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Abstract: The adenosine pathway plays a key role in modulating immune responses in physiological
and pathological conditions. Physiologically, anti-inflammatory effects of adenosine balance
pro-inflammatory adenosine 5’-triphosphate (ATP), protecting tissues from damage caused by
activated immune cells. Pathologically, increased adenosine monophosphatase (AMPase) activity
in tumors leads to increased adenosine production, generating a deeply immunosuppressed
microenvironment and promoting cancer progression. Adenosine emerges as a promising target for
cancer therapy. It mediates protumor activities by inducing tumor cell proliferation, angiogenesis,
chemoresistance, and migration/invasion by tumor cells. It also inhibits the functions of immune cells,
promoting the formation of a tumor-permissive immune microenvironment and favoriting tumor
escape from the host immune system. Pharmacologic inhibitors, siRNA or antibodies specific for the
components of the adenosine pathway, or antagonists of adenosine receptors have shown efficacy in
pre-clinical studies in various in vitro and in vivo tumor models and are entering the clinical arena.
Inhibition of the adenosine pathway alone or in combination with classic immunotherapies offers a
potentially effective therapeutic strategy in cancer.
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1. Introduction

The immune system plays an important role in the prevention as well as progression of
malignancy [1]. On the one hand, it benefits the host by eliminating or neutralizing the tumor
mass; on the other, it may be hijacked by the tumor to promote its progression. The recruitment of
immune cells to the tumor suggests the presence of anti-tumor immunity. However, in the tumor
microenvironment (TME), infiltrating immune cells become re-programmed by tumor-derived factors
and assume a tumor-promoting phenotype [2].

The nucleoside adenosine (ADO) is involved in the regulation of diverse physiological and
pathological processes [3–9]. ADO has recently emerged as a powerful immune checkpoint in
the TME [10,11]. ADO acting directly on tumor cells promotes growth, survival, angiogenesis,
chemoresistance, and metastasis [12,13]. However, under physiological conditions, ADO acting as an
immuno-regulatory molecule protects normal tissues from inflammatory damage while in pathological
conditions, it can impair anti-tumor immunity [14]. ADO attenuates functions of protective immune
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cells, including T cells and natural killer (NK) cells. It enhances the suppressive functions of
regulatory T cells (Tregs), macrophages, and myeloid-derived suppressor cells (MDSCs), inducing
cancer progression [15–18]. Here, we review approaches to blocking the adenosine pathway in cancer,
removing the immune function brake and restoring the host’s ability to control tumor progression.

2. The ADO Pathway

Adenosine 5’-triphosphate (ATP) is a triphosphate nucleotide, and its main function is to provide
energy to cells. For decades, this was the sole known ATP function. The history of the purinergic
system began in 1929, when Drury and Szent-Gyorgi described the dilation of coronary blood vessels
and hypotensive actions of purines in the heart and blood vessels [19]. Their findings contributed to
establishing the current view of nucleotides and nucleosides as signaling molecules of the purinergic
system. As such, they are involved in the regulation of various pathophysiological processes in the
extracellular environments [20].

Purinergic signaling is characterized by the activity of extracellular purines (ATP, adenosine
diphosphate (ADP), and ADO) or pyrimidines (uridine-5’-triphosphate (UTP) and uridine
diphosphate (UDP)), which act as signaling molecules. Purinergic signaling serves as a
communication system between cells. It is involved in a variety of mechanisms, including immune
responses, inflammation, pain, platelet aggregation, proliferation, cell death, development, and
neurotransmission [3,5–9,14,21,22]. Purines or pyrimidines exert their effects through interactions with
specific membrane receptors called purinergic receptors or purinoceptors [5]. They comprise a group
of enzymes that are involved in nucleotide degradation or nucleoside formation and, therefore, play a
key role in the regulation of purinergic signaling [23].

2.1. Enzymes

The responses mediated by nucleotides and nucleosides upon binding to their respective receptor
are catalyzed by enzymes called ectonucleotidases. These enzymes are responsible for the levels of
nucleotides and nucleosides present in the extracellular microenvironment. Ectonucleotidases control
the binding of nucleotides and nucleosides to their cellular receptors. As shows in Figure 1, this
family of enzymes includes the ecto-nucleoside triphosphate-diphosphohydrolases (E-NTPDases),
which catalyze the sequential degradation of ATP to ADP and adenosine monophosphate (AMP);
the ecto-pyrophosphate-phosphodiesterases (E-NPP), which catalyze hydrolysis of ADP to AMP and
of AMP to ADO; alkaline phosphatases (ALPs), which catalyze the degradation of ATP to ADP, ADP to
AMP, and AMP to ADO; and, finally, the ecto-5’-nucleotidase (CD73), a 70-kDa glycosyl-phosphatidyl
inositol-anchored protein on the plasma membrane. CD73 can be cleaved from the cell surface and
act as a soluble enzyme, which irreversibly catalyzes the hydrolysis of AMP to ADO. In addition,
adenosine deaminase (ADA) degrades ADO to inosine. The bioavailability of ADO is also regulated by
nucleoside equilibrative transporters (ENTs) or concentrative nucleoside transporters (CNTs), which
reside in the cell membrane and transport ADO into the cells. In the intracellular microenvironment,
ADO is phosphorylated by ADO kinase (AdoK) and adenylate kinases into ADP [23].

