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Abstract
Inbreeding depression, the deterioration in mean trait value in progeny of related 
parents, is a fundamental quantity in genetics, evolutionary biology, animal and plant 
breeding, and conservation biology. The magnitude of inbreeding depression can be 
quantified by the inbreeding load, typically measured in numbers of lethal equiva‐
lents, a population genetic quantity that allows for comparisons between environ‐
ments, populations or species. However, there is as yet no quantitative assessment of 
which combinations of statistical models and metrics of inbreeding can yield such 
estimates. Here, we review statistical models that have been used to estimate in‐
breeding load and use population genetic simulations to investigate how unbiased 
estimates can be obtained using genomic and pedigree‐based metrics of inbreeding. 
We use simulated binary viability data (i.e., dead versus alive) as our example, but the 
concepts apply to any trait that exhibits inbreeding depression. We show that the 
increasingly popular generalized linear models with logit link do not provide compa‐
rable and unbiased population genetic measures of inbreeding load, independent of 
the metric of inbreeding used. Runs of homozygosity result in unbiased estimates of 
inbreeding load, whereas inbreeding measured from pedigrees results in slight over‐
estimates. Due to widespread use of models that do not yield unbiased measures of 
the inbreeding load, some estimates in the literature cannot be compared meaning‐
fully. We surveyed the literature for reliable estimates of the mean inbreeding load 
from wild vertebrate populations and found an average of 3.5 haploid lethal equiva‐
lents for survival to sexual maturity. To obtain comparable estimates, we encourage 
researchers to use generalized linear models with logarithmic links or maximum‐like‐
lihood estimation of the exponential equation, and inbreeding coefficients calculated 
from runs of homozygosity, provided an assembled reference genome of sufficient 
quality and enough genetic marker data are available.
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1  | INTRODUC TION

Inbreeding depression, the deterioration in mean trait value in prog‐
eny of related parents (Crow & Kimura, 1970, chapter 3), is a funda‐
mental quantity in genetics, evolutionary biology, animal and plant 
breeding, and conservation biology (Charlesworth & Willis, 2009; 
Hedrick & Kalinowski, 2000; Kristensen & Sorensen, 2005; Wright, 
1977). Conceptual and practical advances in these disciplines re‐
quire accurate and robust estimates of the magnitude of inbreeding 
depression that can be compared among different traits, among sets 
of individuals of different ages and sexes, and among different en‐
vironments, populations or species (Armbruster & Reed, 2005; Fox 
& Reed, 2010; Hoeck, Wolak, Switzer, Kuehler, & Lieberman, 2015; 
Kruuk, Sheldon, & Merilä, 2002; Leroy, 2014; Waller, Dole, & Bersch, 
2008). These goals in turn require widespread adoption of a stan‐
dard estimator of the magnitude of inbreeding depression that is 
unbiased, quantitatively comparable and firmly rooted in population 
genetic theory.

One such estimator is the inbreeding load, B, measured as the 
negative slope of a regression of the logarithm of a trait on inbreed‐
ing coefficient F (Charlesworth & Charlesworth, 1987; Charlesworth 
& Willis, 2009; Keller & Waller, 2002). Inbreeding load in viability 
(i.e., survival versus mortality) is measured in units of “lethal equiv‐
alents,” where one lethal equivalent corresponds to a group of 
deleterious alleles that would cause one death on average if made 
homozygous (Morton, Crow, & Muller, 1956). The number of lethal 
equivalents can equally be interpreted as the number of deaths that 
would be expected in a group of hypothetical individuals where each 
individual carried one deleterious allele in homozygous state (i.e., the 
group contains as many individuals as there are deleterious alleles; 
Morton et al., 1956). Hence, one lethal equivalent can correspond to 
a lethal allele at one locus or to several mildly deleterious alleles at 
several loci. The concept of lethal equivalents was invented to quan‐
tify inbreeding depression in viability (Morton et al., 1956), hence 
the terminology “lethal.” Throughout our study, we use viability data 
as example. However, the general approach to quantifying inbreed‐
ing load as a logarithmic relationship with F can be applied to other 
fitness components (Charlesworth & Charlesworth, 1987), or indeed 
to any other trait as long as alleles that improve trait value are, on 
average, dominant over alleles that reduce trait value or show over‐
dominance (Wolak & Keller, 2014).

In population genetic theory, inbreeding load is defined as

where qi is the frequency of the deleterious allele i , si is its delete‐
rious effect when homozygous, hi is the dominance coefficient, and 
the sum is taken over all L biallelic loci at which deleterious alleles can 
occur (Morton et al., 1956).

Morton et al.’s (1956) fundamental insight was that inbreeding 
load B for trait y can be estimated in the absence of information on 
qi, si and hi simply as the slope of a weighted regression of − loge (y) 
on F, that is

with individuals pooled into groups of similar F, and where A is the 
intercept and y the expected value of the trait for that level of F. 
This model is itself rooted in population genetics theory and as‐
sumes that effects of different environmental and genetic factors 
act independently and thus have multiplicative effects that trans‐
late into additive effects only on the logarithmic scale (Charlesworth 
& Charlesworth, 1987). It is therefore important that a logarithmic 
scale is used.

When data are only available for mean trait values of known out‐
bred (y0) and inbred individuals (yF) with a single known level of F, 
for example offspring of selfing or full‐sibling mating generated in a 
breeding design, the inbreeding load can be estimated as

(Charlesworth & Charlesworth, 1987; Lynch & Walsh, 1998, p. 278). 
Such breeding designs are hard to impose in wild, free‐living popula‐
tions or captive populations of endangered animals, but comparable 
and unbiased estimates of inbreeding load from such populations are 
key to understanding evolutionary dynamics (Kokko & Ots, 2006) 
and deciding population management strategies (Caballero, Bravo, & 
Wang, 2017a,b; Theodorou & Couvet, 2017). Morton et al.’s (1956) 
regression model (equation 2) provides a conceptually elegant and 
theoretically well‐founded approach for estimating inbreeding load 
that can be applied given a range of naturally occurring F values. 
However, implementation has not been without difficulties that 
have impeded widespread adoption despite recognition of its useful 
properties (Keller & Waller, 2002). Indeed, relatively few wild popu‐
lation studies have so far explicitly reported estimates of inbreeding 
load (Table 1).

