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A B S T R A C T

Simulation models from the early COVID-19 pandemic highlighted the urgency of applying non-pharmaceutical
interventions (NPIs), but had limited empirical data. Here we use data from 2020–2021 to retrospectively
model the impact of NPIs in Ontario, Canada. Our model represents age groups and census divisions in
Ontario, and is parameterized with epidemiological, testing, demographic, travel, and mobility data. The
model captures how individuals adopt NPIs in response to reported cases. We compare a scenario representing
NPIs introduced within Ontario (closures of workplaces/schools, reopening of schools/workplaces with NPIs
in place, individual-level NPI adherence) to counterfactual scenarios wherein alternative strategies (e.g. no
closures, reliance on individual NPI adherence) are adopted to ascertain the extent to which NPIs reduced
cases and deaths. Combined school/workplace closure and individual NPI adoption reduced the number of
deaths in the best-case scenario for the case fatality rate (CFR) from 178548 [CI: 171845, 185298] to 3190
[CI: 3095, 3290] in the Spring 2020 wave. In the Fall 2020/Winter 2021 wave, the introduction of NPIs in
workplaces/schools reduced the number of deaths from 20183 [CI: 19296, 21057] to 4102 [CI: 4075, 4131].
Deaths were several times higher in the worst-case CFR scenario. Each additional 9 − 16 (resp. 285 − 578)
individuals who adopted NPIs in the first wave prevented one additional infection (resp., death). Our results
show that the adoption of NPIs prevented a public health catastrophe. A less comprehensive approach,
employing only closures or individual-level NPI adherence, would have resulted in a large number of cases
and deaths.
1. Introduction

Non-pharmaceutical interventions (NPIs) such as school and work-
place closure, limiting group sizes in gatherings, hand-washing, mask
use, and physical distancing are essential for pandemic mitigation in
the absence of a vaccine (Halloran et al., 2008). Scalable NPIs, in
particular, are measures that can be taken up by the entire population if
containment strategies have failed (Peak et al., 2020). These measures
have been applied extensively during the 2019 coronavirus disease
(COVID-19) pandemic to reduce severe outcomes (Hale et al., 2021).
Given the extensive social and economic consequences of the COVID-
19 pandemic, there is significant value in assessing how many cases,
hospitalizations, and deaths were prevented by pandemic mitigation
measures that relied upon scalable NPIs.

Assessments of NPI efficacy sometimes rely upon comparing health
outcomes in countries that did not implement certain NPIs, to those
that did (Brauner et al., 2021). However, it may be difficult to control
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for confounding factors in cross-country comparisons such as differing
social and economic circumstances. Another approach is to monitor
outcomes longitudinally in a given population as they respond to a
timeline of changing NPIs (Li et al., 2021).

Empirical approaches to predicting the number of COVID-19 cases
in the absence of interventions are difficult or impossible since, in
every country, governments implemented control measures and/or the
population responded to the presence of the virus. Even in the case of
Sweden, whose government adopted a de facto herd immunity strat-
egy (Claeson and Hanson, 2021), the population exhibited enormous
reductions in mobility in March and April 2020 (Google LLC, 2021).
Here, simulation models can be useful tools for estimating the num-
ber of cases in the absence of interventions, and for exploring other
questions concerning SARS-CoV-2 transmission and COVID-19 disease
burden (Tuite et al., 2020b,a; Moyles et al., 2021; Tang et al., 2020;
Arino and Portet, 2020; Abdollahi et al., 2020b; Magli et al., 2020;
vailable online 6 April 2022
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Phillips et al., 2020; Karatayev et al., 2020; Jentsch et al., 2021;
Hellewell et al., 2020). Models developed during the pandemic’s early
stages made projections for such scenarios, but required rational as-
sumptions about crucial parameter values in the absence of empirical
data specific to COVID-19 (Hellewell et al., 2020; Karatayev et al.,
2020; Tuite et al., 2020a).

We adopt a retrospective approach, fitting a simulation model to
empirical data from March 2020 to February 2021 to estimate how
many COVID-19 cases and deaths would have occurred in the province
of Ontario, Canada in the absence of NPIs. After fitting the model,
we relax the parameters relating to NPIs to predict what might have
happened in their absence, or in the presence of only a subset of NPIs.
The model includes the census area and age structure of Ontario, as
well as travel between census areas. Moreover, the model accounts for
population behavioral responses to pandemic waves: without volitional
population uptake of NPIs, ‘‘flattening the curve’’ may not have been
possible (Jentsch et al., 2021).

