et al., 2017) while TssA forms a dodecamer complex, connecting
the sheath structure to the membrane complex (Planamente
et al., 2016). ClpV is a cytoplasmic AAA+ ATPase protein and
is an essential component of T6SS (Schlieker et al., 2005). In
P. aeruginosa, T6SS effector delivery is driven by ATP hydrolysis
which generates the force for toxin secretion (Corbitt et al., 2018).
Once the sheath is contracted, ClpV recognizes and interacts with
TssC to disassemble the sheath, therefore, TssB and TssC can be
reused for a new round of translocation. Planamente et al. (2016)
demonstrated that ClpV interacts with TssA, suggesting ClpV is
not only responsible for TssBC sheath disassembly, but is also
involved in recycling other T6SS components.

There are three T6SSs in P. aeruginosa: H1-T6SS, H2-T6SS,
and H3-T6SS. The expression of T6SSs in P. aeruginosa is
regulated by the QS system (Lesic et al., 2009). There are several
QS systems in P. aeruginosa, two N-acyl-homoserine lactone
based QS systems (las and rhl systems) and one quinolone PQS
system (pqs). The expression of H1-T6SS is negatively regulated
by both las and pqs QS systems, while the expression of H2- and
H3-T6SS is positively regulated by las, rhl, and pqs (Lesic et al.,
2009; Sana et al., 2013). The RNA-binding post-transcriptional
regulator RsmA represses all the T6SS clusters in P. aeruginosa
(Allsopp et al., 2017). Extrinsic environmental factors play an
important role in shaping pathogenesis and iron availability
regulates a wealth of genes via ferric uptake regulator Fur (Pasqua
et al., 2017). Iron has been shown to reduce the expression of H2-
and H3-T6SSs (Sana et al., 2012, 2013; Lin et al., 2017).

The T6SSs in P. aeruginosa is not only involved in competition
against other bacteria, but also survival, colonization and full
virulence against the host (Sana et al., 2016). H1-T6SS is the most
studied and only associated with killing prokaryotic cells, while
H2- and H3-T6SS have been shown to target both bacterial and
host cells but are poorly understood. H1-T6SS translocates at
least seven effectors, Tse1-7, to kill prokaryotic preys (Pissaridou
et al., 2018), whereas H2- and H3-T6SS target both bacterial and
host cells, but only a few effectors have been identified. Recently,
the role of the T6SSs has been shown to extend beyond the
delivery of toxic effectors (Lin et al., 2017; Han et al., 2019).
However, in depth studies on their roles are lacking. PldA, PldB,
Tle3, Azu, and TplE are injected through H2-T6SS (Moore et al.,
2013; Berni et al., 2019; Han et al., 2019; Wettstadt et al., 2019),

while TseF is secreted by H3-T6SS (Lin et al., 2017). Azu, a
Cu2+ binding protein, is secreted by H2-T6SS in P. aeruginosa
for Cu2+ acquisition (Han et al., 2019). TseF dependent on
H3-T6SS directly interacts with PQS and is incorporated with
outer membrane vesicles (OMVs) for iron acquisition (Lin et al.,
2017). Multiple T6SSs empower bacteria to better adapt and
survive in the complicated polymicrobial communities not just
limited to translocating toxic effectors into prey cells. Studies
on T6SSs in other bacteria suggest a far more complex role.
The T6SS-4 from Yersinia pseudotuberculosis is involved in the
transportation of Zinc to permit the bacteria to survive oxidative
stress as well as host immunity (Wang et al., 2015). Weber
et al. (2009) have shown that the T6SS proteins from Vibrio
anguilarum regulate expression of the stress response regulator
RpoS and the quorum sensing regulator VanT, and suggest that
T6SS could also function as a signal sensing system as well
(Weber et al., 2009). A recent study demonstrated that the T6SS-
4 in Burkholderia thailandensis plays a role in accumulating
intracellular concentration of manganese through the Mn2+

binding effector (TseM) under oxidative stress (Si et al., 2017).
Matthey et al. (2019) have shown that V. cholerae are able to
acquire free DNA from their surroundings in a T6SS-dependent
manner suggesting a role in anti-microbial resistance.

In this study, we constructed a clpV3 deletion mutant
in P. aeruginosa PAO1 and found that the virulence factors
(pyocyanin production, biofilm formation, proteolytic activity,
motility, and T3SS) were significantly affected by the impairment
of H3-T6SS. Furthermore, we performed RNA-Sequencing to
compare the globally transcriptional profiles between PAO1 and
PAO1(1clpV3) and identified 311 differentially expressed genes
(DEGs). The effect of H3-T6SS on in vivo pathogenicity was also
examined by using a Galleria mellonella infection model.

MATERIALS AND METHODS

Bacterial Strains, Plasmids, and Growth
Conditions
The bacterial strains and plasmids used in this study are
listed in Table 1. P. aeruginosa and Escherichia coli strains
were grown in LB broth and agar plates at 37◦C. The
concentrations of antibiotic used were as follows: for E. coli,
tetracycline (12.5 µg/ml), ampicillin (100 µg/ml), and kanamycin
(50 µg/ml), and for P. aeruginosa, tetracycline (70 µg/ml),
carbenicillin (250 µg/ml), and trimethoprim (300 µg/ml).
For construction of P. aeruginosa mutant PAO1(1clpV3),
tetracycline at 300 µg/ml in Pseudomonas isolation agar (PIA)
was used for specific selection.

