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Lipoxin A
4
has been described as a major signal for the resolution of inflammation and is abnormally produced in the lungs of

patients with cystic fibrosis (CF). In CF, the loss of chloride transport caused by the mutation in the cystic fibrosis transmembrane
conductance regulator (CFTR) Cl− channel gene results in dehydration, mucus plugging, and reduction of the airway surface liquid
layer (ASL) height which favour chronic lung infection and neutrophil based inflammation leading to progressive lung destruction
and early death of people with CF. This review highlights the unique ability of LXA

4
to restore airway surface hydration, to

stimulate airway epithelial repair, and to antagonise the proinflammatory programof theCF airway, circumventing someof themost
difficult aspects of CF pathophysiology.The report points out novel aspects of the cellular mechanism involved in the physiological
response to LXA

4
, including release of ATP from airway epithelial cell via pannexin channel and subsequent activation of and P2Y11

purinoreceptor. Therefore, inadequate endogenous LXA
4
biosynthesis reported in CF exacerbates the ion transport abnormality

and defective mucociliary clearance, in addition to impairing the resolution of inflammation, thus amplifying the vicious circle of
airway dehydration, chronic infection, and inflammation.

1. Lipoxin A4

1.1. Lipoxin A
4
and Eicosanoid Class Switching. Lipoxin A

4

(LXA
4
) belongs to a class of newly identified specialised

proresolution lipid mediators playing a central role in the
resolution of inflammation which results from the sequential
production of characteristic eicosanoids in a process termed
“class switching” [1, 2]. Prostaglandins are biosynthesized
early, initiating the acute inflammatory response. Then Leu-
kotrienes typified by Leukotriene B

4
(LTB
4
) play a role in

the amplification and propagation of inflammation [1] acting
in concert with the peptide Interleukin 8 (IL8) as a potent
neutrophil chemoattractant [3, 4]. Both LTB

4
and IL8 are

negatively correlated with pulmonary function in CF. LXA
4

is the first eicosanoid expressed in the active resolution phase
of inflammation [5] followed by biosynthesis of the Resolvins
andProtectins. LTB

4
andLXA

4
are closely relatedmetabolites

of arachidonic acid and can be synthesised from a common
unstable intermediate [3].

1.2. Lipoxin A
4
Synthesis. LXA

4
is produced by multistep

enzymatic process resulting from lipoxygenase (LO) activi-
ties in different cell types [6]. Neutrophils [7], eosinophils [8],
alveolar macrophages [9], platelets [10], or airway epithelial
cells [11] express different LO which act in sequence in LXA

4

biosynthesis [3, 12].
Two main pathways will result in LXA

4
synthesis. One

involves lipoxygenation of arachidonic acid by 15-LO in
macrophages and epithelial cells. The 5-LO expressed by
neutrophils can then utilise the 15(S)-hydroxyeicosatetranoic
acid (15S-HETE) released as a substrate to synthesize LXA

4

[7] (Figure 1, blue arrows). Alternatively, platelet 12-LO [10]
and macrophage or epithelial 15-LO [13, 14] are each able
to transform Leukotriene A

4
, released by neutrophils, into

Hindawi Publishing Corporation
BioMed Research International
Volume 2015, Article ID 781087, 10 pages
http://dx.doi.org/10.1155/2015/781087

http://dx.doi.org/10.1155/2015/781087


2 BioMed Research International

Neutrophils

5-LO

LTA 4 LXA4 15S-HETE

15-LO

AA

Airway epithelial cells
macrophages

AA

Figure 1: Lipoxin A
4
biosynthesis by trans-cellular cooperation in

the airways. The neutrophil donates LTA
4
intermediate formed by

the action of 5 lipoxygenase (5-LO) on arachidonic acid (AA) to
the acceptor airway epithelial cell or alveolar macrophage whereby
15 lipoxygenase (15-LO) catalyses LXA

4
formation (brown arrows).

Airway epithelial cell or alveolar macrophage 15-LO activity catal-
yses the conversion of AA to 15S-HETE which is donated to the
acceptor neutrophil and converted to LXA

4
by 5-LO catalysis (blue

arrows).