One primary problem is that − loge (y) is undefined for any 
level of inbreeding with a trait mean of zero (e.g., zero survivors), 
meaning that model 2 cannot be directly fitted across all data. 
Multiple alternative statistical models have consequently been 
advocated (Table 2). Templeton and Read (1983, 1984) suggested 
a small sample size correction given group means of zero, but this 
introduces its own bias (Kalinowski & Hedrick, 1998; Lacy, 1997; 
Willis & Wiese, 1997). Kalinowski and Hedrick (1998) proposed a 
model that avoids the issue of undefined logarithms by directly 
fitting the exponential model yF=y0e

−BF. Kruuk et al. (2002) ex‐
tended this model to allow for heterogeneity in outbred survival 
and inbreeding load among years. García‐Dorado, Wang, and 
López‐Cortegano (2016) also developed software to fit this model 
to individual‐level data. Glémin, Vimond, Ronfort, Bataillon, and 
Mignot (2006) used generalized linear models (GLMs) with a log‐
arithmic link to estimate the regression slope B, pooling groups 
of individuals with similar levels of inbreeding. As an alternative 
that does not require calculation of group means, Armstrong 
and Cassey (2007) and Grueber, Nakagawa, Laws, and Jamieson 
(2011) suggested the use of GLMs and generalized linear mixed 
models (GLMMs) with various link functions and error distribu‐
tions. As an alternative to the conditional GLMMs, Fredrickson, 
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Siminski, Woolf, and Hedrick (2007) used generalized estimating 
equations (GEE) to obtain marginal estimates of the number of 
lethal equivalents. These GLMM and GEE models can easily be 
applied to individual survival data and, in principle, readily allow 
estimation of variation in inbreeding depression across ages, sexes 

or environments. Additional but more rarely used models can be 
found in Makov and Bittles (1986), Ralls, Ballou, and Templeton 
(1988), Lee, Lascoux, and Nordheim (1996), Lascoux and Lee (1998) 
or Hedrick, Hellsten, and Grattapaglia (2016). However, as we 
will show, some of these models do not preserve the population 

TA B L E  1   Estimates of inbreeding load from wild vertebrate populations obtained with unbiased statistical models. All studies calculated 
inbreeding coefficients from pedigree data (i.e., Fped). The model used to estimate inbreeding load is coded 1 for logarithmic regression or 
class comparisons similar to the model proposed by Morton et al. (1956) or 2 for maximum‐likelihood estimation of an exponential 
relationship. The life stage column indicates the time frame over which survival was assessed. The next five columns list haploid inbreeding 
load B for traits assigned to the following life stages: survival in juveniles (Juv.), survival until approximately half the age of sexual maturity 
(50%), survival until approximately sexual maturity (100%), survival in adults (Ad.) and reproductive traits (Rep.). The last column lists the 
publication that reported the inbreeding load or that reported the data used to calculate the inbreeding load

Species Model
Life stage (survival or 
reproduction) Juv. 50% 100% Ad. Rep. Publication

Cactus finch 2 8 days to 1 year 4.3 Keller, Grant, Grant, and 
Petren (2002)

Chatham Island black 
robin

1 Fledging to 1 year* 1.4 Kennedy et al. (2014)

Collared flycatcher 2 Survival to 1 year 7.5 Kruuk et al. (2002)

Great tit 1 Egg to hatching* 1.0 van Noordwijk and Scharloo 
(1981)

Great tit 1 Egg to fledging* 0.9 van Noordwijk and Scharloo 
(1981)

Great tit 1 Egg to hatching 0.4 Szulkin, Garant, McCleery, and 
Sheldon, (2007)

Great tit 1 Hatching to fledging 0.4 Szulkin et al. (2007)

Great tit 1 Fledging to 
recruitment

1.3 Szulkin et al. (2007)

Great tit 1 Egg to recruitment 2.1 Szulkin et al. (2007)

Large ground finch 2 8 days to 1 year 4.5 Grant, Grant, and Petren 
(2001), Keller et al. (2002)

Medium ground 
finch

2 8 days to 1 year 0.0 Keller et al. (2002)

Mexican jay 1 Nestling to 1 year* 5.6 Brown and Brown (1998)

Moorhen 1 Egg to hatching* 2.2 McRae (1996)

North Island robin 2 Fledging to 1 year 4.1 Jamieson, Tracy, Fletcher, and 
Armstrong (2007)

Song sparrow 1 Egg to 24 days 1.4 Keller (1998)

Song sparrow 1 24 days to 1 year 1.3 Keller (1998)

Song sparrow 1 Egg to 1 year 2.7 Keller (1998)

Song sparrow 1 Fitness (survival and 
reproduction)

24.6 Wolak, Arcese, Keller, 
Nietlisbach, and Reid (2018)

Golden lion tamarin 1 To 24 months* 2.8 Dietz, Baker, and Ballou (2000)

Red deer 2 To 1 year 4.4 Walling et al. (2011)

White‐footed mouse 1 ca. 117–138 days 6.3 Jimenez, Hughes, Alaks, 
Graham, and Lacy (1994)

White‐footed mouse 1 Weekly adult survival 2.3 Jimenez et al. (1994)

Wolf 1 Conception to first 
winter*

3.0 Liberg et al. (2005)

The estimates for traits marked with an asterisk * are based on our reanalysis of available data. Rationales and methods are described in the R code in 
the Supporting Information, which also explains why some estimates are omitted. The high estimate of Kruuk et al. (2002) is based on a large data set, 
but that only includes 22 inbred pairings. Jimenez et al. (1994) estimated adult survival across a 3‐week period (approximately 117–138 days of age), 
which appears to be the period leading to the largest difference between inbred and outbred individuals (their Figure 2).
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genetic assumptions (additivity on a logarithmic scale) underlying 
Morton et al.’s (1956) original derivation and, hence, do not yield 
comparable unbiased estimates of the inbreeding load.