Construction of P. aeruginosa
PAO1(1clpV3) Mutant
To generate the clpV3 deletion mutant PAO1(1clpV3), the
pEX18Tc sucrose counter selection system was used for
unmarked deletion of clpV3 gene as described previously (Hoang
et al., 1998; Hmelo et al., 2015). Briefly, the upstream and
downstream fragment of clpV3 were amplified by PCR with
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TABLE 1 | Bacterial strains and plasmids used in this study.

Bacterial
strain or
plasmid

Relevant characteristics/sequence Source

E. coli strains

DH5α F− ϕ80lacZ1M15 1(lacZYA-argF ) U169
recA1 endA1 hsdR17 (rk−, mk

+) phoA
supE44 λ− thi−1 gyrA96 relA1

Invitrogen

SM10-λ pir Mobilizing strain, RP4 integrated in the
chromosome; Knr

Simon et al.,
1983

P. aeruginosa strains

PAO1 Wild type, lab strain Holloway
et al., 1994

PAO1(1clpV3) ClpV3 knockout mutant of PAO1 This study

Plasmids

pMS402 Expression reporter plasmid carrying the
promoterless luxCDABE; Kmr Tmpr

Duan et al.,
2003

CTX-6.1 Integration plasmid origins of plasmid
mini-CTX-lux; Tcr

Kong et al.,
2013

pRK2013 Broad-host-range helper vector; Tra+, Kmr Ditta et al.,
1980a

pEX18Tc oriT+ sacB+ gene replacement vector with
multiple-cloning site from pUC18; Tcr

Hoang et al.,
1998

pAK1900 E. coli-P. aeruginosa shuttle cloning vector,
Ampr

Sharp et al.,
1996

pEX18Tc-
clpV3up

pEX18Tc carrying the upstream fragment of
clpV3

This study

pEX18Tc-
clpV3up+dw

pEX18Tc carrying the upstream and
downstream fragment of clpV3

This study

pAK-clpV3 pAK1900 with a 2774 bp fragment of clpV3
between KpnI and HindIII; Ampr, Cbr

This study

CTX-phzA1 Integration plasmid, CTX6.1 with a fragment
of pKD-phzA1 containing phzA1 promoter
region and luxCDABE gene; Kmr, Tmpr, Tcr

Guo et al.,
2016

CTX-phzA2 Integration plasmid, CTX6.1 with a fragment
of pKD-phzA2 containing phzA2 promoter
region and luxCDABE gene; Kmr, Tmpr, Tcr

Guo et al.,
2016

pKD -exoY pMS402 containing exoY promoter region,
Kmr, Tmpr

Guo et al.,
2016

pKD -exsD pMS402 containing exsD promoter region,
Kmr, Tmpr

Kong et al.,
2013

pKD-cdrA pMS402 containing cdrA promoter region,
Kmr, Tmpr

Bhagirath
et al., 2018

the primers clpV3-up-S/clpV3-up-AS and clpV3-dw-S/clpV3-
dw-AS, respectively (Table 2). The upstream fragment firstly
was cloned into the vector pEX18Tc treated with the same
restriction enzyme yielding pEX18Tc-clpV3up. Following double
restriction enzyme digestion (BamHI and HindIII) as well
as downstream fragment, these two products were ligated to
generate pEX18Tc-clpV3up+dw. The PAO1(1clpV3) was obtained
by means of tri-parental mating as described previously (Ditta
et al., 1980b). In brief, overnight cultures of the donor strain
E. coli containing the plasmid pEX18Tc-clpV3up+dw, the helper
E. coli strain containing pRK2013 and the recipient PAO1 were
collected and re-suspended in PBS. The bacteria were mixed
in a ratio of 2:2:1 and then spotted onto LB agar plates. After
culturing at 37◦C overnight, the bacteria were scraped off and
re-suspended in 500 µl of LB. The diluted suspensions were

TABLE 2 | Primers used in this study.

Primer Sequence (5′→3′) Restriction
site

clpV3-up-S TAGGAATTCGCCCTATGCCTACCAGGAA EcoRI

clpV3-up-AS TAAGGATCCGCAGGTGCTCGATCTCTACG BamHI

clpV3-dw-S TACGGATCCTGGTGGTGGACTTCAGGAAC BamHI

clpV3-dw-AS CCCAAGCTTTTGCTTTCTTCGCTTGTGAA HindIII

C-clpV3-S GGTGGAAAGCCTGCTCGACGAC

C-clpV3-AS GCGAGGATCCTTTGCCACTTGG

pAK-clpV3-S TATGGTACCGACCTGGATTGTCGCCTGA KpnI

pAK-clpV3-AS CAGAAGCTTTCTTCGCTTGTGAATGGCAC HindIII

rpsL-F TCTGACCAACGGTTTCGAGG

rpsL-R GCCCGGAAGGTCCTTTACAC

rsmA-F GACGGTACTGGGTGTCAAAGGGAAC

rsmA-R CTCTTGATCTTTCTCTTTCTGGATGCG

exoS-F GCATCAGGTAATGAGCGAGGTCG

exoS-R GGCTGTCTGCCCAGGTACTTTTCC

phzA1-F CGGTCAGCGGTACAGGGAAACA

phzA1-R CGAACAGGCTGTGCCGCTGTA

phzA2-F GCGAGAGTACCAACGGTTGAAAGG

phzA2-R GAACAGGCTGTGCCGCTGTAAC

lasA-F CGCCATCCAACCTGATGCAAT

lasA-R CGTAGGACGCATCGAAGGACGA

lasR-F CTGTACCCAGAGCGTACTGCCGA

lasR-R CGGCATGGTCAGCCCATACAC

Underlined are restriction site sequences.

spread on PIA plates containing tetracycline at 300 µg/ml to
select for merodiploids. After first crossover, the grown colony
was streaked on no salt LB plate containing 10% sucrose to select
for double crossover. The resultant clpV3 knockout mutant was
verified by PCR with the primers C-clpV3-S/C-clpV3-AS and
designated as PAO1(1clpV3).