However, ADO can also be generated by the non-canonical adenosinergic pathway by nicotinamide
adenine dinucleotide (NAD+)-glycohydrolase/CD38 (NAD+ to ADP-ribose (ADPR)) and CD203a
(PC-1) (ADPR to AMP) that is subsequently metabolized by CD73 to ADO. Therefore, CD73 represents
the common link between the two adenosinergic pathways [24].
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Figure 1. Extracellular and intracellular (canonical and non-canonical) adenosinergic pathways.
In (A) biochemical interactions in the adenosine (ADO) pathway and in (B) cellular receptors in the
ADO pathway.

2.2. Receptors

The release of nucleotides and/or nucleosides into the extracellular microenvironment is
accompanied by interactions with their respective receptors on cells, allowing for the purinergic
signaling cascade to continue. Purinergic receptors are divided into two major groups, the P1R, which
has the main endogenous agonist, ADO, and the P2R, which are sensitive to di- and triphosphate
nucleosides, such as ATP, ADP, UTP, and UDP.

P1R, also called ADO receptors, are divided into four subtypes, A1, A2A, A2B, and A3, and all are
coupled to G protein but differ in their affinity for ADO [25]. High-affinity receptors, A1R, A2AR, and
A3R, bind ADO in the nanomolar range, whereas A2BR binds ADO in the micromolar range. Thus, at
physiological concentrations of ADO, signaling is primarily mediated via A2AR, A1R, and A3R. A2BR
are only activated when elevated levels of ADO are generated, such as in the inflammatory TME [26].
The A1R and A3R are coupled to the Gi or Go proteins, and their activation leads to a decrease in
intracellular cyclic AMP (cAMP) levels, whereas A2AR and A2BR are coupled to Gs protein, resulting in
increased levels of intracellular cAMP [25,27,28]. P1R are widely distributed among various cell types.
They are expressed in the heart, lung, liver, testis, muscle, spinal cord, spleen, intestine, and brain [5].
In the immune system, these receptors are present in most cells and mediate the immunosuppressive
and anti-inflammatory effects of ADO [18].

P2Rs comprise two categories of receptors, P2X and P2Y. P2YR are coupled to G protein and
are metabotropic. P2XR are ionotropic and are divided into seven subtypes (P2X 1–7) that respond
to ATP, whereas P2YR are subdivided into eight subtypes (P2Y 1, 2, 4, 6, 11–14) and are activated
by ATP, ADP, UTP, and UDP, and are also sensitive to sugar nucleotides, such as UDP-glucose and
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UDP-galactose [29]. P2XR are broadly distributed in various cells, such as platelets, neurons, and
muscle cells [30]. P2YR are found in a wide variety of organs and tissues: airway epithelium, different
regions of the kidney, pancreas, adrenal gland, heart, vascular endothelium, skin, muscle, and various
components of the nervous system, such as the cortex, hippocampus, and cerebellum [5].

3. ADO in Cancer

The role of ADO as a promoter of tumor progression is dependent on the activity and expression of
CD73 in tumor cells. CD73 expression is elevated in different tumor types, including breast cancer [31],
glioblastoma [32], F colorectal cancer [33], ovarian cancer [34], melanoma [34], gastric cancer [35],
and bladder cancer [36]. Elevated CD73 expression levels significantly correlate with shorter overall
survival in breast, ovarian, lung, and gastric cancer [37], and have been linked to cancer progression,
migration, invasion, metastasis, chemoresistance, and neovascularization processes [13,38,39]. More
importantly, ADO is now considered to be one of the most relevant immunosuppressive regulatory
molecules in the TME [15,40,41]. Due to the favorable results seen in tumor models, targeting CD73
or ADORs has become a promising therapeutic approach in different types of human cancer. CD73
expression and ADO production by tumor cells have also been associated with the tumor progression,
chemoresistance, migration, and angiogenesis, and these functions are summarized in Tables 1–3.

Table 1. In vitro and in vivo studies of ADO chemoresistance activities reported in the literature.

Model Main Result Mechanism

P1R antagonism

Melanoma in vivo Inhibition of A2BR enhanced efficacy
of dacarbazine

Reversed immune suppression in the
TME [42]

Glioblastoma in vivo Inhibition of A2BR enhanced efficacy of TMZ A2BR [43]
CD73 inhibition

Glioblastoma in vitro CD73 KO increased efficacy of TMZ ADO production [44]
Glioblastoma in vitro CD73 KO reversed the MDR phenotype A3R [45]

Leukemia in vitro CD73 KO restored TRAIL sensitivity Independent of CD73enzymatic activity [46]

Breast cancer in vivo Anti-CD73 mab therapy enhanced efficacy of
anti-ErbB2 mAb

Association of CD73 expression with
TGF-β, EMT and HIF-1 [47]

Ovarian cancer
in vitro and in vivo

Anti-CD73 mab therapy enhanced
docetaxel response Reverse the immunosuppression [48]

Breast cancer in vivo CD73 inhibitor therapy enhanced efficacy
of doxorubicin

Activation of immune response mediated
by A2AR [49]

Table 2. In vitro and in vivo studies of pro and anti-tumor activities of ADO reported in the literature.