LXA
4
(Figure 1, brown arrows). The activity of 15-LO pro-

motes LXA
4
biosynthesis and blocks leukotriene biosynthe-

sis, both as a result of 15-LOproducts competing for flux at the
5-LO level and by diversion of the intermediate Leukotriene
A
4
away from LTB

4
towards LXA

4
biosynthesis [1, 11, 15].

1.3. Lipoxin A
4
Anti-Inflammatory Actions. The anti-inflam-

matory action of LXA
4
is mainly mediated by the formyl-

peptide receptor 2 (FPR2)which is onemember of a subgroup
of receptors linked to inhibitory G-proteins, also called ALX
[16, 17]. FPR2 receptor activation by specific agonists results
in transient Ca2+ flux, phosphorylation of extracellular signal
regulated kinases (ERK), and chemotaxis [18].Themolecular
and pharmacological characterization of FPR2 receptor have
been previously reviewed [19, 20]. Briefly, the seventh trans-
membrane domain of the FPR2 receptor is essential for LXA

4

recognition, whereas the additional regions of the receptor
(e.g., extracellular loops) are required for high affinity binding
of the peptide ligands [17, 19, 20]. LXA

4
also interacts directly

with the cysLTI receptor to transduce signals that prevent
the proinflammatory response and contributes to the active
resolution of inflammation [18, 21].

LXA
4
inhibits neutrophil effector functions [5] and in

particular inhibits LTB
4
induced neutrophil transmigration

[22–24]. LXA
4
suppresses IL8 production by leukocytes and

bronchial epithelial cells including airway epithelial cells
from patients with cystic fibrosis [25–28]. Mice treated with

analogues of LXA
4
and subsequently challenged with P.

aeruginosa contained the bacterial challenge more effectively
[29]. LXA

4
affects leukocytes in a cell type specific manner,

inhibiting the activation of polymorphonuclears (PMNs) and
eosinophils whilst activating monocytes and macrophages.
PMN recruitment is a multistep process that involves chemo-
taxis, adhesion, and transmigration. In in vitromodels LXA

4
,

LXB
4
, and ATLS inhibit PMN chemotaxis in response to the

chemoattractant LTB
4
and inhibit eosinophil responses to

platelet activating factor. Stimulation of macrophages with
LXA
4
significantly enhances phagocytosis of apoptotic PMN,

suggesting that LXA
4
can promote the clearance of apoptotic

leukocytes by macrophages at an inflammatory site [30, 31].

2. Cystic Fibrosis

2.1. Cystic Fibrosis Disease and the CF Gene. Cystic fibrosis
(CF) is the most common lethal genetic disorder in Cau-
casians caused by a mutation in the gene encoding the cystic
fibrosis transmembrane conductance regulator (CFTR). The
disease was first characterised in 1938 by Andersen who
described the cystic fibrosis of the pancreas and correlated it
with the lung and intestinal disease that occurs in CF [32].
In 1953, the observation of excessive salt loss in the sweat of
CF patients was noted; however, it was not until 1983 that
it was first shown that sufferers of CF displayed abnormal
chloride transport. This discovery was not sufficient for the
identification of the defective protein in CF patients. In
1985 polymorphic markers associated with the disease were
identified and finally the CFTR gene was identified [33–35].

The CFTR protein is principally expressed in the apical
membranes of epithelia where it acts as an anion channel
providing a pathway for Cl− and bicarbonate (HCO

3

−)move-
ment, controlling the rate of fluid flow, and also regulating the
function of other ion channels and transporters in epithelial
cells [36, 37]. A number of different CFTR mutations have
been identified that lead to differing outcomes in terms of
protein synthesis, trafficking, regulation, and CFTR levels
within the cell [38, 39]. CFTR is abundantly expressed in
epithelial cell membranes and, as such, CF disease partic-
ularly affects epithelial sites: the submucosal glands, airway
surface epithelium [40], pancreatic ductal epithelium, the
epithelium of the crypts of Lieberkuhn throughout the gas-
trointestinal tract [41], the epithelium of sweat glands [42],
the epithelium of the developing genital ducts, adult epi-
didymis and vas deferens, and the cervical and the uterine
epithelial surfaces [43, 44]. However, there are exceptions
among epithelial tissues where CF related dysfunction is not
prominent, such as kidney collecting ducts, the epithelium of
Burners gland, and the submucosal glands of the duodenum
[44].Themajor clinical features of CF are chronic pulmonary
disease, exocrine pancreatic insufficiency, and male infer-
tility. CF lung disease reflects the failure of airway defence
against chronic bacterial infection, leading to an aggravated
immune response, bronchial epithelial remodelling, and
ultimately lung destruction.The progressive lung destruction
is the main cause of morbidity and mortality in CF [45,
46]. Whilst it was initially believed that the pulmonary
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complaints associated with CF were directly related to the
CFTR dysfunction in epithelial cells, it is now recognised that
other cell types including neutrophils [47, 48], macrophages
[49, 50], and dendritic cells [51] are directly affected by the
absence or dysfunctional CFTR.

