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Abstract: Accelerated molecular dynamics (aMD) has been shown to enhance conformational
space sampling relative to classical molecular dynamics; however, the exponential reweighting
of aMD trajectories, which is necessary for the calculation of free energies relating to the classical
system, is oftentimes problematic, especially for systems larger than small poly peptides. Here,
we propose a method of accelerating only the degrees of freedom most pertinent to sampling,
thereby reducing the total acceleration added to the system and improving the convergence of
calculated ensemble averages, which we term selective aMD. lts application is highlighted in
two biomolecular cases. First, the model system alanine dipeptide is simulated with classical
MD, all-dihedral aMD, and selective aMD, and these results are compared to the infinite sampling
limit as calculated with metadynamics. We show that both forms of aMD enhance the
convergence of the underlying free energy landscape by 5-fold relative to classical MD; however,
selective aMD can produce improved statistics over all-dihedral aMD due to the improved
reweighting. Then we focus on the pharmaceutically relevant case of computing the free energy
of the decoupling of oseltamivir in the active site of neuraminidase. Results show that selective
aMD greatly reduces the cost of this alchemical free energy transformation, whereas all-dihedral
aMD produces unreliable free energy estimates.
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1. Introduction

Molecular dynamics (MD) simulations have become a crucial
theoretical tool in advancing our understanding of the
function of biological macromolecules.' Advances in algo-
rithms® and computing power’ > continue to allow for
simulations of increasingly larger systems on longer and
longer time scales, permitting the direct observation of all-
atom protein folding,®” the observation of ion permeation
through a transmembrane channel,® and the simulation of a
complete virus.” Despite the remarkable progress that has
been made in the field, simulation times still often fall far
short of the miscosecond to millisecond time scales inherent
in many biological processes. There have been several
methodological advances which have aimed at simulating
longer time scales within current computational power such
as implicit solvation models,'® multiple time stepping algo-
rithms,'" and improved treatment of long-range electrostat-
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ics.'> Sampling of phase space may also be enhanced through
the deformation of the underlying potential energy surface,'?
as has been done in hyperdynamics,'* puddle jumping,'’
conformational flooding,'® and the local boost method'” (to
name only a few). Our group recently developed a method
to enhance the crossing of barriers and the sampling of phase
space termed accelerated molecular dynamics (aMD),'®
which has been shown to enhance sampling of biomolecular
systems as in the conformational switching of Ras,'® improve
the agreement between experimental and calculated chemical
shifts for IkBa,?° and accelerate the calculation of pK, values
in lysozyme.”'

An area of particular interest concerns using aMD simula-
tions to calculate ensemble averages for physically relevant
nonaccelerated systems. For systems in which the energy
added to accelerate the system is low, trajectories may easily
be reweighted; however, as the system size increases the
boost energy required for significant acceleration increases,
causing the exponential reweighting factor to produce
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ensemble averages that are dominated by only a few
configurations with high weight, thereby decreasing the
precision of thermodynamic quantities such as free energy
changes.”? Here, we propose limiting the acceleration to the
degrees of freedom most responsible for conformational
changes, thereby reducing the energy added to a system to
enhance sampling and resulting in improved reweighting
statistics. This work is an extension of a previous study in
which aMD was limited to the dihedrals in the backbone of
a peptide substrate bound to cyclophilin;** however, here
we demonstrate that accelerated dihedrals may contain atoms
which are also contained in nonaccelerated torsions (that is,
individual molecules may contain both accelerated and
nonaccelerated torsions). Two examples are highlighted.
First, we show that even in the case of the model system
alanine dipeptide, selectively targeting dihedrals in the
molecule’s backbone results in similar acceleration levels
while reducing the amount of energy added to the system.
Then we turn our attention to the larger problem of
calculating the binding energy of the clinically approved drug
oseltamivir (marketed as Tamiflu by Roche Pharmaceuticals,
Basel, Switzerland24) to the N1 flu protein neuraminidase.>>2%
Using free energy perturbation with a modification to the
Bennett acceptance ratio (to account for reweighting),”’ we
show that the computational cost required to accurately
calculate the binding energy may be reduced by as much as
70% while maintaining a similar level of precision.