Model Main Result Mechanism

P1R antagonism
Breast cancer in vitro Inhibition of A1R induced apoptosis Upregulation of p53 and caspases [50]

Colon carcinoma in vitro Inhibition of A2BR suppressed
tumor growth A2BR [51]

Prostate cancer in vitro Inhibition of A2BR suppressed
tumor growth A2BR [52,53]

Oral squamous cell carcinoma
in vitro

Inhibition of A2BR suppressed
tumor growth A2BR [54]

Melanoma in vivo Activation of P1R inhibited
melanoma growth Enhance immune killing of tumors [55]

HNSCC in vivo Inhibition of A2AR suppressed
tumor growth

Reduced Tregs population and enhanced
the anti-tumor response of CD8+ T cells [56]

Lung adenocarcinoma in vivo Inhibition of A2AR suppressed
tumor growth

Prevented negative signaling in T cells and
inhibited angiogenesis [57]

Melanoma in vivo Inhibition of A2AR suppressed
tumor growth NK activation [58]
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Table 2. Cont.

Model Main Result Mechanism

Melanoma in vivo Inhibition of A2BR suppressed
tumor growth

Reduced Tregs population and increased in
CD4+ and CD8+ T cells [59]

P1R agonism

Leukemia in vitro Activation of A3R induced cell cycle arrest
and apoptosis

Modulation of Wnt, β-catenin, GSK-β and
AKT [60]

Bladder cancer in vitro Activation of A3R induced cell cycle arrest
and apoptosis ERK and JNK activation [61]

Cancer cell lines Activation of A3R induced cell cycle arrest
and apoptosis

Downregulation of CDK4, cyclin D1 and
upregulation of p53 [62]

Ovarian cancer in vitro Activation of A3R reduced cell viability and
induced cell cycle arrest

Downregulation of Cyclin D1 and CDK4
[63]

Renal cancer in vitro Activation of A3R induced apoptosis AMID upregulation [64]
Glioblastoma in vitro Activation of A3R induced cell death ERK and AKT downregulation [62]
Lung cancer in vitro Activation of A3R induced cell death Mediated by caspases upregulation [65]

Breast cancer in vivo Activation of A3R inhibited
tumor proliferation Not reported [66]

CD73 inhibition

Glioblastoma in vitro and in vivo Knockdown of CD73 decreased
glioma growth Stimulation of AKT/NF-kB pathways [44]

CD73 overexpression
Medulloblastoma

in vitro and in vivo Reduced proliferation and vascularization Mediated by A1R [67]

Table 3. In vitro and in vivo studies of the ADO role in tumor migration, invasiveness, and angiogenesis
as reported in the literature.

Model Main Result Mechanism

P1R antagonism

Melanoma in vitro Reduced angiogenesis A2BR blockade impairs IL-8 production,
whereas blocking A3R decreases VEGF [68]

Breast cancer and melanoma
in vivo A2AR blockade reduced metastasis Enhanced NK cell maturation and

cytotoxicity [69]
P1R agonism

Breast cancer in vitro Activation of A3R induced migration Not reported [70]

Colon cancer in vitro Enhanced migration
A2BR and A3R activation and regulation

HIF-1alpha/VEGF/IL-8 via ERK1/2, p38, and
AKT [71]

CD73 inhibition
Ovarian Carcinoma in vitro CD73 inhibitor blocked migration Not reported [72]

Glioblastoma in vitro CD73 KO decreased migration and invasion Altered MMP-2 and Vimentin
expression [44]

Breast cancer in vitro Anti-CD73 mab therapy inhibited
migration, invasion and adhesion EGFR and IL-8 [73]

Breast cancer in vivo Anti-CD73 mab therapy decreased
lung metastases

Activation of NK cells, CD8+ T and IFNγ

by A2BR [74,75]

Melanoma in vitro
and in vivo

CD73 inhibitor decreased adherence of cells
and enhanced migration and invasion Via P1R [76]

Breast cancer in vitro
and in vivo

Anti-CD73 mab therapy inhibited migration
metastasis in vivo CD73 expression promoted autophagy [77]

Hepatocellular cancer in vitro and
in vivo

CD73 KO inhibited migration, invasion
and metastasis

A2AR activates Rap1, P110β, and PIP3
production by AKT [78]

Glioblastoma in vivo CD73 KO inhibited angiogenesis Not reported [79]
CD73 overexpression

Cervical cancer in vitro Promoted migration; and high
concentration inhibited migration. Upregulation of EGFR, VEGF, and AKT [80]
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4. ADO in the Immune System

It has been reported that ATP, ADP, and ADO play a key role in modulating immune responses [14].
In normal conditions, ATP is found mostly in the cytoplasm at the concentration of 3 to 10 mM, whereas in
the extracellular compartment, ATP levels are low, ranging from 1 to 10nM. Extracellular concentrations
of ATP, as well as those of other nucleotides, may increase in response to different stimuli or conditions,
such as cell lysis, hypoxia, or inflammation [30]. High concentrations of ATP in extracellular fluids
can be interpreted as an indicator of tissue damage, which can trigger an inflammatory response
characterized by the secretion of pro-inflammatory cytokines [81]. On the other hand, ADO, which
is released by tumor cells or formed by hydrolysis of ATP, generally acts contrary to extracellular
ATP [82]. ADO concentrations in homeostatic situations range from 10 to 200nM, whereas in stress
situations, ADO levels may be as high as 10 to 100µM [13]. Increased extracellular ADO concentrations
occur in situations of ischemia, hypoxia, epithelial-to-mesenchymal transition, cytotoxic stress, or
trauma [83]. ADO mediates immunosuppressive responses for the protection of tissues adjacent to
the excessive inflammation against attacks by defense cells [84]. At such sites, immune cells express
P1 receptors and ectonucleotidases [14]. These opposite functions of ATP/ADO in the control of the
immune response are illustrated in Figure 2.
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Figure 2. The opposite effects of ATP (pro-inflammatory) and ADO (anti-inflammatory) on immune
cells (T cells, NK cells, and macrophages). In (A), ATP in extracellular fluids can be considered
as a damage-associated molecular pattern (DAMP), which can trigger an inflammatory response
characterized by proliferation, cytotoxicity, and the secretion of pro-inflammatory cytokines, such
as interleukin-2 (IL-2), interferon-γ (INF-γ), and interleukin-β (IL-1β) [81]. In (B), ADO mediates
immunosuppressive responses for the protection of tissues adjacent to inflammation from attacks by
immune cells. In this case, ADO induces secretion of anti-inflammatory cytokines, such IL-10, and
reduces secretion of pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), IL-12, and
IL-2 [42,85–88].