2.2. Abnormal Production of Lipoxin A
4
in Cystic Fibrosis. In

addition toCFTRdysfunction, other abnormalities have been
described in chronically inflamed and infected CF airways,
including intrinsic proinflammatory properties, amplified
inflammatory responses to infections, and reduced bacterial
clearance. More specifically, the levels of LXA

4
have been

reported to be decreased in CF, like in other chronic air-
way inflammatory diseases such as asthma [29, 52–55]. A
significant suppression in LXA

4
/neutrophil ratios in bron-

choalveolar lavages (BAL) fluid of patients with CF compared
with pulmonary inflammatory controls was reported [29, 56].
Furthermore, in paediatric CF BAL even in the absence of
infection, the ratio of LXA

4
to LTB

4
is depressed and this

correlates with a significant lower level of 15 LO-2 transcripts
in CF BAL [2]. A decreased proportion of proresolving
compounds (LXA

4
) compared to proinflammatory (LTB

4
) is

associated with decreased lung function parameters [57]. In
addition, in vitro studies support a role for CFTR in LXA

4

production. The inhibition of CFTR reduces LXA
4
synthesis

by 50% during platelets/PMN coincubation by inhibiting the
lipoxin synthase activity of platelets 12-LO. This correlated
with the observation that platelets from patients with CF
generated 40% less LXA

4
compared to healthy subjects [58].

Thedecreased LXA
4
production inCFprovides amechanistic

explanation of the failure to actively resolve acute airway
inflammation seen in these patients.

3. Regulation of Ion Transport and Airway
Surface Liquid Layer in Cystic Fibrosis

3.1. Abnormal Ion and Fluid Transport in Cystic Fibrosis.
The lung must continually defend itself against bacteria that
deposit on the airway surfaces during normal tidal breathing.
Mucus clearance is a primary form of pulmonary defence and
the efficiency of mucociliary clearance in large part depends
upon the volume of the airway surface liquid layer (ASL).
The ASL allows for mucus containing foreign bodies to be
transported away from the lung to the oropharynx where it
is either expelled from the body or swallowed and destroyed
by the gut.TheASL provides a low viscosity solution allowing
free ciliary beat and mucus transport [59]. The normal
hydration of the airway surface is maintained (in the highly
water permeable airway epithelium) by active ion-transport
controlling the quantity of salt (NaCl) delivered to airway
surfaces, with water following passively by osmosis [60]. The
NaCl concentration of the airway surface liquid is tightly
regulated in normal airway epithelia by the epithelial sodium
channel (ENaC) mediated Na+ absorption and Cl− secretion.
Cl− is secreted by epithelial cells via the apical CFTR Cl−
channel and calcium activated Cl− channels, with Cl− enter-
ing the cell through the Na+–K+–2Cl− cotransporter located
in the basolateral membrane. Regulation of Cl− secretion
determines the net transport of ions across the epithelium

and hence the mass of salt on the epithelial surfaces. CFTR
was also found to regulate ENaC suggesting that CFTR
acted both as a Cl− channel and as a regulator of other
ion transport processes. In CF, mutations of the CFTR gene
result in defective Cl− secretion and Na+ hyperabsorption
by airway epithelia [61, 62]. Studies in CF airway epithelium
cultures, transgenic mice, and people with CF suggest that
the initiating event in CF airway disease is a reduced ASL
volume resulting fromdehydration.This dehydration leads to
reduced mucus clearance, adhesion of mucus to airway sur-
faces, and chronic bacterial infection of the lung (Figure 2).
The chronic bacterial infection leads to an aggravated
immune response, bronchial epithelial remodelling, and ulti-
mately lung destruction [59, 63–70].