2. Theory

To enhance phase space sampling, the original aMD applies
an additional potential only when the potential energy, V(r),
is below a specified criterion E to produce dynamics on the
artificial landscape V*(r) such that

. V(r) if V(r) = E
Vin = {V(r) + AV(r) if V(r) < E S
The form of the “boost” potential AV(r) is defined as
_ _(E-V®)
AV = 5T E - v @

The formalism of this boost potential has several practical
advantages: it produces a potential energy surface with a
smooth first derivative, it does not require the definition of
a “reaction coordinate” along which to enhance sampling, it
reflects the shape of the original potential, and it is relatively
simple with only two adjustable parameters (£ and a).
Simulation results generated with aMD may be reweighted
by the exponential of the boost potential, exp(SAV(r)), to
recover theoretically exact thermodynamic properties for the
physically relevant unaccelerated system. In practice, how-
ever, the exponential dependence of the reweighting hinders
convergence as trajectory averages become dominated by a
smaller subset of their snapshots as the range of boost
potentials increases. While this does not severely affect small
systems such as alanine dipeptide, it does prevent the use of
aMD in accurate free energy calculation in larger biomo-
lecular systems. To improve the reweighting statistics and
enhance sampling, several variants of aMD have been
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developed including “barrier lowering” aMD,?® replica-
exchange aMD,?® and adaptive aMD (personal communica-
tion P. Markwick). In this paper we discuss an extension to
aMD which may be incorporated into other aMD imple-
mentations, which is to selectively accelerate a user-defined
subset of dihedrals most pertinent to sampling the relevant
degrees of freedom, which we refer to as selective aMD.
Selective aMD has the advantage that by only accelerating
the degrees of freedom most important to sampling, lower
overall boosts may be utilized to achieve a similar accelera-
tion level, thus resulting in improved reweighting statistics.
The idea of enhancing sampling along a user-defined
manifold has been previously shown to improve the calcula-
tion of time-correlation functions for kinetics of multidi-
mensional systems.>*

2.1. Weighted Bennett Acceptance Ratio. Free energy
perturbation (FEP) is a well-established technique used in
free-energy calculations, specifically in the case of ligand
binding and computational alchemy.*"'* In FEP, a nonphysi-
cal energy pathway is constructed between two physical end
states, for example, a ligand bound in the active site of an
enzyme (which we denote as A = 0) and an active site
without the ligand (1 = 1). The path between these two states
is divided into a series of “windows” in which the Hamil-
tonian is transformed from state O to 1. Traditionally, free
energy differences between successive windows are esti-
mated by exponentially averaging the instantaneous work
of going between the states, and the overall free energy is a
sum of free energy differences between windows.>* Shirts
et al. showed that the Bennett acceptance ratio (BAR) was
superior to exponential averaging in producing asymptotically
unbiased free energy estimates between two states that could
improve precision by an order of magnitude.?’~*

For a series of work functions between two states in which
individual works do not each have the same weight (as in
aMD), the derivation of a weighted BAR follows that in
Shirts et al. with the exception that their eqs 5 and 6, the
probability of a single measurement of the work W; for the
forward and reverse work functions, are modified to

exp(BAV(r))
1 + exp[—B(M + W, — AF)]

P(FIW) = 3

exp(BAV(r))
1+ explB(M + W, — AF)]

P(RIW) = 4

where the constant M is redefined as

nr

Z exp(BAV(r))
M = KT In| -2 )

D exp(BAV(Y))

J=0

Therefore, the value of AF that solves
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i exp(BAV(r),) _
“ 1+ exp[—BM + W, — AF)]

i exp(BAV(r)))
= 1 + exp[—p(M + W, — AF)]

(6)

is the optimal free energy estimate between adjacent
windows. It has recently been shown that reweighting of
states in BAR to account for non-Boltzmann sampling may
have practical advantages outside of aMD simulations.>*