2. Methods

2.1. Model overview

To capture the social–epidemiological dynamics of severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission and
COVID-19 cases, we developed a stochastic compartmental model in-
corporating age and spatial structure (Fig. 1). Transmission dynamics
in the population of each census region are described by a Susceptible
(S), Exposed (E), Pre-symptomatic and infectious (P), Symptomatic and
infectious (I), Asymptomatic and infectious (A), Removed (R) natural
history. Populations in different regions are connected through com-
muter travel. Transmission is reduced through school and/or workplace
closure and infection control efforts in those settings, under direction
from public health authorities. However, transmission is also reduced
outside of school and work settings as a result of volitional efforts
by individuals to adopt NPIs, including measures such as physical
distancing, hand-washing, and mask wearing (Supplementary informa-
tion, Figure S2). This occurs in proportion to the daily incidence of
reported cases. Transmission rates are region-specific to account for
regional differences in contact patterns due to population density and
other factors, and are also modified by seasonality in transmission. Age
classes varies in their relative susceptibility. Age-specific testing rates
increase over time from initially low levels in March 2020 to a constant
level (with the date this is attained varying by age class).

Using Ontario data, we estimated deaths resulting from COVID-19
under best-case and worst-case scenarios for the crude case fatality
ratio (CFR). In the best-case scenario we assume that CFR computed
from the historical data for the first and second waves also applies
in counterfactual scenarios where the case incidence was much higher
due to relaxing NPIs. In the worst case, we extrapolate the observed
empirical relationship between case incidence and CFR to consider the
possibility that the CFR increases with case numbers (Abdollahi et al.,
2020a), due to increased strain on the healthcare system (Bravata et al.,
2021) (Supplementary information, Figure S9).

Epidemiological (Ontario Agency for Health Protection and Pro-
motion, 2021a,d,c), testing (Ontario Agency for Health Protection
and Promotion, 2021a,d,c), demographic (Statistics Canada, 2017),
travel (Statistics Canada, 2016), and mobility data (Google LLC, 2021)
for Ontario were used to parameterize the model. We employed a
2-stage non-linear optimization process to fit cases by age class at
the provincial level, and total cases at the Public Health Unit (PHU)
level (Johnson, 2020; Runarsson and Yao, 2005; Powell, 1994). The
first stage used a global algorithm, with the results of that fitting
input as the initial values for the second-stage local optimization. This
allowed us to estimate the baseline transmission rate, as well as how
it responded to school/workplace closure, and how many individuals
adhered to NPIs in response to reported case incidence.
2

Full details on the model structure and parameterization appear
in the Supplementary methods. All fitting, simulations, analysis, and
visualization are performed in Rstudio (Version 1.2.5019) using R
(Version 4.0.3) (RStudio Team, 2020; R Core Team, 2020). Code and
data used for parameter fitting and simulations are available in a
GitHub repository (https://github.com/k3fair/COVID-19-ON-model).

2.2. Scenarios and outcomes analyzed

We generated model outputs for reported COVID-19 cases and
deaths over two time periods. The first time period covers the first
wave from 10 March 2020 to 15 August 2020. We use 15 August
2020 as a cutoff for the first wave as beyond mid-August case numbers
(which had previously been decreasing) begin to rise, and trends in NPI
adherence as a function of active COVID-19 cases (see Supplementary
information, Figure S2) are altered, factors we consider indicative of
the shift, in both an epidemiological and behavioral sense, from the
first to the second wave. The second time period from 12 June 2020 to
Feb 28 2021 covers Ontario’s reopening during the first wave and the
subsequent second wave. Since this reopening consisted of 3 phases,
we use the date that phase 2 came into effect (12 June 2020) as the
beginning of the reopening period, for simplicity. These periods are
studied separately because the first and second waves differed consider-
ably in terms of their epidemiology, disease burden, and interventions.
These two time periods were analyzed retrospectively: the empirical
data from these time periods were used to fit the model.