In human peripheral blood, CD73 is expressed on approximately 90% of monocytes, 50% of CD8+

T cells, 10% of CD4+ T cells, 75% of Tregs, and 2% to 5% of NK cells. While in mice, CD73 is expressed
on approximately 90% of monocytes, 30% of CD8+ T cells, 10% of CD4+ T cells, 1% to 5% of Tregs, and
50% of NK cells [11]. Thus, the distinct CD73 expression profiles between human and murine immune
cells may lead to distinct cellular responses. Therefore, data obtained from preclinical models should
be carefully considered before making plans for the therapeutic use of CD73 inhibitors.



Int. J. Mol. Sci. 2019, 20, 5698 7 of 23

4.1. ADO in Macrophages

The mononuclear phagocytic system is among the major targets of ADO, and phagocytic cells are
highly susceptible to ADO effects [89]. Macrophages express all subtypes of ADO receptors, although
A2AR and A2BR are expressed at higher levels compared to A1R and A3R [88].

Macrophages are classified as M1, which are classically activated, and M2, which mediate
anti-inflammatory functions [89–91], as shown in Figure 3A.
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Figure 3. Effects of extracellular ADO on subsets of macrophages. In (A), differentiation of M1 and
M2 and their characteristics is shown, including functions they mediate. In (B), the activation of
the P1Rs on macrophages suppresses the M1 phenotype [88]. Activation of A2AR and A2BR inhibits
production of interleukin-12 (IL-12) [92], interferon-γ (IFN-γ) [93], macrophage inflammatory protein-1
(MIP-1α) [94], tumor necrosis factor-α (TNF-α) [95], and nitric oxide (NO) [96] and induces IL-10 [96]
and vascular endothelial growth factor (VEGF) production (left side). In contrast, suppression of CD73
activity enhances the M1 phenotype and blocks IL-4 and IL-10 production [87,97] (right side).
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P1R activation has been shown to suppress M1 activation and proinflammatory cytokines
release [88,92,94–96]. In contrast, its activation induces M2 activation [85,92,98] with IL-10 [96]
and vascular endothelial growth factor (VEGF) production [97]. ADO effects on macrophages are
summarized in Figure 3B.

Notably, blocking CD73 activity with a specific CD73 inhibitor (adenosine 5’-α,
β-methylene-diphosphate) enhanced the M1 phenotype, diminished IL-4 and IL-10 production,
and promoted pro-inflammatory cytokine release [87].

We demonstrated in M1 macrophages that ATPase activity was decreased, while M2-type
macrophages increased ATP/ADP/AMP hydrolysis through increased expression of CD39/CD73. This
has led to rapid ADO accumulation without alteration in the purinergic receptor expression [99]. ADO
generated by M2 macrophages is implicated in a decreased proliferation of CD4+ T lymphocytes [100].
We studied the purinergic signaling following co-incubation of primary mouse macrophages with
a mouse glioblastoma cell line. We found that A2AR and P2X7R activation was necessary for IL-10,
monocyte chemoattractant protein-1 (MCP-1), and IL-6 release by macrophages after interaction with
glioblastoma. The related cytokines modulated conversion of macrophages to the M2-phenotype [101]
and decreased the activity of ectonucleotidases [102]. In ovarian cancer, tumor cells use CD39/CD73
enzymes to control macrophage migration [100]. A2AR stimulation has direct myelosuppressive effects
that indirectly contribute to suppression of T cells and NK cells in primary and metastatic melanoma
microenvironments, indicating that the blocking of the A2AR has the potential to enhance immune
killing of tumors [103,104].

Future studies should focus on the potential of blocking CD73/P1Rs to control the inflammatory
microenvironment, macrophage phenotypes, and pro-tumor activities in cancer. Blocking ADO
production may favor M1 (antitumor)-type polarization and may inhibit M2-type polarization. Only
limited data exist on strategies that could control macrophage polarization and tumor progression.

4.2. ADO in Lymphocytes

4.2.1. CD4+ T Cells and NK

T cells can be activated as a result of antigen presentation by antigen-presenting cells (APCs). As a
result, CD4+ T cells differentiate into T helper 1 (Th1) cells or T helper 2 (Th2) cells.

Human T lymphocytes were shown to express A1R, A2AR, A2BR, and A3R at different levels.
A2AR were predominantly expressed and further upregulated upon stimulation [105]. Extracellular
ADO inhibited T cell activation by APCs and modified T cell differentiation, cytokine production, and
proliferation (Figure 4).