Measurement of Pyocyanin Production
Supernatants from 18 h incubation bacterial culture were
collected to extract and quantify the pyocyanin production
according to the previously described methods (Essar et al.,
1990). Briefly, 5 ml of the culture supernatant was fully
mixed with 3 ml of chloroform, then the chloroform layer
was transferred to a new tube containing 1 ml of 0.2 N
HCl. After centrifugation at 4500 g for 10 min, the top
layer was transferred to cuvette to measure its absorbance at
520 nm. The concentrations obtained, expressed as micrograms
of pyocyanin produced per milliliter of culture supernatant,
were calculated by multiplying the extinction coefficient of
17.072 at 520 nm.

Measurement of Promoter Activities
The procedures of the lux-based reporter assays were described
previously (Duan et al., 2003; Bhagirath et al., 2017). In
brief, bacteria were incubated overnight in LB broth followed
by sub-inoculating into fresh medium to OD600 of 0.2 and
cultivated for an additional 3 h before use as inoculants. The
cultures were inoculated into 96-well plates with transparent
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bottom in triplicates in a ratio of 5 µl of inoculum to
95 µl of fresh medium. 50 µl of filter-sterilized mineral oil
(Sigma Aldrich) was added on top to prevent evaporation
during the assay. Luminescence (counts per second, cps) was
measured every 30 min for 24 h in a Synergy H4 Multimode
Microplate Reader (BioTek). Bacterial growth was monitored
at the same time by measuring OD600. The level of gene
expression was normalized to bacterial growth and is presented
as cps/OD600.

Assays for Biofilm Formation
Biofilm production was quantified as previously described
(O’Toole, 2011). Cells from overnight cultures were diluted at
1:100 into M63 minimal medium supplemented with magnesium
sulfate, glucose and casamino acids, then inoculated in 96-
well polystyrene microtiter plates (Costar) and grown at 37◦C
for 24 h. After incubation, the cells were discarded, and
the plate was gently submerged in a small tub of water to
remove unattached cells and media components. A 125 µl
volume of 0.1% crystal violet was added to each well and
staining was allowed for 20 min at room temperature. Wells
were rinsed three times with distilled water, and 125 µl
of 30% acetic acid in water was added to dissolve the
remaining crystal violet. A 100 µl portion of this solution was
transferred to a new plate, and the absorbance was measured at
550 nm (OD550).

Measurement of Proteolytic Activity
Skim milk proteolysis was determined through the use of agar
plate assays as described in the previous study with minor
modification (Gupta et al., 2009). One microliter of cells from
overnight culture were inoculated on LB plate containing 2%
skim milk and grown at 37◦C for overnight. Zones of clearance
surrounding the bacterial colonies indicate proteolytic activity
and the sizes of the zones were measured.

Swarming and Swimming Motility
Examination
Bacterial motility activities were assessed as described previously
(Rashid and Kornberg, 2000). Medium used for swarming assay
consisted of 8 g/l nutrient broth, 5 g/l glucose and 0.5% (wt/vol)
agar. For swimming assay, the medium contained 10 g/l tryptone,
5 g/l NaCl and 0.3% agar. For swarming and swimming motilities,
bacteria were spotted onto plates as a 1 µl of aliquot taken directly
from overnight LB cultures. After inoculation, photographs were
acquired with the Fusion FX7 Vilber Lourmat Imaging machine.

Quantification of Intracellular cAMP
Levels
Intracellular concentration of cAMP was quantified by
using Cyclic AMP Select ELISA kit (Cayman Chemical,
United States). Overnight culture of 8 OD600 units were
pelleted by centrifugation and mixed with 500 µl of 0.1 N
HCl. Following 30 s of sonication, the supernatants were
collected by centrifugation at 1000 g for 10 min and
transferred to a fresh tube. According to the manufacturer’s

FIGURE 1 | Reduced pyocyanin production and decreased expression of
phzA1 and phzA2 in PAO1(1clpV3). (A) Comparison of pyocyanin production
in PAO1(1clpV3),the wild-type PAO1 and the complementation strain. The
experiment was independently performed three times. Unpaired Student’s
t-test was used to analyze the data. ***p < 0.001. (B,C) Reduced promoter
activities of two pyocyanin synthesis gene clusters phzA1 and phzA2 in
PAO1(1clpV3). The promoter activity is presented as light production (counts
per second, cps) normalized to OD600. The experiment was independently
performed three times. Error bars indicate standard deviations.
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protocol, the standards and samples were prepared and
loaded into the 96-well supplied plate. After incubation
and development of the plate, wavelengths between 405
and 420 nm were read. The concentration of each sample
was determined by using the equation obtained from the
standard curve plot.