3.2. Lipoxin A
4
Restores Fluid Transport in Cystic Fibrosis.

One of the greatest challenges of fundamental research into
reversing the CF defect in the lung has been to design a
strategy to overcome the absence of functional CFTR by
stimulating chloride secretion via alternative pathways, thus
restoring airway hydration and mucociliary clearance. This
can be achieved via the stimulation of calcium activated Cl−
by agents that raise the intracellular concentration of calcium.
Yet, this strategy has been plagued by the side effects of
the amplification of the calcium-dependent proinflammatory
response resulting in undesirable activation of NF𝜅B. In
addition to its anti-inflammatory properties, LXA

4
stimulates

a rapid and transient intracellular Ca2+ increase in normal
andCFbronchial epithelial cells expressing the FPR2 receptor
[71, 72]. This intracellular calcium signal is mainly due to
calcium mobilisation from intracellular calcium stores in
non-CF airway epithelial cells and due to calcium entry
and intracellular calcium release in CF airway epithelial
cells. In both, non-CF and CF bronchial epithelia, LXA

4

stimulates whole-cell Cl− currents which are inhibited by
NPPB (calcium-activatedCl− channel inhibitor) andBAPTA-
AM (chelator of intracellular Ca2+) but not by CFTRinh-
172 (CFTR inhibitor) [71, 72]. Furthermore, in models of
fully differentiated bronchial epithelia derived from primary
culture of bronchial brushings from patients with CF and
cultured under air-liquid interface, LXA

4
’s effects on ion

transport result in an increase of the airway surface liquid
(ASL) layer height. LXA

4
exerts this effect on the ASL

dynamics via the FPR2 receptor. The sustained increase in
ASL height induced by LXA

4
in non-CF and CF bronchial

epithelia results from inhibition of amiloride-sensitive Na+
absorption and stimulation of an intracellular calcium signal
and Ca2+-activated Cl− secretion independent from CFTR
[72, 73]. LXA

4
thus restores Cl− secretion and normal ASL

height both central to the pathophysiology of CF airway
disease, highlighting a role for LXA

4
in the restoration of

normal innate immune defence (Figure 2).

4. Nucleotides and CF Airway Disease

4.1. Regulation of ASL and Mucociliary Clearance by Nucleoti-
des. Mason et al. first proposed that extracellular ATP regu-
lates ion transport rates when added to either the apical
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Figure 2: In normal airways the airway surface liquid layer (ASL) provides an adequate mucociliary clearance which is maintained by a
combination of Cl− secretion through the cystic fibrosis transmembrane conductance regulator (CFTR), Na+ absorption via the epithelial
sodium channel (ENaC), and water transport through a paracellular pathway and membrane bound aquaporins (Aq). In CF, a defective
CFTR leads to loss of Cl− secretion and Na+ hyperabsorption. The concomitant dehydration of the airway lumen favours bacterial infection
and inflammation (mainly neutrophilic). LXA

4
mediates an increase in ASL height and restores it to normal levels in CF bronchial epithelium.

LXA
4
also increase tight junction formation, reestablishing the epithelial barrier function. Taken together this work provides evidence for

LXA
4
as potentially a new therapy for CF patients.

or basolateral surface of human airway epithelium and
found that these effects appear to be mediated by cell sur-
face receptors that respond to ATP by regulating ion trans-
port rates through the release of Ca2+ from internal stores
and extracellular Ca2+ influx [74]. As agonists were being
screened to restore Cl− and fluid secretion in CF airway epi-
thelium, nucleotide agonists emerged quickly as stimulants of
Cl− and fluid secretion independent of CFTR. Knowles et al.
showed that extracellular nucleotides stimulated Cl− secre-
tion in CF patients. Purinergic agonists in addition to ATP
such as UTP, UDP, and ADP also had the power to stimulate
Cl− secretion in CF and non-CF airway epithelial models
[75]. In addition, adenosine receptors can also stimulate Cl−
secretion in airway epithelial cells by activating the cAMP/
PKA signal transduction pathway and eventually CFTR [76,
77]. ATP signalling through purinergic P2Y receptors is
effective in airway epithelia in inhibiting ENaC activity and
initiating Ca2+-activated Cl− secretion [78]. All functionally
defined P2Y receptors are able to couple through the IP