All these models (Table 2) have in common that they require some 
metric of the inbreeding coefficient, F, of focal individuals (Table 3). 
Pedigrees allow estimation of inbreeding coefficients (Fped) that 
measure the expected amount of identity by descent of an individual 
(Wright, 1969, chapter 7). However, Mendelian sampling and linkage 
cause realized identity by descent to deviate from its expectation 
(Franklin, 1977; Hill & Weir, 2011; Knief, Kempenaers, & Forstmeier, 
2017; Leutenegger et al., 2003; Stam, 1980). Further, wild popula‐
tion pedigrees usually encompass limited numbers of generations 
and typically contain errors and missing data which can cause bias 
and error in Fped (Knief et al., 2015; Wang, 2014). Recent develop‐
ments in DNA sequencing technologies and resulting genomic data 
are now opening opportunities to quantify realized identity by de‐
scent and hence quantify inbreeding load through genomic rather 
than traditional pedigree‐based approaches (Curik, Ferenčaković, & 
Sölkner, 2014; Hoffman et al., 2014; Kardos, Taylor, Ellegren, Luikart, 
& Allendorf, 2016; Keller, Visscher, & Goddard, 2011). Several meth‐
ods to estimate inbreeding coefficients from genomic data are avail‐
able. In the absence of an assembled reference genome, F can be 
quantified as a deviation in observed heterozygosity from its expec‐
tation based on Hardy–Weinberg equilibrium (Wang, 2014, 2016). If 
an assembled reference genome is available, chromosomal regions 
can be identified that are homozygous in an individual, and the pro‐
portion of the genome in such “runs of homozygosity” is then used to 
calculate FROH (McQuillan et al., 2008). Because FROH is calculated as 
a proportion, it ranges from 0 to 1, as does Fped, while metrics based 
on deviation from Hardy–Weinberg equilibrium include positive and 

negative values (Table 3). Thus, the various estimators of inbreeding 
differ not only in data requirements and meaning, but also in some 
of their properties, such as range, mean and variance. These differ‐
ences may affect resulting estimates of inbreeding load (Kardos, 
Nietlisbach, & Hedrick, 2018; Yengo et al., 2017).

Despite the need for comparable and unbiased estimates of in‐
breeding load across diverse natural populations and the increasing 
diversity of available statistical models (Table 2) and metrics of F 
(Table 3), there is as yet no quantitative assessment of which combi‐
nations of models and metrics can yield the requisite estimates. Such 
assessments must themselves be consistent with underlying popula‐
tion genetic theory. Accordingly, we used population genetic simula‐
tions to investigate how unbiased measures of inbreeding load can be 
obtained using genomic and pedigree‐based estimates of inbreeding 
and thereby provide a generally applicable roadmap for future studies.

2  | MATERIAL S AND METHODS

We conducted two sets of independent simulations in this study. 
First, we used phenotypic simulations where survival (i.e., a binary 
variable representing dead or alive individuals) was a direct func‐
tion of F to explore the different statistical models used to estimate 
inbreeding load. Second, we used genetically explicit simulations of 
a metapopulation to investigate the performance of different pedi‐
gree‐based and genomic metrics of F. For these genetic simulations, 
survival was determined by loci with deleterious mutations. For the 
first set of phenotypic simulations, we used values of F from individ‐
uals of one of the demes of the metapopulation. For this reason, we 
first describe the general set‐up of the metapopulation simulations, 

Name Data structure
Estimation of inbreeding 
load References

Morton et al. Survival rate for 
classes of F

Slope of a weighted 
regression of mean survival 
rate on F

Morton et al. (1956)

Morton & TR Survival rate for 
classes of F

Same as Morton et al., but 
with a correction for small 
sample size

Templeton and 
Read (1983, 1984)

Exponent. ML Individual survival 
(this study) or 
classes of F

Estimation of yF = y0e−BF with 
y0 = e−A by maximizing the 
likelihood

Kalinowski and 
Hedrick (1998)

GLM logit‐link Individual survival Fit a generalized linear 
(mixed) model with binomial 
errors and logit link 
function, then use 
predictions from this model 
for two levels of F (typically 
F = 0 and F = 0.25) in 
equation 3 to obtain 
inbreeding load

Grueber et al. 
(2011)

GLM log‐link Individual survival Slope (on latent scale) of a 
generalized linear (mixed) 
model with Poisson errors 
and logarithmic link

after Zou, 2004

TA B L E  2   Summary of models for 
estimation of inbreeding load. The names 
of these models are used in Figure 1. 
Details for all models are described in 
Supporting Information 1, and the models 
are illustrated in Figure S4 in Supporting 
Information 1. For the model “GLM 
logit‐link,” we used F = 0 and F = 0.25 for 
predictions, but see Supporting 
Information 1 for a discussion of the 
effects of the arbitrary choice of these 
levels
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then the set of phenotypic simulations (where F directly affects sur‐
vival) and finally the set of genetically explicit simulations (where 
survival is affected by simulated genotypes).

2.1 | Genetic simulations of metapopulations

We conducted genetically explicit simulations using Nemo 
v2.3.46r4 (Guillaume & Rougemont, 2006). To represent patterns 
of inbreeding that can emerge in natural vertebrate populations, 
simulations were loosely inspired by a song sparrow (Melospiza 
melodia) metapopulation on the Gulf Islands in British Columbia, 
Canada, which is known to express considerable among‐individual 
variation in the degree of inbreeding and to show inbreeding de‐
pression in fitness traits (Keller, 1998; Nietlisbach et al., 2017; Reid 
et al., 2014; Smith, Keller, Marr, & Arcese, 2006; Wilson & Arcese, 
2008; Table 1).

We simulated 30 demes of up to 200 diploid individuals each 
for 5,000 non‐overlapping generations. Demes were connected 
through dispersal in an island model with a mean of 1.2 surviv‐
ing immigrants per deme and generation. Thus, while some im‐
migrants could be related to individuals in the receiving deme (if 
their anecestors had previously emigrated), they are unlikely to be 
closely related.

Individuals within a deme paired randomly, and each female pro‐
duced a number of offspring sampled from a Poisson distribution 
with mean 10. Offspring paternity was assigned with an extra‐pair 
paternity rate of 28% (as in song sparrows; Sardell, Keller, Arcese, 
Bucher, & Reid, 2010) sired by random males in the same deme, 
thereby generating a pedigree structure typical of many natural 
populations with numerous maternal and paternal half‐sibs as well 
as full‐sibs (e.g., Germain, Arcese, & Reid, 2018).

After reproduction, each deme was culled to 200 individuals 
through random mortality, followed by random dispersal without 
spatial structure. Genotypes (see below) of all individuals in the 
metapopulation were recorded. Viability selection was then applied 
using the survival probability of each of the 200 individuals as deter‐
mined by their genotypes at loci with deleterious alleles (see below). 
Viability selection thus reduced the number of adult individuals to 
below 200 per deme, but this order of life cycle events ensured that 
viability selection was the only nonrandom source of mortality.