ADO signaling via A2AR negatively regulated the production of type 1 cytokines and enhanced
the production of IL-10 [107–109] by cAMP/protein kinase A and caused Signal transducer
and activator of transcription 5 (STAT5) dephosphorylation, which resulted in reduced IL-2R
signaling in T cells [112] and inhibition of the nuclear factor kappa B (NF-kB) pathway [113]. This
suggested that adenosinergic signaling via A2AR antagonism may be a promising target for activating
anti-cancer immune responses. In addition, A2BR controls lymphocyte migration to the lymph nodes in
mice, which facilitates the encounter of naive T cells with antigen presenting cells (APC) [114]. In this
context, under activating conditions, human lymphocytes up-regulated A3 receptors [115], probably
exerting protective effects against an immune attack.
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Figure 4. The cellular effects of extracellular ADO in the regulation of lymphocyte functions. After
A2AR stimulation, regulatory T cells (Tregs) increased proliferation and expression of CTLA-4, CD39,
and CD73, and inhibited CD8+ T cell proliferation [106]. CD4+ T cells decreased the production of IL-2,
TNFα, IL-6, and IFNγ, and enhanced the production of IL-10 [107–109]. In NK cells, ADO suppresses
the production of IL-2, TNF-α, IFN-γ, and granulocyte macrophage colony-stimulating factor (GM-CSF)
and blocks their cytolytic activity [75]. In CD8+ T cells, ADO suppresses the production of IL-2 and
IFN-γ and blocks their cytolytic activity [110,111].

A1R and A2R have the potential to regulate NK cell activity [116]. Human naive NK cells do not
express significant levels of CD73 [117], but stimulated NK cells increased the expressions of A2AR,
P2X7R, CD38, CD39, ENPP1, CD73, PANX1, and ENT1, and decreased ADA expression, suggesting that
ADO is generated by canonical and non-canonical pathways after cellular activation [118]. The ADO
effects on NK are presented in Figure 4. Mechanisms involve adenylyl cyclase, increased production
of cAMP, and activation of PKA [75]. However, ADO also enhanced effector functions of NK cells in
combination with IFN-alpha via A3R [119]. In addition, NK cells acted as regulatory cells, decreasing
CD4+ T cell proliferation through ADO production via the ectoenzyme network, with a pivotal role for
CD38 [120].

ADO suppressed metabolism and protein synthesis in NK cells, inhibiting oxidative
phosphorylation and glycolysis [117]. Tumors utilize this strategy via the production of ADO
to inhibit cytotoxic activity to NK cells and escape from the host immune system [121]. One strategy to
circumvent NK cell suppression by the adenosinergic pathway would be to target A3R and/or A2AR
because data show that A3R agonists and A2AR antagonists activate NK cells and further improve
their anti-tumor effects in a melanoma mouse model in vivo [122,123].

4.2.2. T Regulatory Cells

Tregs (CD4+ Foxp3+ regulatory T cells) play a key role in maintaining the control immune
responses in human health and disease. Treg co-express CD39/CD73 on the surface and generate
extracellular ADO, contributing to immunosuppressive activities [124]. Recently, it has been shown
that lymphocytes can also generate ADO in a non-canonical way through ectoenzymes CD38 (an
NAD+ nucleosidase), NPP1, and CD73 [125].

The ADO effects on Treg are summarized in Figure 4. ADO mediated the suppression of Tregs
by PGE2 receptors expressed on T cells, leading to the upregulation of adenylate cyclase and cAMP
activities [126]. Tumors use the adenosinergic pathway by increasing ADO production to promote
Treg activity, aiming at an immunosuppressive microenvironment to escape immune surveillance and
promote cancer growth [127].
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4.2.3. CD8+ T Cells

Tumors utilize ADO to suppress CD8+ T cell functions and to avoid tumor rejection. Otha et
al. reported that in A2AR−/− tumor-bearing mice, tumor-infiltrating CD8+ T cells mediated tumor
rejection [128]. Consistent with this, stimulation of cytotoxic T lymphocytes with a P1R agonist
decreased cell proliferation, IFN-γ production, and cytotoxicity [110,111]. After A2AR stimulation,
CD8+ T cells produced higher levels of cAMP and decreased IFN-γ and IL-2 expression, decreasing
maturation of CD8+ T cells [110]. These data suggest that A2AR-antagonists should be considered in
therapeutic protocols, since this approach may improve antitumor immunity and control tumor growth.

5. ADO in Exosomes

Exosomes are emerging as critical but poorly understood components of a complex communication
network between the tumor and host cells. Exosomes are virus-sized extracellular vesicles deriving
from the endocytic compartment of parent cells. They are secreted by normal and malignant cells and
are present in all body fluids. Such molecules can serve as biomarkers of tumor progression and the
immune response, or as predictors of response to therapies [129,130].