3. Computational Details

Molecular Dynamics Details. MD simulations were
performed with the MD package Desmond (version 2.2)
developed by D. E. Shaw Research.®>> Both systems were
built, solvated, and ionized with Schrédinger’s Maestro
modeling suite such that there was a minimum of 12 A of
TIP3P*° water buffer between the macromolecule and the
periodic boundary and an ionic concentration of ~150 mM
NaCl was present. The CHARMM?22 force field with the
CMAP correction was utilized (except where noted below
in the neuraminidase calculations).>” Following 10 000 steps
of minimization, systems were continuously heated to 300
K over 1.5 ps. All simulations used the Martyna—Tobias—
Klein constant pressure and temperature algorithms (a
combination of Nose¢—Hoover constant temperature and
piston constant pressure algorithms)*®*° with a reference
temperature and pressure of 300 K and 1.01425 bar,
respectively. Short-range nonbonded interactions were trun-
cated at 12 A, while long-range electrostatics were calculated
with a particle-mesh Ewald algorithm using a sixth-order
B-spline for interpolation and a grid spacing of <1 A in each
dimension.*® A time step of 2 fs was employed, and the
M-SHAKE algorithm was used for constraining all hydrogen-
containing bonds.*' A plugin was written for Desmond to
perform aMD calculations on specified dihedrals.

Alanine Dipeptide. An alanine dipeptide molecule based
on a model compound was solvated in a (27 A)? box using
Maestro and equilibrated for 5 ns following heating. Two
sets of 50 ns aMD trajectories were run, one in which all
dihedrals were accelerated with aMD and one in which only
the two dihedrals defined as ¢ and ¥ were accelerated
(selective aMD, see Figure 1). For each setup, 16 simulations
spanning the parameter space of E and o were run to
optimize these parameters. For the all-dihedral simulations,
parameters of E = 8 and a = 4 had an optimal fit to our
metric y (as discussed below), whereas for the selective aMD
E =1 and oo = 0.75 were optimal. Additionally, a 250 ns
classical MD simulation was performed.

To determine the accuracy of the aMD results, well-
tempered metadynamics was performed to calculate the
underlying two-dimensional free energy landscape in ¢/
space.*? In well-tempered metadynamics, the height of a
Gaussian centered at position x is proportional to the
Boltzmann weight of the metadynamics potential already
present at x, that is the added Gaussian has a maximum value
of wo*exp (— V(x)/kAT), with w, being the initial Gaussian
height, —Vy(x) the metadynamics potential at x, and kAT a
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Figure 1. Conformation of the model system alanine dipep-
tide can be expressed by the angles of the two torsions ¢
and y.

user-defined energy which limits the explored energy range.
We performed a 50 ns simulation in which gaussians were
added every 0.2 ps with a width of 0.1 radians and a height
determined by wo = 0.02 kcal/mol and kAT = 2.4 kcal/
mol. To quantitate convergence we define a metric y as
follows

- Ly Z { WP P> P

NM o | Pe i P < P

For a given well (defined as i in Figure 2f) this metric

calculates the ratio of the population of states below the
energy U (P¥{°) with that expected from the metadynamics
results (P75 and averages this over M energy values of U
from 0.6 to 3 kcal/mol (in increments of 0.1 kcal/mol) for
each of the N = 3 wells. If a well has a population greater
than that expected from the metadynamics result, the inverse
of the ratio is taken to equally account for over and under
sampling of the well. This metric has several advantageous
features: by averaging over multiple energy levels it selects
for smooth population densities (as are observed in cMD
and metadynamics but may not result when the trajectory is
reweighted with aMD)), it treats over and under sampling a
well as equally poor, and it equally weights all three of the
main energy wells. y = 1 is considered an ideal reproduction
of the exact population.

N1 Neuraminidase. A monomer of neuraminidase bound
to the inhibitor oseltamivir taken from the 2HUO crystal
structure was solvated in an approximately (70 A)® box.
Following the minimization and heating protocol outlined
above, the system was equilibrated for 5 ns with the
AMBERY9SB force field** before protein and water param-
eters were changed to the CHARMM?22 force field and
further equilibrated for 1 ns. Parameters for oseltamivir were
previously developed for use with the AMBER99SB force
field** and maintained throughout the CHARMM simula-
tions. The switch to the CHARMM force field was performed
after testing of aMD free energy calculations revealed that
increased acceleration levels in the AMBER force field
tended to disturb the electrostatic components of the free
energy calculation; therefore, this hybrid AMBER (for the
ligand) and CHARMM (for the remainder of the system)
force field was utilized. While the authors concede this may
produce incorrect absolute binding energies, the goal of this
paper is to study convergence of accelerated free energy
calculations to results obtained from unaccelerated (and
longer) calculations.