Complementation of the clpV3 Knockout
Mutant
For the complementation experiments, The E. coli-P. aeruginosa
shuttle vector pAK1900 was used (Sharp et al., 1996). clpV3
gene was generated by PCR with the primers pAK-clpV3-S/pAK-
clpV3-AS listed in Table 2. This PCR amplified fragment was
cloned into PAK1900 and the resultant plasmid pAK-clpV3 was
transformed into PAO1(1clpV3) by electroporation.

RNA Isolation
Strains were grown overnight at 37◦C followed by sub-
culturing into fresh medium and grown to mid-exponential
phase. Total RNA was extracted by TRIzol-based method
(Life Technologies, CA, United States). In brief, the cultures
were centrifuged at 12,000 g for 5 min. The supernatant was
discarded, cell pellets were resuspended in 1 ml of TRIzol
and then incubated at room temperature for 5 min to permit
complete dissociation of nucleoproteins complex. Followed by
adding 0.2 ml of chloroform into the tube and mix well, the
samples were centrifuged (12,000 g at 4◦C for 15 min) to
form three layers. The upper aqueous phase was transferred
to a fresh tube and added by 0.5 ml of cold isopropanol
to precipitate RNA. After centrifugation, the supernatant was
removed, and the pellet was suspended in 1 ml of 75%
ethanol. Samples were centrifuged and the supernatant was
discarded, air-dried RNA pellet was resolved in 50 µl of RNase-
free Water.

RNA-Seq Library Construction and
Sequencing
RNA integrity was measured using Bioanalyzer 2100 (Agilent,
Santa Clara, CA, United States) and rRNA was removed
from 1 mg of total RNA with Ribo-Zero Magnetic Gold
Kit (Epicentre Biotechnologies, Madison, WI, United States).
To construct the RNA-Seq library, TruSeq RNA Sample
Prep Kit v2 (Illumina, San Diego, CA, United States) was
used. rRNA-depleted RNA was fragmented into small pieces
using Elute Prime Fragment Mix. First-strand cDNA was
synthesized with First Strand Master Mix and Super Script II
reverse transcriptase (Invitrogen, Carlsbad, CA, United States).
Following purification by Agencourt RNAClean XP beads
(Beckman Coulter, CA, United States), the second-strand cDNA
library was synthesized using Second Strand Master Mix and
dATP, dGTP, dCTP, dUTP mix. Purified fragmented cDNA was
end repaired (30 min at 37◦C) prior to ligating sequencing
adapters. Amplified RNA-Seq libraries were purified by using
AMPureXP Beads. The clustering of the index-coded samples
was performed on a cBot Cluster Generation System following
to the manufacturer’s instructions, and the sequencing was

performed using the Illumina Hiseq TM 2500 platform with
pair-end 150 base reads.

Bioinformatics Analysis
After RNA-Sequencing, the obtained raw data were filtered
according to the following standards: (1) removing reads with
≥10% unidentified nucleotides (N); (2) removing reads with
>50% bases having Phred quality scores of ≤20; (3) removing
reads aligned to the barcode adapter using FASTP1. Quality
trimmed reads were aligned using Bowtie2 (Langmead and
Salzberg, 2012) (version 2.2.8) to the P. aeruginosa PAO1
reference genome to identify known genes and calculated gene
expression by RSEM (Li and Dewey, 2011). The gene expression
level was calculated and further normalized by using the
fragments per kb of transcript per million (FPKM) mapped
reads method to eliminate the influence of different gene lengths
and amount of sequencing data on the calculation of gene
expression. The edgeR package2 was used to identify DEGs
across samples with fold changes ≥2 and a false discovery
rate-adjusted P (q value) <0.05. Go terms and KEGG pathway
were defined as being significantly enriched when the q
value ≤0.05.

Synthesis of cDNA and Quantitative
Real-Time PCR
cDNA was generated from 1 µg total RNA using a Quanta qScript
cDNA Synthesis kit (Quanta BioSciences, MD, United States).
rpsL was used as housekeeping gene control and the primers were
listed in Table 2. The qPCR was performed using PowerUpTM

SYBRTM Green Master Mix (Thermo Fisher Scientific) on an Eco
Illumina real-time detection system (Montreal Biotech) under
the following conditions: UDG activation at 50◦C for 2 min,
Dual-LockTM DNA polymerase initiation at 95◦C for 2 min, and
40 cycles of 95◦C for 15 s and 60◦C for 1 min. Fold changes of
gene expression levels were calculated according to the 2−11Cq

method. Each sample was measured in triplicate and repeated at
least three times.

Galleria mellonella Killing Assays
The G. mellonella infection model is a widely-accepted animal
model and the experiments were performed as previously
described (Desbois and Coote, 2011). The larvae were stored
in wood chips at 10◦C and used within two weeks from
shipment. Prior to inoculation into G. mellonella caterpillars,
P. aeruginosa cells were washed twice with PBS and then
diluted in PBS to a final concentration of 1000 CFU/ml.
A 10 µl Hamilton syringe was used to inject 10 µl of bacterial
suspension into G. mellonella via the last left proleg. The
infected larvae were incubated in a static incubator in the
dark at 30◦C, the optimum temperature for insect growth
and development (Brennan et al., 2002). The number of dead
caterpillars was scored at each time point. Caterpillars were
considered dead when they displayed no movement in response
to touch.
1https://github.com/OpenGene/fastp
2http://www.r-project.org/
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FIGURE 2 | Inactivation of H3-T6SS in P. aeruginosa alters numerous phenotypes. (A) Biofilm formation was evaluated in 96-well microtiter plates and our results
showed that biofilm formation was significantly decreased in PAO1(1clpV3) compared with in PAO1 or the complementation strain. (B) PAO1(1clpV3) showed
smaller proteolytic zone than PAO1, which indicated that deletion of clpV3 leads to producing less protease production. (C,D) Inactivation of H3-T6SS resulted in
altered swarming motility and reduced swimming motility. The experiment was independently performed three times. Unpaired Student’s t-test was used to analyze
the data. Error bars indicate standard deviations. ***p < 0.001.