Exosomes derived from cancer cells were shown to carry CD39 and CD73 on their surface and
exhibit potent ATP-AMP phosphohydrolytic activities. Multiple myeloma cell-derived exosomes
release exosomes that are equipped with CD39/CD73 and with the enzymes that generate ADO via
the non-canonical pathway (NAD+ /CD38/CD203a(PC-1)/CD73), and thus are able to generate ADO
utilizing both the canonical and non-canonical pathways [131]. ADO produced by exosomes was shown
to inhibit T- cell activation through A2A R [132]. The exosome-mediated increase of ADO production is
not only driven by direct production of ADO by exosomes but also indirectly by inducing/upregulating
the expression of ADO pathway components on recipient cells. Prostate cancer-derived exosomes
induced CD73 expression on dendritic cells, which led to an inhibition of tumor necrosis factor-alpha
(TNFα) and IL-12 production by T lymphocytes in an ATP-dependent manner [133]. In addition,
exosomes released from head and neck squamous cell carcinoma cells expressed CD39 and CD73 and
increased the ADO production in Treg cells [134]. Treg-derived exosomes were also shown to carry
biologically active CD73, and their production of ADO was considered to play a regulatory role for
this cell type, stimulating immunosuppressive functions [135]. Thus, tumor-derived exosomes are
emerging as a new mechanism of cancer-driver immune suppression that involves the ADO pathway.

6. ADO Pathway in Cancer Therapy

6.1. Targeting ADO Receptors in Cancer Cells

6.1.1. A1R

The potential of targeting A1R for cancer treatment was mainly explored in breast cancer. In this
context, estradiol, which has a critical role in breast cancer growth, increased A1R expression in
breast cancer cell lines. Transfection with anti-A1R siRNA decreased cell proliferation, indicating
that targeting the A1R receptor is beneficial in hormone-dependent breast cancer [136]. Furthermore,
antagonism of A1R induced apoptosis of breast cancer cells by the upregulation of p53, caspase 3, 8, and
9 expression [50]. A1R antagonism also suppressed renal cell carcinoma growth/migration, induced
apoptosis and cell cycle arrest in vitro, and reduced tumor volume in a nude mice subcutaneous
model [137]. In addition, our data indicate that A1R is responsible for ADO-induced stimulation of
gliomas proliferation in vitro [44]. However, the potential of A1R blockade still needs to be further
explored, mainly in vivo in immunocompetent animal models, to prove its potential for future therapy
in humans.
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6.1.2. A2AR

Antagonism of A2AR is currently the most widely used pre-clinical approach to cancer therapy.
The A2AR blockade impaired lung adenocarcinoma tumor cells’ growth in vitro and inhibited human
tumor xenograft growth in mice [57]. The A2AR blockade also protected against tumor metastasis and
enhanced NK cell functions in an in vivo melanoma model [69]. Inhibition of serine/threonine-protein
kinase B-Raf (BRAF) and mitogen-activated protein kinase (MEK) in combination with A2AR provided
a significant reduction of tumor progression and metastasis formation in a melanoma mouse model [58].
The A2AR-deficient mice showed an increased intratumoral CD8+ T cell frequency and number [138] and
had increased frequencies of tumor-associated NK cells in melanoma models [122]. Pharmacological
targeting of A2AR increased CAR T cell efficacy [139]. Pharmacological blockade of A2AR by selective
antagonists decreased tumor growth in a head and neck squamous cell carcinoma mouse model by
reducing the population of Tregs inside the tumor, spleen, blood, and lymph node, and enhanced
the anti-tumor response of CD8+ T cells by increasing the release of IFN-γ [56]. Dual blockade of
programmed cell death protein 1 (PD-1) and A2AR significantly enhanced the expression of IFN-γ and
granzyme B by tumor-infiltrating CD8+ T cells and, accordingly, increased growth inhibition and the
survival of mice in a breast cancer model [140] and increased the efficacy of a dendritic cell-based
cancer vaccine by increasing the production of IFN-γ and reducing IL-10 [141]. This suggests the
strong association between antitumor effects of the A2AR antagonist and the immune system, and the
potential of its blockade for the restoration of effective anti-tumor immune responses.

6.1.3. A2BR

Selective antagonism of A2BR was shown to inhibit cell growth in prostate cancer cell lines [53].
Antagonizing A2BR increased colorectal cancer cell death in vitro via enhanced mitochondrial oxidative
phosphorylation and reactive oxygen species (ROS) production [142]. A2BR antagonism in breast
cancer also induced cell cycle arrest and apoptosis through the cyclin-, Bax/Bcl-2, and extracellular
receptor kinase (ERK1/2) pathways [63]. In vivo, A2BR blockade also reversed immune suppression in
the tumor microenvironment by reducing levels of IL-10, MCP-1, and MDSCs in melanoma lesions and
increasing the frequency of CD8+ T lymphocytes and NK cells, and increasing the levels of Th1-like
cytokines [42]. Enhancing anti-tumor immunity by inhibiting differentiation to Treg, which resulted in
a suppression of metastasis in a melanoma mouse model in vivo, is another reported result of A2BR
antagonism [59]. Cekic et al. reported that targeting A2BR the reduced growth of bladder and breast
tumors in syngeneic mice, reduced metastases of breast cancer cells, increased tumor levels of IFN-γ,
and enhanced dendritic cell activation, leading to an improved anti-tumor response [143].

6.1.4. A3R

As mentioned above, A3R is involved in control of tumor progression. The potential of A3R
activation for cancer treatment has been explored. A3R mediated apoptosis in human bladder cancer
cell lines via protein kinase C in vitro [144]. It also decreased cell growth and cell motility in breast
cancer cell lines [70,145]. In addition, agonism of A3R enhanced TNF-related apoptosis-inducing
ligand-mediated apoptosis (TRAIL) in thyroid carcinoma cells via NF-kB activation [146], induced cell
death in glioblastoma by increasing Ca2+ and ROS, and downregulated ERK and AKT [61]. In vivo,
agonism of the A3R reduced tumor growth and breast tumor-derived bone metastasis in a rat preclinical
model [66], colon carcinoma [147].