Analyses were performed for each of 28 demes separately (sim‐
ulation output from two demes was accidentally deleted) from each 
of 10 replicate simulation runs, yielding a total of 280 estimates. 
Immigrants were excluded from analyses as is often done in field 
studies where F of immigrants is typically unknown due to missing 
pedigree information or unknown allele frequencies in their deme 
of origin.

The simulated diploid genome mimicked a great tit (Parus major) 
genome with recombination map length per chromosome taken as 
the mean of both populations measured by van Oers et al. (2014). We 
distributed 49,998 biallelic neutral loci and 2,500 biallelic loci with 
deleterious alleles (termed “deleterious loci”) onto chromosomes pro‐
portional to the physical size in base pairs of the 28 autosomes with TA
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known attributes (Laine et al., 2016). Nemo then distributed these loci 
randomly within the chromosomes (see also Nietlisbach et al., 2017).

Neutral loci were initialized by randomly and independently allo‐
cating one of two alleles at each homologous position. This resulted 

in binomially distributed allele frequencies around an expected fre‐
quency of 0.5 at the simulation start (49,828 loci or 99.66% were 
on average polymorphic among the analysed individuals at the end 
of the simulation). Loci were biallelic to match the most frequently 
observed pattern for intraspecific single nucleotide polymorphisms.

Compared to the neutral loci, a smaller fraction (2,122 loci or 
84.88%) of deleterious loci were on average polymorphic among the 
analysed individuals, as expected with selection against deleterious 
alleles and inbreeding exposing recessive deleterious alleles (i.e., 
purging). Deleterious loci acted independently and therefore con‐
tributed multiplicatively to individual survival probability by factors 
of 1, 1 − hisi and 1 − si per locus that was homozygous for the bene‐
ficial allele, heterozygous and homozygous for the deleterious allele, 
respectively. Individual survival probabilities determined how likely 
an individual was to survive to adulthood. We recorded whether in‐
dividuals survived or died in the simulations, and this binary measure 
was used to compare the performance of different metrics of F for 
estimation of inbreeding load (see below).

Our simulations follow the genetic model of Morton et al. 
(1956) by assuming no epistasis. We also did not simulate over‐
dominant loci. We will revisit these assumptions in the Discussion. 
Selection coefficients si were drawn from an exponential distri‐
bution with mean s̄ = 0.03, a value in the middle of empirical es‐
timates (reviewed by Wang, Hill, Charlesworth, & Charlesworth, 

F I G U R E  2   Inbreeding load estimated in a Poisson GLM 
with logarithmic link function and various metrics of inbreeding 
coefficient F (see main text and Table 3 for details). Curves on 
top of the panel show probability densities of inbreeding load 
estimates across all 280 analysed demes. Horizontal lines in the 
lower part of the panel show the 2.5% to 97.5% quantiles, and 
dots indicate mean estimates across all 280 demes. Asterisks (*) 
indicate that the mean estimate was different from the true value 
of inbreeding load with a p‐value of <5%. Fped (blue) was based on 
up to 25 ancestral generations. FROH (orange) was based on runs 
of homozygosity of at least 1 Mbp. FH (red) and Falt (green) were 
calculated using all polymorphic neutral loci. The grey area (genetic 
reference) spans from the 2.5% quantile (1.68 lethal equivalents) 
to the 97.5% quantile (1.99 lethal equivalents) of actual inbreeding 
load calculated from the observed allele frequencies and selection 
coefficients at deleterious loci using equation 1

inbreeding load B
0 2 4 6 8

genetic
reference

probability density

0
1

Fped with <25 generations *

FROH with ROHs >1 Mbp  

FH at ~49,828 neutral loci *

Falt at ~49,828 neutral loci *

Fped
FROH
FH
Falt

F I G U R E  1   Simulations of 10,000 data sets of survival (binary 
variable representing dead or alive) for four levels of inbreeding load 
(B=1,5,10,20), two different intercepts of (a) A = 0.25 or (b) A = 0.75, 
and 791 individuals with realistic F values and binary survival events 
yF sampled with survival probabilities ΠF = e−A‐BF. We quantified 
inbreeding load using the models summarized in Table 2 and 
illustrated in Figure S4 in Supporting Information 1. Inbreeding load 
was estimated as the slope of a Poisson generalized linear model with 
logarithmic link function (“GLM log‐link”), with an exponential model 
(“exponent. ML”), by weighted regression either without (“Morton 
et al.”) or with the small sample size correction of Templeton and Read 
(1983, 1984) (“Morton & TR”), and from a binomial generalized linear 
model with logit link function (“GLM logit‐link”). Probability densities 
across the 10,000 simulations are shown along the y‐axis for each 
value of B in the lower parts of each panel. The estimated means of B 
across 10,000 simulations are indicated by dots along the top of each 
panel, and the horizontal lines indicate the central 95% range
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1999). Dominance coefficients hi were determined by Nemo 
with a function that assigned smaller dominance coefficients to  
alleles with larger deleterious effects: hi = 0.5 exp ( log (2h̄)si∕s̄) 
with h̄ = 0.1 (Wang et al., 1999). Due to the exponential distribu‐
tion of si, the simulated mean dominance coefficient was 0.18, a 
value close to empirical mean estimates of 0.2–0.4 (reviewed by 
Wang et al., 1999) or 0.1–0.3 (reviewed by Lynch & Walsh, 1998, 
p. 286). The resulting distributions of si (range from 1.25 × 10−5 to 
0.22) and hi (range from 2.94 × 10−6 to 0.50), and their relationship 
are shown in Figure S1 in Supporting Information 1.

Mutation rate at neutral and deleterious loci was set to 0.0002. 
Mutation rate and number of deleterious loci were chosen in con‐
junction so that a diploid individual would experience on average 
one new deleterious mutation, a value compatible with empirical 
data (Lynch & Walsh, 1998, p. 351; Wang et al., 1999). Due to con‐
straints of Nemo, neutral loci could mutate from either allele to the 
other, whereas deleterious loci could only mutate to the deleterious 
allele. Following Wang (2015), all deleterious loci were initialized at 
the same equilibrium allele frequency expected in a large population, 
calculated with s̄, h̄, and the mutation rate (Crow & Kimura, 1970, 
equation 6.2.6).

Simulations were run for 5,000 generations, by which time they 
had reached near‐equilibrium of genetic drift, migration, mutation 
and selection as shown by stabilized mean heterozygosity and allele 
frequency distributions (data not shown). The genotypes of individ‐
uals conceived in generations 4,996–4,999 were recorded, yielding 
a sample size of 788 individuals per deme on average. The cut‐off 
was the second last of 5,000 simulated generations because survival 
was not simulated for last‐generation individuals. The simulations 
resulted in a mean inbreeding load of 1.83, with a range of 1.63 to 
2.10, and a standard deviation of 0.08 lethal equivalents across the 
analysed data sets.