3

pathway consisting of activation of PLC increase in inosi-
tol phosphates and mobilization of Ca2+ from intracellular
stores. In addition and secondary to the activation of the
PLC, multiple signal transduction pathways including PKC,
phospholipaseA

2
, Ca2+ sensitive ion channels, and formation

of endothelium derived relaxing factors have been shown
to be involved in the responses to activation of native P2Y-
receptors. Another function of the P2Y receptors is the acti-
vation of ciliary beat frequency. In hydrated airways, the
rate of mucociliary clearance is determined by ciliary beat
frequency and nonsaturating concentrations of ATP gener-
ates alternating Ca2+ signals in ciliated cells which in turn
increases ciliary beat frequency [79, 80].

Pharmacological data has shown that the P2Y11 receptor
is preferentially activated by ATP and is uniquely coupled
to both the phosphoinositide and the cAMP pathways [81].

Evidence is available that ATP and ADP, two physiologic
nucleotides that can be released into the extracellular space,
are able to raise cAMP levels in native cells via activation
of P2Y11 receptors. Those results provide a mechanism in
addition to activation of P2Y2 or adenosine receptors, by
which exogenous or endogenously related nucleotides can
increase cellular levels of this important cyclic nucleotide.
Given the evidence that a number of types of cells both release
ATP and possess P2Y11 receptor, then nucleotide mediated
activation of P2Y11 receptors provides a means for autocrine
regulation of epithelial and other cell types. Activation of the
P2Y11 receptor in different cell types has a number of different
outcomes. For example, the P2Y11 receptor mediates the
inhibition of neutrophil apoptosis, impaired endothelial cell
proliferation or regulation of secretory function of pancreatic
ductal cells by ATP [82–84].

4.2. Nucleotides Release by Pannexin Channel. The complex
cellular composition of the airways that is ciliated cells and
mucin-secretory goblet cells suggests that several mecha-
nisms and pathways are involved in the release of nucleotides
into the airways. Two general mechanisms for the release of
ATP from cells have been proposed as vesicular release and
channel-mediated release. While vesicular release of ATP is
well documented, ATP release can also occur in the absence
of vesicules. For example, human erythrocyte which is devoid
of cytoplasmic vesicle can release ATP in low oxygen content
or in response to shear stress [85]. Pannexins belong to the
family of connexin channels that have been proposed as
diffusion pathways for ATP release under various experi-
mental conditions.The Pannexins primarily form oligomeric
structures embedded in a single plasmamembrane that when
open provide a conduction pathway between cytosol and
extracellular space.They aremechanosensitive and are highly
permeable to ATP [86]. Exposure of the alveolar A549 cells to
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Figure 3: Lipoxin A
4
enhances epithelial barrier integrity by stimulating an increase in airway surface liquid (ASL) layer height, epithelial

repair, and tight junction formation. Stimulation of the FPR2 receptor by LXA
4
induces an apical ATP release through the pannexin (Panx1)

channel activating a purinoreceptor pathway. Activation of P2Y11 receptors stimulates chloride secretion out of the cell by calcium activated
chloride channels (CaCC) and inhibition of sodium absorption by amiloride sensitive epithelial sodium channels (ENaC) which result in a
restored ASL height in CF bronchial epithelial cells. The calcium signal induced by P2Y11 activation also stimulates epithelial repair and tight
junction formation. Taken together, the physiological effects induced by LXA

4
have the potential to delay the invasion of bronchial epithelial

cells by bacteria (green and orange structures).

thrombin resulted in a strong ATP release response that was
inhibited by the nonselective blockers of pannexin channels
suggesting that ATP release from thrombin-stimulated lung
epithelial cells occurs through pannexin channels [87]. A
study by Ransford et al. 2009 showed ATP release induced
by hypotonic shock of human bronchial epithelial cells was
inhibited after silencing pannexin-1 (Panx1) via shRNA [88].
The large pores of Panx1 (themost studied pannexin channel)
are permeable to ions, second messengers, and neurotrans-
mitters such as ATP, IP