6.2. CD73

Considering the tumor-promoting effects of ADO in the TME, the enzymatic activity of CD73
appears to be a promising target for the treatment of cancer. Three approaches of CD73 inhibition have
been described: Neutralizing antibodies, siRNA, or pharmacologic inhibition.
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Recently, we demonstrated the potential for CD73 blockade using either specific siRNA sequences
or a pharmacological inhibitor in controlling glioblastoma progression in vitro and in an orthotopic
immunocompetent in vivo model using Wistar rats. We showed that inhibition of CD73 with both
technologies decreases the amount of ADO in the cerebrospinal fluid and correlates with decreased
tumor volume and increased lymphocytic infiltrate [44]. Similar findings were reported in a breast
cancer immunocompetent mice model [148]. In breast cancer, anti-CD73 monoclonal antibody (mAb)
inhibited metastasis formation [149]. This strategy may also be combined with standard chemotherapy,
since in vivo evidence in a mouse ovarian carcinoma model indicates that combining docetaxel with
anti-CD73 antibody therapy is more effective than using both treatments individually [48]. Studies
demonstrated synergism between anti-CD73 and anti-PD-1 or anti-cytotoxic T-lymphocyte-associated
protein 4 (CTLA-4) antibodies in pre-clinical models. A selective inhibitor of CD73 enhanced
anti-CTLA4 mAb efficiency by improving the anti-tumor immune response, and reduced melanoma
growth in vivo [150]. However, in order to translate these technologies from the bench to the bedside,
it is necessary to think about how to deliver these drugs to the tumor and avoid adverse effects.
In this context, the strategy that is under consideration involves the application of nanotechnology.
Zhi et al. showed that intravenous administration of CD73-siRNA-loaded nanoparticles led to reduced
tumor growth and metastasis formation, with improved mice survival in a breast cancer model [151].
Jadidi-Niaragh et al. showed that CD73-siRNA encapsulated into chitosan-lactate nanoparticles
suppressed CD73 expression in breast cancer cell lines and protected the oligonucleotides against
serum and heparin degradation, suggesting that this system may increase siRNA performance when
administered to patients by increasing the half-life of the sequences [152]. We demonstrated the
potential of a cationic nanoemulsion delivering an siRNA anti-CD73 via the nasal for glioblastoma
treatment in vitro and in vivo [79]. Nevertheless, the strategy of blocking CD73 requires a carefully
strategy, because despite its prominent role, CD73 is not the only enzyme capable of producing ADO in
the TME. Therefore, a strategy combining the blockade of CD73 enzymatic activity in combination with
ADO antagonists may be of interest and may potentiate the antitumor effect of a therapy targeting the
adenosinergic signaling pathway. In recent years, many small molecule drugs or antibodies targeting
the adenosinergic pathway have undergone or are undergoing clinical trials. Their targets include
CD73, A2AR, and A2BR. These findings are summarized in Table 4.

Table 4. Clinical trials a.

NCT Number Phase Year Type of Cancer Drug Name Target

NCT00879775 Phase 2 2009 Cancer Caffeine P1R antagonist
NCT024031093 Phase 1/2 2015 Non-small Cell Lung Cancer (NSCLC) PBF-509 A2AR antagonist
NCT02655822 Phase 1 2016 Advanced Cancers CPI-444 A2AR antagonist
NCT03274479 Phase 1 2018 Locally Advanced or Metastatic NSCLC PBF-1129 A2BR antagonist
NCT00790218 Phase 1/2 2009 Hepatocellular Carcinoma CF102 A3R antagonist
NCT01987999 Phase 2 2013 Prostate Cancer Acetogenins ATP inhibitor
NCT02503774 Phase 1 2015 Solid Tumors MEDI9447 CD73
NCT03267589 Phase 2 2017 Relapsed Ovarian Cancer MEDI9447 CD73
NCT03616886 Phase 1/2 2018 Triple Negative Breast Cancer MEDI9447 CD73
NCT03549000 Phase 1 2018 Advanced Malignancies NZV930 CD73
NCT03381274 Phase 1/2 2018 NSCLC MEDI9447 CD73
NCT03454451 Phase 1 2018 Cancer CPI-006 CD73
NCT03835949 Phase 1 2019 Advanced or Metastatic Cancer TJ004309 CD73
NCT03875573 Phase 2 2019 Luminal B Breast Cancer oleclumab CD73

a A current list of clinical trials investigating the role of targeting purinergic signaling in cancer.

6.3. CD38

As cited above, ADO can also be generated by the non-canonical pathway. This pathway
starts with CD38. Therefore, inhibition of the adenosinergic ectoenzyme function by the targeting
of CD38 may lead to lower ADO levels in the TME. The first class of CD38-targeting antibody,
daratumumab, is currently approved as a single agent and in combination with standards of care
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for the treatment of multiple myeloma [153]. Their antitumor effect is related to immunoregulatory
activities. Daratumumab reduced the frequency of regulatory B cells, Tregs, and MDSCs, and enhanced
helper and cytotoxic T cells [154].