Pedigree‐based inbreeding coefficients Fped (Wright, 1969; chap‐
ter 7) were calculated based on the previous 20 generations of the 
metapopulation pedigree (i.e., since generation 4,976, yielding a 
pedigree of up to 25 generations) using the R package pedigreemm 
(Vazquez, Bates, Rosa, Gianola, & Weigel, 2010). Three genomic met‐
rics of F were calculated using neutral loci (Table 3). Although some 
loci with deleterious effects may be part of empirical data sets, we 
excluded them here because realistic genomic data sets are unlikely 
to contain all deleterious loci and many of them would be excluded 
due to minor allele frequency cut‐offs.

The first genomic metric, FH (called FHOM by Yengo et al., 2017), 
quantifies inbreeding as a deviation in homozygosity from its Hardy–
Weinberg expectation given allele frequencies calculated from the set 
of individuals for which inbreeding was estimated (Keller et al., 2011). 
Individuals with negative FH are more heterozygous than the average 
individual under Hardy–Weinberg expectations. Consequently, FH 
must be interpreted as a correlation rather than a probability of iden‐
tity by descent (Wang, 2014). We calculated FH in R v3.2.3 (R Core 
Team 2015), with verification in PLINK v1.90b4.3 (Purcell et al., 2007).

The second metric Falt is similar to FH in that it also provides a 
metric of inbreeding relative to reference allele frequencies, but it 

differs in that homozygous genotypes are weighted with the inverse 
of their allele frequency (Yang et al., 2010). Thus, rare homozygous 
genotypes contribute more to Falt than common homozygous gen‐
otypes (Keller et al., 2011). We calculated Falt in R, with verification 
using the software for genome‐wide complex trait analysis GCTA 
v1.26.0 (Yang, Lee, Goddard, & Visscher, 2011). We call this metric 
Falt following Keller et al. (2011); it is called ̂FIII

i
 by Yang et al. (2011), 

FGRM by Huisman, Kruuk, Ellis, Clutton‐Brock, and Pemberton (2016) 
and Bérénos, Ellis, Pilkington, and Pemberton (2016), and FUNI by 
Yengo et al. (2017).

The third metric FROH measures inbreeding as the proportion of 
the genome that is found in runs of homozygosity (McQuillan et al., 
2008). Runs of homozygosity decrease in length with the number 
of generations g since a common ancestor, with an exponential dis‐
tribution around a mean length L of 1∕(2g) Morgans (Fisher, 1954; 
Howrigan, Simonson, & Keller, 2011; Keller et al., 2011). The sim‐
ulated 28 chromosomes had a total recombination map length of 
18.81 Morgans, a genome size of 920 Mega base pairs (Mbp) and 
a mean recombination rate across the whole genome of 2.04 cM/
Mbp = 0.0204 M/Mbp. Hence, runs of homozygosity longer than 
L = 1 Mbp are on average due to coalescence occurring <24.5 gen‐
erations ago because g=1∕(2⋅L⋅0.0204). Runs of homozygosity were 
detected in PLINK in a sliding window of 50 loci (moved in steps 
of 5), after removing loci that were in strong linkage disequilibrium 
(r2>0.9) to improve accuracy of detecting autozygous runs of homo‐
zygosity (Howrigan et al., 2011), and allowing up to one heterozy‐
gous locus to account for the possibility of mutation. Stretches of up 
to 2 Mbp with no loci were allowed to account for random variation 
in marker density.

For all four metrics of F, we calculated mean and variance across 
all individuals per deme (excluding immigrants).

2.2 | Comparison of statistical models to estimate 
inbreeding load

To investigate which of the five focal statistical models for estima‐
tion of inbreeding load (Table 2) provided unbiased estimates of B, 
we conducted a set of simulations in R that assumed F values were 
known precisely and were directly affecting fitness. This set of sim‐
ulations was not genetically explicit, to allow a comparison of sta‐
tistical models without adding the complexity of potential biases in 
metrics of F that could arise if survival probability and F were both 
estimated from genetic data. Consequently, the performance of dif‐
ferent metrics of F as proxies for genotypes at loci with deleterious 
alleles will be addressed in the second set of (genetic) simulations 
below. Random errors in F or fitness, however, did not affect results 
here (Figures S2 and S3 in Supporting Information 1). To obtain re‐
alistic distributions of F values for this set of simulations, we used 
the FROH values of a single deme simulated in Nemo (791 individuals 
in total). Using these F values as input, we calculated the expected 
survival probability �F for each class of individuals with inbreeding 
coefficient F as

(4)�F= e−A−BF.
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We then used �F to create 791 individual survival events (yF=0: 
dead, yF=1: alive) by sampling survival events from a Bernoulli dis‐
tribution with success probability �F. Hence, the individual survival 
events yF were Bernoulli distributed with residual variance �F⋅(1−�F) 
around the expectation πF. The intercept A was set to 0.25 or 0.75, 
and the slope B (i.e., the inbreeding load) was set to 1, 5, 10 or 20. 
For each combination of A and B, we simulated 10,000 data sets (of 
791 individuals each) and then quantified B using each statistical 
model (Table 2). We applied the method of Morton et al. (1956) to 
data grouped into similarly sized classes of similar values of F as 
summarized in the introduction, both with and without the small 
sample size correction proposed by Templeton and Read (1983, 
1984). Individual survival was analysed using the maximum‐like‐
lihood approach described by Kalinowski and Hedrick (1998). We 
also fitted a GLM with binomial errors and logit link function, and 
used predictions from this model in equation 3 as recommended 
by Grueber et al. (2011). In addition, we fitted a GLM with Poisson 
error distribution and logarithmic link function. Although not a 
commonly used approach, it is known that a GLM with Poisson dis‐
tribution and logarithmic link function does provide unbiased point 
estimates for binary data (e.g., survival versus mortality) and usually 
avoids convergence problems that may occur with binomial errors 
and logarithmic link function. However, standard confidence inter‐
vals from a Poisson GLM are typically too large, yet this issue can be 
resolved by using the so‐called sandwich estimator, a robust error 
variance estimation procedure (Zou, 2004; Supporting Information 
1). For each model and combination of A and B, we extracted the 
estimated mean B and the 2.5% and 97.5% quantiles across the 
10,000 data sets. These simulations directly compare the perfor‐
mance of the different statistical models to estimate inbreeding 
load (Table 2) using a realistic distribution of F values. Further de‐
tails are provided in Supporting Information 1, along with an illus‐
trated example (FigureS4).