Alchemical free energy calculations for the decoupling of
the ligand in the protein’s active site were performed using
21 windows in which the electrostatics were decoupled over
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Figure 2. Free energy landscapes for alanine dipeptide. (a) Metadynamics results representing the expected results for infinite
sampling of the system. Classical MD simulations visited all three energy wells on the 10 ns time scale (b); however, the statistics
are poor (as shown in Table 1). Sampling is improved on the 50 ns time scale (c). (d) All dihedral aMD, showing that a sampling
of all three energy wells is improved relative to the cMD results. (e) Selective dihedral aMD, showing the best agreement to the
metadynamics results on the 10 ns time scale. (f) Wells labeled for discussion purposes.

Table 1. Free Energy Statistics for Alanine Dipeptide from cMD, All-Dihedral aMD, and Selective aMD Simulations
Compared to the Metadynamics Results Which Effectively Represent the Infinite Sampling Limit?

well 1 well 2 well 3
time simulation type energy population energy population energy population
metadynamics 0.065 0.406 0.000 0.429 1.010 0.049
10 ns classical 0.485 (+.421) 0.249 (61%) 0.000 (+.000) 0.427 (99%) 0.301 (—0.706) 0.191 (392%)
all dihedral aMD 0.000 (—0.065) 0.337 (83%) 0.085 (+.085) 0.415 (97%) 0.767 (—0.240) 0.078 (160%)
selective aMD 0.008 (—0.057) 0.422 (104%) 0.000 (+.000) 0.369 (86%) 1.010 (—0.004) 0.041 (84%)
50 ns classical 0.350 (+.285) 0.328 (81%) 0.000 (+.000) 0.475 (111%) 1.004 (—0.002) 0.058 (120%)
all dihedral aMD 0.053 (—0.012) 0.372 (92%) 0.000 (+.000) 0.426 (99%) 1.003 (—0.004) 0.052 (106%)
selective aMD 0.137 (+.072) 0.381 (94%) 0.000 (+.000) 0.422 (98%) 1.038 (+.033) 0.048 (98%)
250 ns classical 0.232 (+.168) 0.357 (88%) 0.000 (+.000) 0.446 (104%) 0.994 (—0.012) 0.055 (112%)

2 For each of the three wells (Figure 2f) the minimum energy relative to the global minimum is calculated, as is the population of states
within 1.8 kcal/mol of that minimum. Results show that both aMD forms converge on the order of five times as fast as the cMD simulations.

10 windows followed by the Lennard—Jones interactions
decoupled over 10 windows with a softcore potential using
a = 0.5% (as in a previous study*®). Free energies were
calculated using BAR, with the modified BAR formulas
described above used in the aMD calculations. A positional
restraint of .8 kcal/mol was placed on a central carbon atom
in oseltamivir to prevent the ligand from sampling nonactive
site portions of the simulation box,*’” and calculations were
performed for cMD, all-dihedral aMD (with £ = 2600 and
o = 400), and selective aMD (with E = 13 and oo = 2). For
cMD calculations, three sets of windows were run (as has
been shown to improve calculated free energies*®), each with
the same initial coordinates but different velocities for 5 ns
per window, whereas for the selective aMD the same three
sets of windows were run with 200 ps of all-dihedral aMD
(to quickly equilibrate the whole protein) followed by 1.5
ns of selective aMD per window. Note that the times
indicated in the text include the simulation time spent in all-
dihedral aMD; thus, a time of 500 ps represents 200 ps of

all-dihedral and 300 ps of selective aMD. One set of FEP
calculations was performed for the all-dihedral case for 1.75
ns window to illustrate the futility of using standard aMD
in large-scale biomolecular FEP calculations.

The choice of dihedrals to accelerate was based on
previous work in which the tetramer was simulated for 100
ns.*® Acceleration was applied to those dihedrals which
contained only heavy atoms, were in residues that had a
heavy atom within 5 A of the oseltamivir in the crystal
structure, and had a multivariate distribution for a total of
29 dihedrals.