In the first time period, Ontario implemented school and workplace
closure, and a significant proportion of the population adhered to
recommended NPIs. For the first wave, we projected what might have
happened under three counterfactual scenarios: (1) school/workplace
closures were enacted but no individuals adhered to any other NPIs,
(2) school/workplace closures were not enacted but individuals ad-
hered to other NPIs in proportion to reported case incidence, and
(3) school/workplace closures were not enacted and no individuals
adhered to NPIs (a ‘‘do nothing’’ scenario).

In the second time period, Ontario closed schools and workplaces
in late 2020/early 2021, and began re-opening in February 2021, but
with mandatory NPIs in place to combat transmission, such as requiring
mask use in schools. We considered two counterfactual scenarios for
the re-opening phase in February 2021: (1) reopening does not occur
(school/workplace closures continues indefinitely), and (2) schools
and workplaces are reopened without NPIs in place. Individual NPI
adherence varied in response to cases in homes and other locations
for all of these scenarios. We also note that all of our scenarios for
the second time period incorporated the first provincial imposition
of control measures in Spring 2020 followed by the first provincial
re-opening in Summer 2020.

Scenario results are presented using provincial case numbers and
death totals, and age-stratified cases numbers. While our fitting process
incorporated PHU-level case data, there is substantial variation in the
quality of the resulting fits (Supplementary Information, Figures S7,
S8). As such, we do not present results for counterfactual scenarios at
the PHU level.

For the first time period and with reference to the average popula-
tion uptake of NPIs during those periods, we also estimated how many
additional individuals must adopt NPIs to prevent one additional case,
or one additional death (i.e., incremental cases and death prevented
by NPI uptake). These measures gauge the impact of individual-level
efforts on the course of the pandemic. The numbers are calculated
as an incremental quantity because the incremental effectiveness of
an individual choosing to adopt NPIs depends upon how many other
individuals in the population are already doing so, on account of their
impact on community transmission.

https://github.com/k3fair/COVID-19-ON-model
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Fig. 1. Schematic representation of transmission model. Note that the epidemiological compartments were stratified by age as well as location (details in Supplementary methods).
3. Results

3.1. Cases and deaths prevented by NPIs in the first and second waves

Results for our three counter-factual scenarios in the first wave
highlight the key role that NPIs played in limiting the spread of
SARS-CoV-2, and also show how school/workplace closures interact
with individual-level behaviors concerning NPIs (Fig. 2). The actual
number of daily reported cases peaked at 640 in Ontario in April
2020, and the modeled time series of cases follows the empirical
epidemic curve. However, in the absence of both school/workplace
closure and individual uptake of NPIs, the model predicts that daily
number of reported cases would have peaked at 67 000 in May 2020.
3

Allowing for either school/workplace closure or individual uptake of
NPIs reduces this peak considerably, although the peaks are still large
compared to the factual (historical) scenario where both were applied.
Comparing the scenarios of NPI adherence without closures, and of
closures without NPI adherence highlights the age-stratified impacts of
different interventions. Both scenarios result in similar case numbers for
those aged 20–39 up to mid-June 2020, when NPI adherence without
closures begins to result in lower case numbers. However, for those
aged 60+, the effect is noticeable much earlier (April 2020 onward)
with NPI adherence without closures resulting in a noticeable reduction
in case numbers as compared to a scenario of closures without NPI
adherence.
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Fig. 2. NPIs significantly reduced cases and deaths in the first wave. Figure panels show new confirmed cases by day (a) across all age classes and (b-f) broken down by age-class.
Panel (g) shows mean projected deaths from 10 March 2020 to 15 August 2020 in the best-case scenario (values from left–right are: 2789, 3190, 22 647, 34 525, 178 548) for
healthcare system functioning in a regime of very high case incidence (worst-case shown in Supplementary information, Figure S11). Transparent lines in panels (a–f) correspond to
different stochastic realizations of model runs, with solid lines corresponding to the median value across all realizations. Error bars in panel (g) represent the minimal and maximal
values across all stochastic realizations. For each scenario we generate 5 realizations using each of the 10 best parameter sets. Model parameter settings appear in Supplementary
information, Table S1.
Under the best case scenario for the CFR, the first wave would
have resulted in 178 548 [CI: 171 845, 185 298] deaths in the absence
of both school/workplace closure and individual adherence to NPIs
(Fig. 2g). This number greatly exceeds the 2789 deaths that actually
occurred between 10 March and 15 August 2020 due to lockdown
and population adoption of NPIs (Ontario Agency for Health Protection
and Promotion, 2021b). The worst-case scenario for deaths is even
higher under the ‘‘do nothing’’ scenario (Supplementary Information,
Figure S11), on account of the unmanageable surge in cases causing
a heightened CFR. However, applying either school/workplace closure
or individual uptake of NPIs significantly reduces the number of deaths
in both worst- and best-case scenarios. The reductions are greater
for applying only individual-level NPI measures than for applying
4