RESULTS

Inactivation of H3-T6SS Altered Multiple
P. aeruginosa PAO1 Phenotypes
In light of the non-competition functions of T6SSs and
the fact that H3-T6SS is poorly understood, we constructed
an H3-T6SS mutant PAO1(1clpV3) and examined virulence-
related phenotypical changes in the mutant. Deletion of clpV3
completely inactivates the function of H3-T6SS (Sana et al., 2013).
We compared the virulence-related phenotypes between the
wild type and the clpV3 knockout mutant. A striking difference
that was easily observed was the color change of the bacterial
cultures. Measurement of pyocyanin production indicated that
when compared with the wild-type PAO1 pyocyanin was
significantly reduced in PAO1(1clpV3). Overexpression of clpV3
gene in the PAO1(1clpV3) strain restored the pyocyanin

production to the wild-type level (Figure 1A). Since two
homologous operons are associated with synthesizing phenazine
compounds in P. aeruginosa, phzA1B1C1D1G1 (phzA1) and
phzA2B2C2D2G2 (phzA2) (Mavrodi et al., 2001), the reduced
pyocyanin production in PAO1(1clpV3) strain led us to analyze
the promoter activities of these two operons. As shown in
Figures 1B,C, the phzA1 and phzA2 promoter activities in
the PAO1(1clpV3) were 3-fold lower than in the wild-type
PAO1, indicating the reduced pyocyanin production in the
mutant was probably a result of the reduced transcription
of these operons.

We further examined the effect of H3-T6SS on other virulence
factors including proteolytic activity, biofilm formation and
bacterial motility. Proteases in P. aeruginosa play two important
roles: subverting host immune responses and mediating host-
directed damage (Laarman et al., 2012). Biofilms function as
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FIGURE 3 | The promoter activities of exoY (A) and exsD (B) were
significantly decreased in PAO1(1clpV3) when compared with in wild-type
PAO1. The results clearly indicate that the expression of T3SS was
significantly reduced when H3-T6SS is inactivated.

a protective barrier and allow bacteria to survive from the
antimicrobial agents and the host immune systems (Drenkard,
2003; Haussler and Parsek, 2010). Motility is a key feature of
acute phase of infection and is regulated by RsmA among other
regulators (Heurlier et al., 2004). As shown in Figure 2, the results
obtained demonstrated that biofilm formation was significantly
decreased in PAO1(1clpV3) as compared to the wild-type PAO1
or the complemented strain (Figure 2A) and so was protease
production (Figure 2B). In addition, PAO1(1clpV3) exhibited
altered swarming patterns characterized by less and short tendrils
compared with the pattern of wild type or the complemented
strain (Figure 2C and Supplementary Figure S1A). Inactivation
of H3-T6SS resulted in reduced swimming motility as well
(Figure 2D and Supplementary Figure S1B). These results
clearly indicate that the functionality of H3-T6SS is intricately
connected with key virulence factors in P. aeruginosa.

Deletion of clpV3 Resulted in Decreased
Expression of exoY and exsD
Pseudomonas aeruginosa utilizes a complex type III secretion
apparatus to inject effector proteins (ExoS, ExoY, ExoT, and
ExoU) into the host cells (Yan et al., 2019). T3SS and T6SS

FIGURE 4 | Intracellular concentration of secondary messengers (c-di-GMP
and cAMP) were significantly reduced when clpV3 gene was deleted.
(A) PAO1(1clpV3) exhibited decreased cdrA promoter activity when
compared with that of the wild-type PAO1, indicating a clear effect of
H3-T6SS on intracellular c-di-GMP levels. (B) cAMP concentration was
quantified in wild-type PAO1, PAO1(1clpV3) mutant and its complimented
strain by using the Cyclic AMP Select ELISA Kit. Lower expressed cAMP was
detected in clpV3 deletion mutant compared with either the wild type or its
complemented strain. Unpaired Student’s t-test was used to analyze the data,
and the means and standard deviations are shown. **p < 0.01, ns, not
significant.

have been shown to be oppositely regulated (Moscoso et al.,
2011) and both can target host cells. To find out whether the
expression of T3SS was also affected in PAO1(1clpV3), the
promoter activities of T3SS genes, including effector (exoY) and
the exsD-pscBCDEFGHIJKL operon were analyzed in PAO1 and
PAO1(1clpV3) using the lux-based pKD-exoY and pKD-exsD
reporters. As shown in Figures 3A,B, the promoter activities of
exoY and exsD were significantly decreased in PAO1(1clpV3)
when compared with those in the wild-type PAO1, indicating
that inactivation of H3-T6SS caused a significant reduction of the
expression of T3SS genes.