Work functions were decorrelated based on the statistical
inefficiency using code provided by Shirts and Chodera.*’
For each BAR calculation, a bootstrap analysis was per-
formed (with 50 independent calculations) for an error og,
which was combined with the variance of the three means
(ov) to calculate an overall error estimate for the free energy
by
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Alanine Dipeptide. The free energy landscape of alanine
dipeptide can be described by the rotation of two torsional
angles, ¢ and 1, making it an ideal model system for
methodological development that has been extensively
studied (Figure 1). The metadynamics, or “infinite sampling
limit”, results (Figure 2a) show three distinct energy wells
which we label for further discussion in Figure 2f. The energy
barrier between wells 1 and 2 is relatively low, and classical
MD (cMD) simulations sample both sets of configurations
on the 10 ns time scale (Figure 2b). Well 3 is substantially
oversampled, which we attribute to the system becoming
trapped in this state due to the higher energy barrier, thereby
discouraging transitions to and from well 3. With 50 ns of
simulation the sampling of all three wells are improved
(Figure 2c). Further detail is shown in Table 1, which
compares the minimum energy of each well and probability
of all states within 1.8 kcal/mol of that minimum to the
theoretically exact answer derived from metadynamics. The
10 ns cMD shows good agreement for well 2 (it is identified
as the global minimum and the population at 3kT is nearly
identical to the metadynamics results); however, well 1 is
undersampled by 39% whereas well 3 is oversampled by
292%, and the minimum energies are incorrect by .4 and .7
kcal/mol, respectively. With 50 ns of simulation time the
sampling improves such that errors in the populations range
from 11% to 20%, and by 250 ns of sampling the statistics
agree much better with the metadynamics results for all three
wells, although the populations of wells 1 and 3 are still off
by >10%.

For comparison, the all-dihedral and selective aMD
simulations sampled all three energy wells on the 10 ns time
scale (Figure 2d and 2e). Free energy statistics indicate a
maximum error in the minimum well energy estimate of 0.24
kcal/mol in the all-dihedral case and 0.06 kcal/mol in the
selective aMD simulation, whereas the greatest disagreement
in well populations was an undersampling of well 1 by 17%
in the all-dihedral aMD and an undersampling of well 3 by
16% in the selective aMD. Extension of the simulations to
50 ns results in further improved statistics of the well
populations, with well 1 only being undersampled by 8% in
the all-dihedral simulation and by 6% in the selective aMD.

To further examine the convergence of the free energy
statistics we defined the parameter y to quantitate the
difference in the two-dimensional energy profiles (as dis-
cussed in the methods) which has the property of a value of
1 representing ideal sampling of the wells as compared to
the metadynamics results. In Figure 3 we compare the time
course of this parameter between the cMD and the aMD
simulations (note the different time scales for the two sets
of simulations). The scores for both aMD are similar to those
for cMD simulations of five times the length, with cMD
simulations requiring 200 ns before consistently having
values above 0.9, whereas the aMD simulations pass this
value at 44 and 35 ns for all-dihedral and selective aMD,
respectively.

Results
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Figure 3. Comparison of the time evolution of our order
parameter y. Classical MD results (shown in black) correspond
to the lower x axis, which is five times longer than that of the
upper x axis, which corresponds to both aMD simulations.
Despite this 5-fold difference in time scales, all three simula-
tions show similar convergence patterns, with the lower
weights in the selective dihedral slightly improving the statistics
relative to the all-dihedral aMD.

A comparison of the boosts applied throughout the aMD
simulations (Figure 4a) shows that higher boost potentials
are applied throughout the all-dihedral simulation than in
the selective aMD. For the all-dihedral case, AV varies from
0 to 4.2 kcal/mol, with an average value of 0.45 kcal/mol,
whereas the selective aMD has a range of 0 to 0.54 kcal/
mol with an average of 0.11 kcal/mol. This decrease in the
applied boosts has a significant impact on reweighting as
the maximum weight relative to an unaccelerated state is
reduced from 1097 to 2.46. In Figure 4b the amount of total
weight recovered from a simulation is plotted against the
percentage of frames that contribute to that weight. In the
case of all-dihedral aMD, very few frames contribute a
substantial portion of the reweighting, 50% of the total weight
comes from 4.8% of the trajectory, whereas 90% of the
weight comes from 53.7% of the trajectory. This results in
almost one-half the sampling (46.3%) contributing very little
(Iess than 10%) to the calculated ensemble averages. In the
selective aMD case the lower boosts result in more uniform
weights, 50% of the weight comes from 37.9% of the
trajectory and 90% from 87.6% of the trajectory (for
comparison, in cMD configurations in the trajectory are
uniformly weighted, so 50% of the weight comes from 50%
of the trajectory). This increased reweighting efficiency
improves the recovered statistics as high-boost configurations
tend to dominate the ensemble average. For example, wells
1 and 2 appear significantly smoother in the energy landscape
of the selective aMD relative to the all-dihedral aMD (Figure
2e and 2d) and y is consistently higher in the selective case,
both of which can be attributed to smoother statistics in the
reweighted energy profiles.