2.3 | Comparison of effects of metrics of F on 
estimates of inbreeding load

The above analyses showed that a Poisson GLM with logarithmic 
link provides reliable estimates of inbreeding load (see Results). 
Therefore, to compare the effects of the four different metrics of F 
on estimates of inbreeding load, we used this statistical model to re‐
gress individual survival on Fped, FH, Falt or FROH in separate analyses. 
Contrary to the previous analysis, we here used observed survival 
from the genetically explicit Nemo simulations. Thus, in this analysis, 
survival probability was determined by individual genotypes at loci 
with deleterious alleles (see above for details), and neutral loci or the 
pedigree was used to independently measure F. We extracted the 
slope as an estimate of inbreeding load per replicate and the mean 
and 2.5% and 97.5% quantiles across the 280 replicates (28 demes 
from 10 simulation runs). We calculated the actual inbreeding load 
present in the focal deme using equation 1, with allele frequencies 
qi from the focal generations 4,996–4,999 and selection si and domi‐
nance coefficients hi for each locus as used in the Nemo simulations. 

This value provided a genetic reference that equals the value that 
a reliable method should estimate. We considered a metric of F to 
be biased if the difference between actual inbreeding load (calcu‐
lated using equation 1) and its estimate was different from 0 with 
a p‐value of less than 5%, as assessed using an intercept‐only linear 
model with that difference for each deme as response variable. We 
additionally calculated root mean square error (RMSE), which is a 
combined measure of accuracy and precision.

Although a GLM with Poisson distribution and logarithmic 
link function provides unbiased point estimates for binary data, 
a sandwich estimator has to be used to calculate robust standard 
errors (Zou, 2004; Supporting Information 1 and above). Then, 
95% Wald confidence intervals for B were estimated as the point 
estimate ±1.96 times the robust standard error for each deme 
and metric of F. We then quantified the number of replicates in 
which the confidence interval contained the actual inbreeding 
load. If a method is unbiased, this proportion should be close 
to 95%.

Additional analyses to examine the sensitivity of our results and 
conclusions to pedigree depth (affecting estimation of Fped), to the 
set of loci considered (affecting estimation of FH and Falt), to the 
length of runs of homozygosity (affecting estimation of FROH), to the 
number of individuals considered per deme, and to different filtering 
of neutral loci with respect to minor allele frequencies and linkage 
disequilibrium are summarized in Supporting Information 2.

3  | RESULTS

3.1 | Comparison of statistical models to estimate 
inbreeding load

Fitting the full set of statistical models (Table 2) to the simulated in‐
dividual survival data showed that only the GLM with logarithmic 
link function, and the maximum‐likelihood estimation of the expo‐
nential equation, provided unbiased estimates of inbreeding load in 
all cases (Figure 1). These two methods fit essentially identical mod‐
els in different ways.

Morton et al.’s (1956) regression model substantially under‐
estimated B when applying the small sample size correction of 
Templeton and Read (1983, 1984), confirming previous extensive 
simulation studies (Kalinowski & Hedrick, 1998; Lacy, 1997; Willis 
& Wiese, 1997). Without the small sample size correction, Morton 
et al.’s model gave unbiased estimates for B up to 10, but overes‐
timates for B of 20. This is because, for high B, many replicates 
had inbreeding classes with zero survivors, which have to be ex‐
cluded from calculations using Morton et al.’s (1956) model. This 
affected 2,552 out of 10,000 replicates for A = 0.25 and B = 20 and 
4,938 replicates for A = 0.75 and B = 20, but only 51 replicates for 
A = 0.75 and B = 10.

Meanwhile, GLMs with a logit link function overestimated B 
(Figure 1), particularly for higher values of B. Furthermore, esti‐
mates of B differed for different levels of A (i.e., differing survival 
rate of outbred individuals) even if B remained unchanged. Such an 
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effect of A on estimates of B is undesirable and demonstrates that 
using a logit link does not provide estimates of inbreeding load that 
are comparable across different populations with different envi‐
ronmental effects on survival.

In contrast, logarithmic GLMs and maximum‐likelihood es‐
timation consistently provided unbiased estimates of inbreed‐
ing load (Figure 1). However, maximum‐likelihood estimation of 
the exponential equation failed in 106 out of 80,000 simulated 
data sets, and its implementation in some software packages 
may be considered more complicated, particularly given multi‐
ple covariates. We consequently recommend using the slope of 
a GLM with logarithmic link function and Poisson‐distributed er‐
rors to estimate inbreeding load and to use a sandwich estimator 
to get appropriate confidence intervals (Zou, 2004; Supporting 
Information 1).

3.2 | Comparison of effects of metrics of F on 
estimates of inbreeding load

As expected, the distributions of the four metrics of F differed 
somewhat across the focal simulated individuals. Fped and FROH had 
only positive values, with Fped showing a narrower range than FROH, 
whereas FH and Falt contained both positive and negative values and 
thus had a wider range and a mean close to 0 (Table 3 and Figure S5 
in Supporting Information 2). We also noted that values of Falt in im‐
migrants and their descendants were too high because Falt strongly 
weighs rare alleles brought in by immigrants (see Supporting 
Information 2).

We ran genetically explicit simulations where survival was 
determined by genotypes at loci with deleterious alleles, and we 
used neutral loci or the pedigree to calculate four different met‐
rics of F. The resulting estimates of inbreeding load did not yield 
identical results. Specifically, Fped led to slight overestimates of 
inbreeding load, and moreover the variation among estimates 
from the replicate demes was large, making this a relatively im‐
precise method (Figure 2). Consequently, root mean square error 
(RMSE) was rather large at 1.33. FROH with runs of homozygos‐
ity longer than 1 Mbp provided unbiased estimates of inbreeding 
load, and variation in estimates was smaller than for Fped, giving 
an RMSE of 1.01 (Figure 2). FH led to underestimation of inbreed‐
ing load with an RMSE of 0.86, while Falt led to overestimation 
of inbreeding load with an RMSE of 2.05 (Figure 2). The 95% 
confidence intervals calculated for FROH had the best coverage 
probabilities, containing the true inbreeding load in 93.9% of all 
replicates, whereas this value was 93.6% for Fped, 90.7% for FH 
and 79.6% for Falt.