PAO1(1clpV3) Had Reduced Levels of
Second Messengers c-di-GMP and
cAMP
Signaling molecules cyclic-di-GMP (c-di-GMP) and cyclic AMP
(cAMP) play an important role in virulence factor regulation
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in P. aeruginosa (Almblad et al., 2015). c-di-GMP is a
second messenger used by P. aeruginosa and other bacteria to
regulate the expression of genes associated with flagella motility,
Type IV pili and biofilm initiation (Valentini and Filloux,
2019). To investigate if the observed phenotypical changes
could be a result of altered c-di-GMP levels, we tested cdrA
promoter activity in the clpV3 knockout mutant. The cdrA
promoter activity levels have been shown to faithfully reflect the
fluctuations in intracellular c-di-GMP levels (Rybtke et al., 2012).
Quantifications of cdrA promotor activity in PAO1(1clpV3)
and wild-type PAO1 were performed in triplicates and the
data obtained are presented in Figure 4A. Compared with
the wild-type PAO1, a decreased cdrA promoter activity was
observed in PAO1(1clpV3), indicating a potential negative
effect of H3-T6SS impairment on intracellular c-di-GMP
levels. To determine if clpV3 deletion affected cAMP levels
in P. aeruginosa, the concentration of intracellular cAMP
was measured for PAO1 and PAO1(1clpV3) using the Cyclic
AMP Select ELISA Kit (Cayman Chemical Company, USA).
As shown in Figure 4B, the clpV3 mutant had significantly
lower cellular cAMP than the wild-type PAO1, suggesting
that the clpV3 or the functionality of H3-T6SS contributes
to the balance of in vivo cAMP concentrations. The level of
cAMP in PAO1(1clpV3) was restored to the wild-type level
upon complementation of clpV3 on a plasmid. The decreased
intracellular concentrations of the second messengers c-di-GMP
and cAMP in the clpV3 deletion mutant may explain, at least
partially, the altered virulence factor production in this H3-T6SS
mutant observed.

Transcriptional Profiling of the clpV3
Deletion Mutant
It was apparent that the H3-T6SS mutant produced a reduced
amount of virulence factors, such as pyocyanin. In order
to determine globally the effect of clpV3 inactivation, we
performed RNA sequencing. The mRNAs were extracted from
the culture grown in LB medium at the mid-exponential
phase and the transcriptional profiles of PAO1(1clpV3) and
wild-type PAO1 were compared. We found 311 significantly
affected genes that were differentially expressed in these two
strains. Hundred and fifty-two genes were up-regulated in
clpV3 deletion mutant and 159 down-regulated. The DEGs were
assigned to 29 functional groups based on sequence homology.
The significantly enriched (q < 0.05) gene ontology (GO)
categories among these DEGs are shown in Figure 5A and
Supplementary Table S1. Comparing the expression patterns
between PAO1 and PAO1(1clpV3), we were able to identify
DEGs participating in quorum sensing, phenazine biosynthesis,
biosynthesis of antibiotics, phenylalanine, tyrosine, and
tryptophan biosynthesis, biosynthesis of secondary metabolism,
and biofilm formation (Figure 5B).

It is observable that in PAO1(1clpV3) the expression of
genes related with T2SS, T3SS, and pyocyanin synthesis were
significantly down regulated. The specific virulence factors and
regulatory pathways are grouped and listed in Supplementary
Table S2. Such results are in agreement with the observation of

reduced pyocyanin production, proteolytic activity, and lower
promoter activities of T3SS in the mutant. Interestingly, all
three T6SSs in P. aeruginosa were differently expressed when
clpV3 was deleted. The expression of both H2- and H3-T6SS
was significantly decreased, compared with the wild-type PAO1,
while the expression of H1-T6SS was significantly increased
in PAO1(1clpV3). In addition, the RNA level of the post-
transcriptional regulator RsmA which positively regulates T3SS
and negatively regulates T6SSs was also lower in PAO1(1clpV3).
Although RsmA activity is regulated mostly by small RNAs,
such as RsmY and RsmZ, the altered transcription level of
rsmA could also result in changed functionality of this regulator,
The reduced expression of T3SS and increased H1-T6SS could,
therefore, be due to the lower rsmA expression, at least partially.
A previous study has shown that QS positively regulates H2-
and H3-T6SS, but negatively regulates H1-T6SS (Lesic et al.,
2009). We noted that the expression of several transcriptional
regulators including LasR, VqsR, MexL, MvaT, and PauR were
significantly decreased, while PmpR, CgrC, CgrB, PtxS, AntR,
NarL, and Zur were significantly increased in the H3-T6SS
mutant (Supplementary Table S2). The regulators that showed
changed expression in the PAO1(1clpV3) potentially resulted
in the lower expression of H2- and H3-T6SS, T2SS and T3SS
and higher expression of H1-T6SS, which were also shown
by the RNA-Sequencing analysis. Taken together, these results
demonstrated that H3-T6SS impairment not only affected other
T6SSs but also several genes involved in virulence and metabolic
regulation in P. aeruginosa.