3
, and amino acids. Panx1 is also

implicated in secretion of arachidonic acid and itsmetabolites
and it is now widely regarded that Panx1 membrane channels
are also involved in the extracellular mode of wave propaga-
tion. Panx1 channels open in response tomechanical stress or
other stimuli such as depolarization and release ATP to the
extracellular medium. ATP binding to purinergic receptors
triggers an increase of cytoplasmic Ca2+ via the IP

3
pathway.

The Ca2+ increase is not restricted to the same cell but also
includes cells within diffusion distance for the released ATP
also stimulating cells that are coupled to the stimulated cell
by gap junction channels permitting the flux of IP

3
.

The increase in Ca2+ can activate Panx1 channels and
subsequent release of ATP provides a new source for extra-
cellular ATP to reach more distant cells [86]. The application
of micromolar concentrations of Ca2+ to the cytoplasmic side
of Panx1 channels in excised membrane patches activated the
channels at negativemembrane potentials where the channels
are normally closed [86].

4.3. Lipoxin A
4
Increases the Airway Surface Liquid Height via

P2Y11 Activation. Themechanism by which LXA
4
stimulates

Ca2+-activated Cl− secretion and ASL height increase has
been elucidated. Higgins et al. reported that LXA

4
induces

an apical ATP release from non-CF and CF airway epithelial
cell lines and CF primary cultures. This ATP release induced
by LXA

4
is completely inhibited by antagonists of the FPR2

receptor and Panx1 channels suggesting a major role of Panx1
in this effect. Furthermore, LXA

4
induces an increase in

intracellular cAMP and calcium, which are abolished by
the selective inhibition of the P2RY11 purinoreceptor. Panx1
and ATP hydrolysis inhibition and P2RY11 purinoreceptor
knockdown all abolish the increase of ASL height induced
by LXA

4
. Inhibition of the A

2
b adenosine receptor does not

affect the ASL height increase induced by LXA
4
, whereas

the PKA inhibitor partially inhibits this response. Taken
together this report provides evidence for a novel role of
LXA
4
in stimulating apical ATP secretion via Panx1 channel

and subsequent P2RY11 purinoreceptor activation in airway
epithelial cells leading to an ASL height increase (Figure 3).

5. Epithelial Repair in CF Airway

5.1. Altered Epithelial Repair in CF. In CF, recurrent infec-
tions and inflammatory insults result in damage to the
airways and trigger the repair process [89]. Epithelial repair
initially involves cell migration and cell proliferation to
repopulate the injured area [90–92]. This process is then
followed by differentiation of the epithelium [93]. Recent
research suggests that epithelial repair as well as differentia-
tion of the CF airway epithelium is downregulated or delayed
[94–98]. More specifically, cell migration and proliferation
both appear to be reduced during repair of CF bronchial
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epithelial cells compared to non-CF cells [99]. This delay in
repair of the CF epithelium renders the lungmore susceptible
to ongoing bacterial infection and thus may trigger more
epithelial damage [100].

5.2. Lipoxin A
4

Regulates Airway Epithelial Integrity in
CF Airway Epithelium. The lipid mediator LXA

4
triggers

epithelial cell migration and proliferation and thus plays a
role in repair of epithelia including bronchial epithelium
from patients with CF [22, 99, 101–104]. The effects of
LXA
4
in stimulating cell proliferation, cell migration, and

wound repair are mediated by the apical ATP release and
P2Y11 activation [105]. Stimulation of P2Y11 purinoreceptors
induces calcium release and ERK phosphorylation, both of
which play a key role in initiating cell proliferation and
migration [106–113]. Furthermore, consistent with the role of
potassium channels in two key processes of repair, migration,
and proliferation in numerous cell types, the responses to
LXA
4
on the repair process are mediated by the downstream

activation of KATP potassium channels [96, 97, 99, 114–117].
Additionally, LXA

4
enhances airway epithelial tight junction

formationwhich is amain factor of epithelial barrier integrity.
LXA
4
stimulates ZO-1, claudin-1, and occludin expression

and trafficking at the apical membrane resulting in enhanced
transepithelial electrical resistance in human airway epithelia
[118] (Figure 2). Taken together, these effects of LXA

4
on

airway epithelial structure suggest the abnormal levels of
LXA
4
in CF airways may account for the reduced capacity

for epithelial repair in CF.