N1 Neuraminidase. The binding of oseltamivir to
neuraminidase is an example of how highly accurate free
energy calculations may be employed in the study and
development of novel pharmaceutical compounds. In order
to validate our aMD simulations of the decoupling of
oseltamivir in the N1 active site, we performed extensive
sampling at each step of the alchemical transformation with
5 ns of cMD simulation for each of the 21 A values, which
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Figure 4. (a) Distribution of boost potentials applied during the 50 ns simulations, showing an increased range of AV values
throughout the all-dihedral aMD simulation relative to the selective dihedral aMD. (b) Percent of the total weight from the simulations
relative to the percent of frames that contributed this weight. The lower ranges of boosts in the selective aMD produce more
uniform sampling relative to the all-dihedral aMD, which tends to be dominated by a small subset of the configurations.
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Figure 5. Free energies for the decoupling of oseltamivir from the neuraminidase active site as computed by alchemical
transformation with classical MD (a) and selectively applied aMD (b). For each set of simulations three possible equilibration
times were chosen; however, for only the longest equilibration period does the calculated free energy remain stable with increased
sampling. The aMD results converged to values comparable to the cMD results with significantly less simulation time. The time
scale on the x axis includes the equilibration time for which free energy values are not calculated.

was repeated three times (with different initial velocities).
An equilibration period is typically discarded from the BAR
calculations, the length of which is determined by several
factors, including molecular rigidity, the slow motions of
loops which are relevant to free energy differences, and the
amount of computational time available.’® In Figure 5a we
show the time evolution of the mean free energies for three
equilibration times, 1000, 2000, and 3000 ps, along with the
associated errors. The 3000 ps of equilibration curve is the
only one which does not have a mean that changes ap-
preciably with increased sampling, suggesting that for this
initial configuration of this complex a full 3 ns per window
is required for each of the A windows to equilibrate to their
new Hamiltonians. The free energy of 66.9 + 1.2 kcal/mol
is calculated by using 3 ns for equilibration and the remaining
2 ns for sampling, as shown in Table 2. Note that this is not
the free energy of binding in solution; rather it is only one
leg of the thermodynamic cycle required for that calculation.
Examination of individual BAR runs shows that increased
sampling decreases both the variance between the three runs
and the bootstrap errors associated with each (Figure S1,
Supporting Information).

BAR results from simulations using selective aMD (with the
first 200 ps utilizing all-dihedral aMD) are presented in Figure
5b. As in the cMD calculations, we have chosen three

Table 2. Free Energies for the Decoupling of Oseltamivir
from the Neuraminidase Active Site As Calculated with
cMD and Selective aMD for Varying Equilibration and
Sampling Periods

simulation equilibration sampling free energy
type time time (kcal/mol)
cMD 1ns 1ns 710+ 1.4
2ns 705+1.5
3ns 69.5+ 1.6
4ns 68.4 +1.3
2ns 1ns 69.6 + 2.2
2ns 68.5 + 2.0
3ns 676+ 1.5
3ns 1ns 66.8 + 1.8
2ns 66.9 +1.2
aMD 250 ps 500 ps 705+1.4
750 ps 69.4 +1.0
1000 ps 69.2+1.2
1250 ps 68.7 £ 1.1
500 ps 500 ps 69.2 +1.2
750 ps 69.0 +£ 1.1
1000 ps 68.3 +1.2
750 ps 500 ps 679+14
750 ps 67.3+15

equilibration times, 250, 500, and 750 ps, and the mean value
of the free energy does not remain constant with increased
sampling unless the longest of these equilibration times is
discarded. With 750 ps of equilibration and 750 ps of sampling
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we obtain a free energy value of 67.3 &£ 1.5 kcal/mol, identical
(within error) to that from the longer cMD calculations. Results
from individual aMD runs are shown in Figure S2, Supporting
Information. A comparison of the time evolutions of the BAR
results shows similar behavior for the aMD and cMD free
energies (with the aMD on shorter time scales) for the short,
medium, and long equilibration times (Table 2 and Figure S3,
Supporting Information). For short equilibration periods (cMD,
1000 ps; aMD, 250 ps) the free energy is initially overestimated,
and while it approaches the values obtained for longer equili-
bration, the bias introduced in this nonequilibrated period results
in free energies ~1.5 kcal/mol too high. Medium length
equilibration periods (cMD, 200 ps; aMD, 500 ps) suffer from
this effect as well but are not quite as biased, whereas for long
equilibration times (cMD, 3000 ps; aMD, 750 ps) the calculated
free energies remain stable (within error) with increased
sampling.