Confirmation of the RNA-Sequencing
Results With Selected Genes
RT-qPCR was carried out with selected genes to verify the
RNA-Sequencing data. cDNA was prepared using the same
RNA that was used for RNA-Sequencing. Genes selected for
validation included rsmA, exoS, phzA1, phzA2, lasA, and lasR.
Gene expression relative to housekeeping gene (rpsL) levels was
calculated and shown in Figure 6A. The results showed decreased
expression of these genes, in agreement with the RNA-Seq results.
Furthermore, we constructed a clpV3 overexpression strain and
measured the expression of these previous tested genes. As shown
in Figure 6B, the expression of these genes was significantly
increased when clpV3 was overexpressed. P. aeruginosa PAO1
strain carrying an empty vector PAO1(pAK1900) was used as a
control in the comparison.

The Effect of clpV3 Deletion on
P. aeruginosa PAO1 Virulence in vivo
To verify the effect of the H3-T6SS on P. aeruginosa PAO1
pathogenicity in vivo, we used a G. mellonella infection model
to examine the pathogenicity of PAO1(1clpV3). The relative
survival rates of the infected G. mellonella larvae (n = 25) were
compared between the clpV3 mutant and the wild-type PAO1. As
shown in Figure 7, the PAO1(1clpV3) infected larvae exhibited
significantly increased survival rate compared with those infected
with the wild-type PAO1. The decreased pathogenicity can be
attributed to the decreased expression of virulence factors, such
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FIGURE 5 | Comparison of the global transcriptomes of PAO1 and PAO1(1clpv3) by RNA-Seq. (A) Totally 311 genes were significantly differentially expressed in
PAO1(1clpV3) compared to wild-type PAO1 with absolute fold change >2 and FDR <0.05. Pie charts showing Gene Ontology analysis of the differentially
expressed genes outlined in the PAO1 vs PAO1(1clpV3), subdivided into up-regulated (left) and down-regulated (right) groups. (B) The top 10 of significant KEGG
enrichments between PAO1 and PAO1(1clpV3).

as pyocyanin production, T3SS, H2- and H3-T6SS. Our results,
taken collectively, shown that H3-T6SS plays an important role in
P. aeruginosa pathogenicity in vivo and may serve as a potential
therapeutic target against its infection.

DISCUSSION

T6SS is a macromolecular weapon that is present in more than
25% of Gram-negative bacteria (Bingle et al., 2008). Multiple
distinct T6SSs have been identified in a given bacterium including

P. aeruginosa, suggesting T6SS’ versatile roles or specificities
for particular niches. Distinct T6SSs might be activated in
response to different environmental cues and hence have
the extended functions beyond the delivery of toxic effectors
(Bernard et al., 2010).

The results we obtained showed that deletion of clpV3 in
P. aeruginosa, which abolishes the functionality of H3-T6SS
(Sana et al., 2013), dramatically affected phenotypes associated
with pathogenicity. This is the first report that H3-T6SS affects
virulence factors and biofilm formation in P. aeruginosa, which
supports a role of H3-T6SS beyond the function of a weapon
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FIGURE 6 | qPCR results after knocking down clpV3 (A) and after overexpression of clpV3 in PAO1 (B). Assays were performed in triplicate. Statistical analysis was
performed by unpaired Student’s t-test. ***p < 0.001; **p < 0.01.

in competition against other microorganisms and/or killing host
cells. In the clpV3 deletion mutant, multiple virulence-related
phenotypes were altered which included pyocyanin production,
proteolytic activity, motilities, T3SS, and biofilm formation.
Interestingly all of them were significantly reduced when H3-
T6SS was inactivated by deletion of clpV3.

Among the virulence factors affected, pyocyanin is used
by P. aeruginosa for interspecies competition and combating
the host immune systems. It kills other competitors residing
in the same niche and is able to elicit host responses by
inactivating catalases known to protect against reactive oxygen
species (ROS; Wilson et al., 1988; Ozyurek et al., 2011). Motility
(swarming and swimming) is a key feature of P. aeruginosa

during the acute infection phase and is also strongly associated
with P. aeruginosa pathogenesis, as it enables colonization of
different environments, attachment to surfaces, and formation
of biofilm (Arora et al., 2005). Swarming is characterized as
coordinated group activity and the motility pattern is dependent
of the surfactant rhamnolipids (Caiazza et al., 2005; Tremblay
et al., 2007). RhlAB are involved in the synthesis of rhamnolipids
(Deziel et al., 2003), and the expression of rhlA and rhlB
was reduced by 4.51- and 3.20-fold, respectively observed in
PAO1(1clpV3) compared with that in wild-type PAO1 by RNA-
Sequencing analysis (Supplementary Table S1). The changed
motility in clpV3 mutant is in agreement with the recent reported
study that deletion of clpV1 decreased swarming motility
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FIGURE 7 | The effect of H3-T6SS on the pathogenicity of P. aeruginosa in vivo. The relative survival rates of the infected G. mellonella larvae were compared.
PAO1(1clpV3) exhibited significantly increased survival rate compared with the wild-type PAO1. The experiment was performed three times on different days.

(Chen et al., 2020). Alkaline protease in P. aeruginosa is not only
important for its virulence but is also important for immune
evasion, though the exact mechanism is yet unknown (Laarman
et al., 2012). We observed a decrease in proteolytic activity in
clpV3 mutant compared to the wild-type PAO1 strain. Thus, the
inactivation of H3-T6SS not only abolished the function of H3-
T6SS as a weapon against competitors and/or the host but also
impaired other traits that are involved in such actions against
competitors or the hosts.