Our additional analyses in Supporting Information 2 showed 
that results for FH and Falt changed only little when based on fewer 
genetic loci, particularly given 10,000 or more polymorphic loci 
(Figure S6 in Supporting Information 2). Similarly, using a shorter or 
longer minimum length for runs of homozygosity had little effect 
on estimates of inbreeding load calculated using FROH (Figure S6 in 
Supporting Information 2).

4  | DISCUSSION

4.1 | Comparison of statistical models to estimate 
inbreeding load

The concept of “inbreeding load” (Morton et al., 1956) provides a 
standardized and theoretically rigorous measure of the magnitude of 
inbreeding depression that can be compared among traits, environ‐
ments and populations. While multiple statistical models (Table 2) 
have been used to estimate inbreeding load, our simulations show 
that only logarithmic models yield unbiased estimates. Specifically, 
a Poisson generalized linear model (GLM) with logarithmic link 
function, and the maximum‐likelihood exponential equation model 
proposed by Kalinowski and Hedrick (1998), returned unbiased esti‐
mates of inbreeding load. Other statistical models might be useful to 
study aspects of inbreeding other than quantification of inbreeding 
load.

Of these two models, the GLM with logarithmic link function 
is generally easy to implement. While it is not usual to model bi‐
nary traits (such as survival) with Poisson error distributions and 
associated logarithmic links, such models return unbiased point 
estimates and appropriate confidence intervals can be computed 
(Zou, 2004; Supporting Information 1). GLMs designed to esti‐
mate inbreeding load in other traits could use error distributions 
other than Poisson, but using a logarithmic link function is crucial 
to preserve the population genetic interpretation of inbreeding 
load.

Meanwhile, Morton et al.’s (1956) original logarithmic regres‐
sion model returned slightly biased estimates only for very high 
inbreeding loads (B = 20). Since most values of B estimated for 
survival in wild populations to date are lower than 20 (Table 1), 
Morton et al.’s (1956) model may, in practice, often suffice, as 
long as enough data are available to reliably estimate mean fit‐
ness per level of F. In contrast, non‐logarithmic models, in par‐
ticular GLMs with logit link functions, violate key underlying 
population genetic assumptions and hence return estimates of 
the inbreeding load that are quantitatively, and conceptually, 
different. García‐Dorado et al. (2016) and López‐Cortegano, 
Bersabé, Wang, and García‐Dorado (2018) also show that logistic 
models are not ideal for predicting fitness under inbreeding and 
purging. Furthermore, GLMs with logit link functions yield dif‐
ferent estimates of B depending on the arbitrary methodological 
choice of inbreeding levels for which model predictions are made 
(Supporting Information 1) and depending on the survival rate of 
outbred individuals (Figure 1). Such differences in baseline sur‐
vival rate occur, for example, due to environmental differences 
between years or study sites.

To illustrate the problem, we used published data from Chatham 
Island black robins (Petroica traversi) (Kennedy, Grueber, Duncan, 
& Jamieson, 2014) to demonstrate how a logit link model can lead 
to erroneous comparative assessments of inbreeding load. A stan‐
dard GLM with binomial errors and logit link generates estimates of 
inbreeding load that differ more than threefold among three focal 



     |  275NIETLISBACH ET AL.

study sites (R code in Supporting Information). Such highly different 
estimates emerge even though the same model provided no statis‐
tical support for the hypothesis that inbreeding load varied among 
sites (i.e., the site‐by‐F interaction was not significant and excluded 
from the model). This major apparent discrepancy in interpretation 
arises because the survival rates of outbred individuals varied mark‐
edly among study sites, which most likely reflects ecology (Kennedy 
et al., 2014). Using a GLM with logarithmic link instead does not lead 
to such inconsistent results. Thus, predictions from models with 
logit links should not be used to estimate inbreeding load. A num‐
ber of estimates of “lethal equivalents” in the literature, particularly 
in more recent literature, are not in fact equivalent and cannot be 
meaningfully quantitatively compared.

4.2 | Comparison of effects of metrics of F on 
estimates of inbreeding load

Our genetically explicit genomic simulations showed that fitting 
the same (appropriate) statistical model using different metrics of F 
(Table 3) returned quantitatively different estimates of the inbreed‐
ing load. Of three metrics derived from genetic markers, only that 
based on runs of homozygosity (FROH) provided unbiased estimates. 
FH systematically underestimated inbreeding load, but showed the 
lowest RMSE. Meanwhile, Fped slightly and Falt considerably over‐
estimated inbreeding load. Our additional analyses of subsets of 
individuals and loci imply that if much larger data sets were avail‐
able, estimates based on FH, Fped and Falt would likely still be biased 
whereas estimates based on FROH would not, while the RMSE for 
FROH would likely decrease (Supporting Information 2). Given ap‐
propriate genomic data, FROH may therefore be the best metric of 
inbreeding for quantification of inbreeding load.

Yengo et al. (2017) concluded from simulations that FH and 
particularly Falt were the best metrics to quantify inbreeding de‐
pression. However, they simulated trait values as a function of an 
inbreeding coefficient that was calculated in a similar way as FH 
and Falt, not based on genetically explicit simulations. This shortcut 
is likely to bias results in favour of metrics with similar properties, 
leading to conclusions that simply reflect simulation methodology 
(Kardos et al., 2018). Our genetically explicit simulations, where both 
trait values and inbreeding coefficients are emergent properties of 
Mendelian inheritance, genetic drift and selection, show that FROH 
yields less biased estimates of the inbreeding load than FH and Falt 
(see also Keller et al., 2011).