6.4. Combined Therapies

6.4.1. Radiotherapy

Radiotherapy (RT)-induced damage leads to complex interactions between immune cells and
tumors. RT has a dual effect, as it may activate innate and adaptive immune responses or
increase immunosuppression by killing immune and tumor cells, inducing the accumulation of
immunoregulatory mediators and cell types. Various observations from preclinical and clinical studies
suggest that targeting radiation-induced immune deviation may offer promising opportunities for
improvements of response to radiotherapy. In this context, the CD73-ADO axis system is currently
seen as a major target [155]. However, the question about the effects of combined radiotherapy and
anti-CD73/ADO antagonism is still open and awaits further studies.

6.4.2. Chemotherapy

As shown in Table 1, the CD73-ADO axis plays a role in cancer chemoresistance. It has been
reported that the blockade of CD73 and ADOR enhances the effect of chemotherapy [43,45,48,49]. This
indicates that inhibition of the adenosinergic pathway contributes to the enhancement of chemotherapy.
It has also been elucidated that combination therapy with anti-CD73 antibodies enhances the response
in vitro to vincristine [45], temozolomide [44], docetaxel [48], doxorubicin [49], TRAIL [46], and
anti-human epidermal growth factor receptor 2 (HER2) antibody [47]. Moreover, a higher efficacy has
been reported with A2BR antagonists [42]. The potential mechanisms associated with ADO-mediated
chemoresistance are dependent on P1R activation and expression and the activity of multidrug
resistance-associated protein (MRP1). However, additional in vivo studies are necessary to elucidate
the real potential of the anti-CD73/ADOR antagonism to improve chemotherapy responses.

6.4.3. Immunotherapies

Checkpoint receptor blockade can lead to restoration of anti-cancer responses. However, not
all patients respond to treatment, highlighting the need for further research to better understand
tumor evasion mechanisms and to identify other targets that can effectively remove ‘brakes’ imposed
on the immune response by the tumor. As described here, ADO is known to act through ADOR
to negatively regulate T cells, macrophages, and NK cells responsible for anti-tumor responses
in the TME, and thus targeting this pathway may prove to be a significant immunotherapeutic
strategy. First, PD-1 blockade upregulates the expression of A2AR, making these cells more susceptible
to ADO-mediated immunosuppression [140]. In this context, preclinical studies demonstrated a
synergism between anti-CD73 and anti-PD-1 mAbs [156] or CTL-4 mAbs [150]. Synergism has also
been observed between anti-PD-1 and A2AR antagonists [140,157], suggesting that combining CD73
and ADO as a therapeutic target might overcome immune system suppression in cancer and improve
immunotherapeutic responses.

7. Conclusions

The CD73-ADO axis, among the currently investigated anti-tumor strategies, has gained much
attention as a novel immune checkpoint for cancer therapy. Numerous preclinical studies showed
that ADO mediates pro-tumor as well as immunosuppressive activities. The potential of CD73/ADOR
inhibition for controlling tumor growth and metastasis formation and activation of the immune system
increases interest in targeting the ADO pathway for cancer treatment. Several clinical trials involving
antibodies/inhibitors targeting CD73 and antagonists/agonists targeting ADOR in cancer patients are
currently ongoing.
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Abbreviations

ADA adenosine deaminase
ADO adenosine
AdoK Adenosine kinase
ADP adenosine diphosphate
ADPR ADP-ribose
ALPs alkaline phosphatases
AMID factor-homologous mitochondrion-associated inducer of death
AMP adenosine monophosphate
APCs antigen presenting cells
ATP Adenosine 5’-triphosphate
cAMP intracellular cyclic AMP
CD39 E-NTPDase1
CD73 ecto-5’-nucleotidase
CD73 inhibitor adenosine 5’-α,β-methylene-diphosphate
CNTs concentrative nucleoside transporters
CTLA-4 anti- cytotoxic T-lymphocyte-associated protein 4
DCs dendritic cells
ECM extracellular matrix
EGF Epidermal growth factor
EGFR Epidermal growth factor receptor
EMT Epithelial–mesenchymal transition
E-NPP ecto-pyrophosphate-phosphodiesterases
ENT nucleoside equilibrative transporters
E-NTPDases ecto-nucleoside triphosphate-diphosphohydrolases
ErbB2 Receptor Tyrosine Kinase 2
ERK extracellular signal-regulated kinase
GM-CSF Granulocyte-macrophage colony-stimulating factor
HIF-1alpha Hypoxia-inducible factor 1-alpha
HNSCC Head and neck squamous cell carcinoma
IFNγ Interferon gamma
IL-10 Interleukin-10
IL-13 Interleukin 13
IL-2 Interleukin 2
IL-4 Interleukin 4
IL-6 Interleukin-6
IL-8 Interleukin 8
JNK c-Jun N-terminal kinase
MCP-1 monocyte chemoattractant protein-1
MDSCs myeloid-derived suppressor cells
MIP-α Human macrophage inflammatory protein alpha
NAD+ adenine dinucleotide
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NK Natural Killer
NO nitric oxide
NSCLC Non-small Cell Lung Cancer
PD-1 programmed cell death protein 1
PIP3 Phosphatidylinositol (3,4,5)-trisphosphate
Rap1 Ras-proximate-1
ROS reactive oxygen species
siRNA Small interfering RNA
TGF-β Transforming growth factor beta
Th1 T helper 1 cells
Th2 helper 2 cells
TME tumor microenvironment
TMZ Temozolomide
TNF-α tumor necrosis factor-alpha
TRAIL TNF-related apoptosis-inducing ligand mediated apoptosis
Treg regulatory T cell
UDP uridine diphosphate
UTP Uridine-5’-triphosphate
VEGF Endothelial Growth Factor
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