Another important consequence of inactivation of H3-T6SS
is the decreased biofilm formation. Biofilms function as both
a structural scaffold and protective barrier to prevent access of
antimicrobial agents and host immune identification (Drenkard,
2003; Haussler and Parsek, 2010). A recent study done by Chen
et al. (2020) found that the H1-T6SS, H3-T6SS and lasR were
expressed at higher levels in strong biofilm forming clinical
isolates than in non-biofilm forming groups. Our observation
that the clpV3 mutant formed less biofilms than the wild
type is in agreement with the reported findings suggesting
a clinical relevance of the affected biofilm formation by H3-
T6SS in P. aeruginosa.

T3SS is a system mainly used for interacting with eukaryotic
host cells. T3SS and T6SS systems are reversibly regulated by
the RsmA regulatory pathway (Brencic and Lory, 2009; Moscoso
et al., 2011). The observation in our study that the expression
of T3SS related genes (exoY and exsD-pscBCDEFGHIJKL) was
significantly decreased in the clpV3 mutant is the first report of
a direct effect of T6SS on T3SS expression. Although common
regulators have been reported such as RsmA that regulate both
T6SS and T3SS, to our knowledge, no effect of T6SS has been
reported to cause a change in T3SS.

Secondary messengers (cAMP and c-di-GMP) play important
roles in regulating multiple phenotypical characteristics, and
c-di-GMP has been shown to regulate multiple phenotypes
including motility and biofilm formation (Moscoso et al., 2011).
We measured these two secondary messengers and found a

decreased level of cAMP in the clpV3 mutant. This decreased
cAMP level in clpV3 mutant could explain the lower expression
of T3SS because the genes involved in this secretion system are
regulated by Vfr coupled with cAMP (Marsden et al., 2016).
The other secondary messenger molecule c-di-GMP is capable
of regulating the life styles of bacteria and controlling many
key virulence factors (Valentini and Filloux, 2019). As compared
to PAO1, the clpV3 deletion mutant demonstrated a decrease
in cdrA promoter activity, suggesting a reduced c-di-GMP
level in the mutant. The decreased c-di-GMP signal molecules
could hypothetically provide an explanation about the reduced
virulence factors including pyocyanin production, proteolytic
activity and biofilm formation (Hengge, 2009; Lo et al., 2016;
Chang, 2017).

In an effort to globally investigate the effect of ClpV3, RNA-
sequencing was performed to compare the DEGs between PAO1
and PAO1(1clpV3). The transcriptomic data revealed that a
total of 311 genes were differentially expressed between the
two strains. In a clpV3 mutant, lower expression of genes
related to pyocyanin synthesis, T2SS, T3SS, H2-T6SS, H3-
T6SS was observed while an increased expression of H1-
T6SS was also noted. These results correlate well with the
observed phenotypic changes in the mutant. In addition, a
number of transcriptional or post-transcriptional regulators
were differentially expression, including rsmA, vqsR, mexL,
mvaT, pauR, pmpR, cgrC, cgrB, ptxS, antR, narL, and zur. The
down-regulated lasR could explain the decreased expression
of genes related to H2-T6SS, H3-T6SS, T2SS and pyocyanin,
and an increase in the H1-T6SS (Venturi, 2006; Lesic et al.,
2009). Other virulence factors affected by H3-T6SS can
either directly or indirectly attributed to these regulators.
ClpV is a cytoplasmic AAA+ ATPase protein and it is
recently found to be localized at discrete and dynamic
foci in the cell (Basler and Mekalanos, 2012; Lennings
et al., 2019), suggesting additional roles beyond providing
energy for T6SSs for this protein. The energy intensive
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function of T6SS depends on such an ATPase. It is tempting
to speculate that, once clpV3 is deleted, the balance of ATP
pool of the cell might be disrupted. ATP dependent synthesis
of signaling molecules such as cAMP, as well as the quorum
sensing signal molecules might have been affected as a result,
which in turn would affect the downstream of the regulatory
pathways, contributing to the altered pathogenicity associated
phenotypes including biofilm formation, proteolytic activity,
pyocyanin production, swarming and swimming motilities. T3SS
is an ATP-dependent protein secretion system. T3SS activity is
energy intensive and potentially influenced by cellular energy
level; therefore, any changes in the cellular ATP pool could
theoretically affect this system.

As multiple virulence factors changed significantly in the
H3-T6SS mutant, we examined the relevance of such changes
in vivo using a well-established G. mellonella infection model.
G. mellonella larvae were infected by both the wild-type PAO1
and PAO1(1clpV3) and the survival rates were compared.
The significantly decreased mortality rate in PAO1(1clpV3),
when compared to the PAO1, confirmed that H3-T6SS
plays an important role in the in vivo pathogenicity of
P. aeruginosa. The lower expressed virulence including T3SS,
pyocyanin production, and elastase may account for the
decreased mortality. Because it is possible that H3-T6SS
may be directly involved in killing the host, more studies
are required to differentiate the direct contributions of the
impairment of H3-T6SS in the decreased pathogenicity against
G. mellonella.

Collectively, the results obtained in this study suggest that
H3-T6SS in P. aeruginosa plays far more diverse roles and
affects many more genes rather than just those related to T6SS,
revealing a surprisingly complex connection of this system with

other secretions systems and pathogenicity. These results add
to the limited pool of knowledge in this field and suggest
that T6SS might be a potential therapeutic target against
P. aeruginosa infections.
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