6. Treatments of CF Airway Disease

6.1. Current Treatments and Opportunities. There is currently
no treatment available that fully corrects the biochemical
abnormality in CF and leads to a cessation of the typi-
cal pathobiology seen in the condition. Therapies to date
have been centred on slowing the decline in pulmonary
function over time to prolong survival. Medication is pre-
dominantly used to optimise nutrition (pancreatic enzymes,
fat soluble vitamin supplementation), treat infection (oral,
inhaled, and intravenous antibiotics), and facilitate effective
mucociliary clearance (DNAse, hypertonic saline). Several
anti-inflammatory approaches have been examined in CF;
however, the ideal anti-inflammatory drug is not yet available
[119]. A recent systematic review of the risks and benefits of
inhaled corticosteroids in CF, examining evidence from 13
trials, concluded that there is insufficient evidence to establish
whether they are beneficial in CF while it is established that
ICS use can have adverse effects [120]. A systematic review
of the efficacy of nonsteroidal anti-inflammatory drugs in
CF concluded that treatment with high-dose ibuprofen was
associated with a significantly lower annual rate of decline in
lung function (especially in children); however, the adoption
of ibuprofen into therapy has not been universally accepted
[121]. Correcting the imbalance in fatty acid metabolism
described in CF by supplementation of Docosahexaenoic
Acid may be helpful, and efforts are ongoing to evaluate the
potential therapeutic benefit [122].

Two promising avenues of therapy have recently emerged:
small molecule correctors and gene therapy. The flagship

small molecule corrector has been Ivacaftor (VX-770). This
compound facilitates gating of defective CFTR where the
cause of CFTR dysfunction is a gating mutation—predom-
inantly G551D.This has been remarkably clinically successful
but can be taken by only approximately 5% of patients
worldwide [123, 124]. The manufacturers of Ivacaftor, Vertex
Pharmaceuticals, are currently developing correctors for
the commonest mutation Phe508del. Phase 2 trials of this
compound have been shown to lead to positive changes in
CFTR function, but not to the same degree as VX-770 [125].
Gene therapy was considered an obvious target for disease
modifying treatment after the discovery of the CFTR gene;
however initial attempts at this approach were unsuccessful,
prompting a comprehensive review of the process of selection
of endpoints, vectors, and delivery modes. A consortium in
the UK has developed a comprehensive approach in this
regard and will report shortly on multidose trials of gene
therapy in individuals with CF [126]. A treatment approach
capable of effectively preventing lung damage and decline in
pulmonary function is currently absent despite the obvious
hope relating to new developments.

For now, we continue to search for new and effective
therapies to slow or prevent the decline in pulmonary
function in CF.

6.2.Therapeutic Potential for LXA
4
in the Treatment of CF Air-

way Disease. A variety of airway clearance therapies have
been developed for patients with CF [127, 128]. Thus iden-
tification of agents, particularly endogenous biologicals that
stimulate non-CFTR Cl− secretory pathways and promote
ASL height recovery while providing anti-inflammatory
effects are likely to be of therapeutic benefit in improving
mucociliary clearance in patients with CF. The effect of
LXA
4
inhalation has been evaluated in a pilot study of

eight asthmatic and healthy adult subjects. The challenge
was tolerated, had no adverse effect on pulse or blood pres-
sure, and demonstrated favourable effects on specific airway
conductance [129].

In conclusion, the discovery of the multiple impacts of
LXA
4
in restoring bronchial epithelium ion transport, in

enhancing ASL height, in restoring epithelial barrier func-
tion, and in reducing inflammationmight provide significant
advance in treatment of the CF airway disease (Figure 3).
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“EGF and K+ channel activity control normal and cystic fibrosis
bronchial epithelia repair,” American Journal of Physiology—
Lung Cellular and Molecular Physiology, vol. 295, no. 5, pp.
L866–L880, 2008.
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