school/workplace closure. This is because school/workplace closure
in our model only affects school-age children and working-age adults
working in non-essential businesses, whereas individual adoption of
NPIs in our model spans all employment sectors in all age groups.

These findings are qualitatively unchanged for the second wave,
except that the difference in cases and deaths across the scenarios is not
as large, since we did not evaluate a ‘‘do nothing’’ scenario. (Fig. 3).
As before, cases and deaths are considerably higher when NPI use is
limited (in this case, does not occur in workplaces/schools). Both the
empirical epidemic curve and the modeled epidemic curves share the
feature of a relatively slow rise to a peak, followed by a relatively rapid
drop afterward (Fig. 2a). This is due to the combined effect of timing of
school/workplace closure, behavioral response, and seasonality in the
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Fig. 3. NPIs significantly reduced cases and deaths in the second wave. Figure panels show new confirmed cases by day (a) across all age classes and (b–f) broken down by
age-class. Panel (g) shows mean projected deaths from 12 June 2020 to 28 February 2021 in the best-case scenario (values from left–right are: 4493, 2016, 4102, 20 183) for
healthcare system functioning in a regime of very high case incidence (worst-case shown in Supplementary information, Figure S12). Transparent lines in panels (a–f) correspond to
different stochastic realizations of model runs, with solid lines corresponding to the median value across all realizations. Error bars in panel (g) represent the minimal and maximal
values across all stochastic realizations. For each scenario we generate 5 realizations using each of the 10 best parameter sets. Model parameter settings appear in Supplementary
information, Table S1.
transmission rate. Patterns are qualitatively similar across age classes,
though case numbers are highest in those aged 20–59.

3.2. Impact of individual-level efforts

We estimated how many additional individuals must adopt NPIs
to prevent one additional case, and one additional death, given what
percentage of the population is already adherent to NPIs. We estimated
this under both best-case and worst-case scenarios for the CFR. When
the percentage of the population already adherent to NPIs in within
empirically valid ranges for the first wave (shaded regions in Fig. 4 and
Supplementary information, Figure S13), we estimated that every 9 to
5

16 individuals who adopted NPIs prevented a single SARS-CoV-2 infec-
tion. Similarly, every 285 to 578 (respectively, 184 to 474) individuals
who adopted NPIs prevented a single COVID-19 death in the best-case
(respectively, worst-case) scenarios.

The number of individuals needing to adopt NPIs to prevent a SARS-
CoV-2 infection in a specific age class varies by age. For example, far
fewer individuals need to adopt NPIs to prevent an infection in either
of the 20–39 or the 40–59 age class than to prevent an infection in the
80+ age class. We speculate that this may be a result of the fact that
individuals aged 20–59 have some of the highest contact rates of all
age classes. Additionally, these working-age adults are often members
of households containing other individuals (e.g. children).
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Fig. 4. Impact of individual efforts. Figure panels show the incremental median number of individuals who needed to adopt NPIs to prevent (a) one infection, (b) one death
under the best-case scenario for healthcare system functioning in a regime of very high case incidence (worst-case shown in Supplementary information, Figure S13), and (c–g)
one infection in a given age class, for the first wave (10 March to 15 August 2020). The shaded regions demarcate the estimated range in the percentage of individuals adhering
to NPIs over that time-period (see Supplementary information, Figure S14). We generate 5 realizations using each of the 10 best parameter sets at each value of the percentage
of the population adhering to NPIs. Model parameter settings appear in Supplementary information, Table S1.
In the extreme case where a very high percentage of the population
is already adherent to NPIs, the incremental number of individuals
who must adhere to NPIs to prevent one case or death increases
dramatically. This is expected, since high uptake of NPIs can reduce
case incidence to very low levels, and thus reduce the incremental
benefit of a few more individuals adopting NPIs. Similarly, in the other
extreme when few individuals in the population have adopted NPIs,
the incremental benefit of each additional individual who adopts NPIs
is higher. The negative outliers in Fig. 4 are due to the stochastic nature
of the model.