Although Fped has similar properties to FROH, it yields slight 
overestimates of the inbreeding load. Pedigrees measure expected 
identity by descent and not variation due to Mendelian sampling 
and recombination, whereas a large number of genetic markers 
allow measuring variation in realized identity by descent (Franklin, 
1977; Hill & Weir, 2011; Leutenegger et al., 2003; Stam, 1980). 
High‐density marker‐based metrics of inbreeding consequently 
showed higher correlations with genome‐wide identity by de‐
scent than Fped in simulation studies (Kardos, Luikart, & Allendorf, 
2015; Keller et al., 2011; Wang, 2016), as is expected when realized 

identity by descent randomly deviates from its expectation based 
on Fped. In general, independent random errors in the independent 
variable (i.e., F) increase the variance and may lead to biased regres‐
sion slopes (Carroll, Ruppert, Stefanski, & Crainiceanu, 2006; Reid 
et al., 2014). Overestimation, such as we observed, might arise if 
Fped systematically underestimates genomic inbreeding, for example 
due to selection and resulting reduced variance (Groen, Kennedy, 
& Eissen, 1995). Indeed, simulations by Curik, Sölkner, and Stipic 
(2001) showed that regression slopes of trait values on F were over‐
estimated when using Fped instead of realized genomic inbreeding, 
because Fped underestimated the variance in identity by descent. 
Although desirable and increasingly feasible (Kardos et al., 2016), 
generating genomic data to measure inbreeding is not without chal‐
lenges and may not be an option for every research programme 
(Andrews, Good, Miller, Luikart, & Hohenlohe, 2016; Shafer et al., 
2017; Sims, Sudbery, Ilott, Heger, & Ponting, 2014). In these cases, 
pedigrees of sufficient depth will yield reasonable if slightly biased 
estimates of inbreeding load. However, if an assembled reference 
genome of sufficient quality and a dense genetic marker data set 
are available, we recommend using FROH and as many individuals as 
possible for estimation of inbreeding load.

4.3 | Implications for wild populations

Our results show that estimates of inbreeding load are contingent on the 
underlying statistical model and the metric of F, implying that diverse 
published estimates are often not equivalent and impeding quantitative 
comparison. We thus collated published estimates of inbreeding loads 
in wild vertebrate populations that used unbiased methods in Table 1 
and explain in the R code in the Supporting Information why other esti‐
mates were deemed to not be comparable. Not all studies of inbreeding 
depression reported estimates of inbreeding load, but they sometimes 
contained sufficient data to allow approximate calculation (details of 
analyses and exclusions, and R code, are in the Supporting Information). 
We mainly attempted to recalculate estimates of inbreeding load cal‐
culated in review studies by O’Grady et al. (2006) and Frankham et al. 
(2017, table 3.2). We describe the detailed methods in the R code in the 
Supporting Information and also explain there why some values differ. 
We did not list some of the previously reported estimates, mainly be‐
cause they were not from wild populations or for various issues that we 
explain in the R code in the Supporting Information. For example, the 
highest value among vertebrate populations cited by Frankham et al. 
(2017) is based on a study on red deer (Cervus elaphus) (Huisman et al., 
2016) that did not report inbreeding load and that used logit links and 
Falt to analyse inbreeding depression. As we have shown here, such es‐
timates of inbreeding load may be unreliable. The same concerns apply 
to the even higher estimates of inbreeding load reported for the same 
study of red deer by Hedrick and García‐Dorado (2016).

When using only estimates from models known to have little 
bias, a mean inbreeding load for survival until sexual maturity of 3.5 
haploid lethal equivalents was found among wild vertebrate popu‐
lations (Table 1). This value is higher than the mean of 2.3 reported 
for mammals in captivity (Ralls et al., 1988). We did not observe a 
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recent increase in reported inbreeding load estimates from the wild 
as previously noted (Hedrick & García‐Dorado, 2016). However, 
there are not many reliable estimates of inbreeding load available 
for wild vertebrate populations and especially not for measures of 
lifetime fitness. To improve this situation, we encourage research‐
ers to explicitly calculate and report inbreeding load for their study 
populations whenever possible. Furthermore, study systems where 
lifetime reproductive success is well known offer interesting pros‐
pects for quantification of inbreeding load in measures of total fit‐
ness. The widespread availability of genomic methods will ease the 
challenge of measuring inbreeding in wild animals and plants in the 
coming years. However, the difficulty of accurately measuring fit‐
ness in wild populations will remain. Thus, detailed long‐term study 
populations where survival and reproduction can be monitored in 
detail will become increasingly valuable for ecological and evolution‐
ary genomics.

4.4 | Limitations

Although our recommendation to use FROH for measuring inbreed‐
ing is in line with other studies (e.g., Keller et al., 2011), there are 
limitations to our simulations and hence quantitative conclusions. 
We investigated the performance of different metrics of F given a 
metapopulation of 30 demes of fixed size connected by little dis‐
persal and gene flow. Quantitative conclusions will likely change 
given different structures and resulting means and variances in F. 
Indeed, FH may perform well under some demographic scenarios 
(Figure S13 in Supporting Information 4). Extensive further stud‐
ies on the effects of different demographic scenarios on mean 
and variance of metrics of F and their usefulness to measure in‐
breeding load are desirable. So far, several demographic scenarios 
support our main conclusion that FROH is the least biased metric 
to estimate inbreeding load (Supporting Information 4). However, 
our simulations were conducted using a metapopulation at near‐
equilibrium of genetic drift, migration, mutation and selection. 
Non‐equilibrium conditions created by recent reductions in pop‐
ulation size may lead to overestimates of inbreeding load when 
using Fped and when not accounting for purging (García‐Dorado 
et al., 2016; López‐Cortegano et al., 2018). Other research ques‐
tions may not focus on the inbreeding load but on correlations be‐
tween F and fitness measures. Then, a different statistical model 
and a different metric of F may perform better. For example in 
our simulations, Falt yielded the strongest correlation with survival 
(Figure S12 in Supporting Information 4).

Neither an appropriate metric of F, nor an appropriate statisti‐
cal model, can guarantee an unbiased estimate of inbreeding load 
if other assumptions of the underlying theory are violated. In par‐
ticular, if the assumption of independent effects of loci is violated, 
for example due to epistasis or additive rather than multiplicative 
effects among loci, different statistical procedures may be required. 
If inbreeding depression is mainly due to overdominance rather than 
partial directional dominance, biases in estimates of inbreeding load 
may also change (Curik et al., 2001). Similarly, further research is 

needed to assess what would change if inbreeding depression was 
mainly caused by few loci with large effects, such as recessive lethal 
mutations. Further bias in estimates of inbreeding load could arise if 
there are nonrandom associations between individual F values and 
environmental quality, if propensity to inbreed is correlated with fit‐
ness‐related heritable traits (Becker, Hegelbach, Keller, & Postma, 
2016; Reid, Arcese, & Keller, 2008), or if parental investment differs 
depending on offspring F (Duthie, Lee, & Reid, 2016). In such cases, 
use of the metrics and models that we have highlighted may need 
to be coupled with experiments that break associations between F 
and environmental and parental effects, or with more sophisticated 
regression models that additionally account for additive genetic 
effects.
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