As a comparison, we also performed BAR calculations
on a single set of windows run for 1750 ps with all-dihedral
aMD (Figure S4, Supporting Information). The much larger
range of weights resulted in very few configurations con-
tributing to the BAR results and poor free energy estimates.
For example, with 250 ps of sampling and 1250 ps of
equilibration a free energy of —15.0 & 17.0 kcal/mol was
computed, whereas 750 ps of equilibration and 750 ps of
sampling resulted in a free energy of decoupling of 36.9 &
17.3 kcal/mol. Both of these values are wildly inaccurate
compared to the values of 66.9 = 1.2 and 67.3 £ 1.5
kcal *mol obtained from cMD and selectively applied aMD.

5. Concluding Discussions

The method of accelerated molecular dynamics has been well
established as a means of enhancing phase space sampling with
minimal computational cost; however, the exponential re-
weighting required for the recovery of ensemble averages in
the unaccelerated case introduces excessive noise such that it
is often difficult, if not impossible, to recover accurate ensemble
averages. Even in the case of the well-studied system alanine
dipeptide this becomes evident. For example, in Figure 2d the
free energy profile of well 1 appears discontinuous in the region
of (¢, ) = (—50,150), due in large part to the fact that several
of the conformations visited have weights 1—3 orders of
magnitude below that of the maximum weighted conformation.
In contrast, by limiting the acceleration to only those dihedrals
which are most pertinent to phase space sampling (in this case,
¢ and 1) the maximum weight was reduced from 1097 to 2.46,
which not only increased the smoothness of the recovered free
energy profile (Figure 2e) but also moderately improved the
agreement to the infinite sampling limit (as calculated with
metadynamics) results in Table 1 and Figure 3. However, both
aMD formalisms showed approximately a factor of 5-fold
increase in efficiency relative to cMD for our order parameter
2

Extension of this idea to the pharmaceutically relevant case
of oseltamivir binding to neuraminidase shows the expensive
free energy calculation of the decoupling of the ligand in
the protein’s active site may be reduced by up to 70% (from
5 to 1.5 ns/window) without a loss in precision. While this
may not be crucial in the case of studying the binding of
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only a single ligand to a protein, one could imagine that in
the lead optimization stage of a drug-design effort, when
highly accurate binding energies are necessary, the ability
to examine three times the number of possible compounds
at little extra computational cost may be highly desirable.
In the case presented here, the accelerated dihedrals were
chosen based upon extensive prior MD simulations; however,
if this data were not available one could choose the
accelerated dihedrals by residue type (accelerating dihedrals
in residues with highly mobile side chains such as arginine
and not accelerating dihedrals in aromatic rings), atom types
(non-hydrogen containing), and proximity to the ligand.
Additionally, in some cases where the ligand is bulky and
has multiple torsions with high-energy barriers between local
minima, one could accelerate dihedrals in the ligand mol-
ecules themselves, as was done in the case of cyclophilin.?

Selective aMD may easily be incorporated into other free
energy algorithms. For example, the methods of one-step
perturbation and envelope distribution sampling provide tech-
niques for effectively calculating the binding of several ligands
to a protein with a single extended MD simulation.’’? They
have, however, not been extensively utilized due to the fact
that, depending on the system being studied, they may require
simulations on the microseconds time scale.>® Therefore, a
reduction of the computational cost of 3- to 5-fold (as observed
in this study) could reduce the necessary simulation length from
the highly expensive 1—2 us range into the manageable 200
ns time scale. These methods highlight that sampling of the
partition function is, in general, a slow process requiring
extensive calculations; therefore, methods such as selective
aMD, which can enhance sampling of the relevant portions of
phase space while not introducing excessive noise into the
calculations, may prove useful in future applications.
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