4. Conclusion

This suite of simulations informs a picture of how NPIs–particularly
the combination of government mandated measures such as school/
workplace closure and volitional individual level actions such as phys-
ical distancing and hand-washing–strongly mitigated COVID-19 cases
6

and deaths across both age and census area in Ontario.
School/workplace closure or individual-level NPIs implemented on
their own would also have reduced both cases and deaths considerably,
although the absolute numbers would still have been large.

The number of deaths averted by NPIs was particularly large in
the first wave. Our projection of 178 548 deaths in the ‘‘do nothing’’
scenario for interventions and the best-case scenario for the CFR is
plausible: supposing that 70% of Ontario’s 14.6 million people had been
infected in a ‘‘do nothing’’ scenario, the adjusted CFR for Spring 2020 of
1.6% (Abdollahi et al., 2020a) would have resulted in 163 520 deaths.
Moreover, the actual number of deaths would likely have been much
higher than suggested by our best-case scenario. The adjusted CFR of
1.6% was estimated from a population where the ICU capacity in Spring
2020 was not greatly exceeded (Ontario Agency for Health Protection
and Promotion, 2021b). Therefore, the adjusted CFR would have been
much higher in a population contending with a massive surge in cases.
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Our results on the number of individuals who must adopt NPIs to
prevent one case or death increased dramatically with the percentage
of the population already adhering to NPIs (Fig. 4). As a result, an
individual in a population where most others have already adopted
NPIs has a reduced personal incentive to practice NPIs, since the num-
ber of cases (and thus their perceived infection risk) is lowered. This
suggests the possibility of a free-rider effect whereby non-mitigators
gain the benefits of reduced community spread without contribute to
infection control (Reluga, 2010), although social norms can curb this
effect (Oraby et al., 2014; Li et al., 2016).

Our model made several simplifying assumptions that could influ-
ence results and/or limit the conditions under which the model can be
used. For instance, as our model describes community spread, we are
not explicitly accounting for how transmission within congregate living
settings, long-term care homes, etc. can cause case numbers to increase
rapidly (Ontario Agency for Health Protection and Promotion, 2021b;
Fisman et al., 2020; Gardner et al., 2020). As well, our simplification of
Ontario’s tiered system for NPIs at the level of individual public health
units (Government of Ontario, 2021) into a single aggregate ‘‘open with
NPIs in place’’ state may lead us to over/underestimate cases at the
PHU level, if the tier that PHU is in is more/less restrictive than the
aggregate state.

Additionally, given the complexity of the model, including the
number of calibrated parameters, our model presents challenges for
calibration and incurs the risk of over-fitting. By running multiple
realizations of our calibration procedure we increase our confidence
in the robustness of its results. We also calibrated our model against
age- and region-specific case data, instead of provincial totals, to ensure
that our age- and region-specific parameters were informed by the most
relevant data. Thus, we believe that our methodology strikes a balance
between parsimony and delivering a model that provides sufficiently
granular outputs (i.e. outputs stratified both by age and geographical
region) as to be useful to policy makers.

It is well known that mathematical models can be used for fore-
casting purposes, but they can also be valuable for conveying insights,
or for aspirational purposes. In the latter case, mathematical models
can motivate the uptake of behaviors to avoid the worst-case scenarios
predicted by the model. The prosocial preferences that humans often
adopt toward infectious disease control (Li et al., 2016; Oraby et al.,
2014) suggest that this use of models can be effective. Early mathe-
matical models developed during the COVID-19 pandemic showed us
what might happen if we chose not to mitigate the pandemic. Our
retrospective analysis that uses data from the past year confirms that we
prevented a very large loss of life by our decision to take action, and
that each individual person who chose to adopt NPIs helped prevent
both cases and deaths.
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