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SUMMARY

We double-tagged Xist (inactivated X chromosome-specific transcript), a prototype long non-coding

RNA pivotal for X chromosome inactivation (XCI), using the programmable RNA sequence binding

domain of Pumilio protein, one tag for live-cell imaging and the other replacing A-repeat (a critical

domain of Xist) to generate ‘‘DA mutant’’ and to tether effector proteins for dissecting Xist function-

ality. Based on the observation in live cells that the induced XCI in undifferentiated embryonic stem

(ES) cells is counteracted by the intrinsic X chromosome reactivation (XCR), we identified Kat8 and

Msl2, homologs of Drosophila dosage compensation proteins, as players involved in mammalian

XCR. Furthermore, live-cell imaging revealed the obviously undersized DA Xist cloud signals, clari-

fying an issue regarding the previous RNA fluorescence in situ hybridization results. Tethering candi-

date proteins onto the DA mutant reveals the significant roles of Ythdc1, Ezh2, and SPOC (Spen) in

Xist-mediated gene silencing and the significant role of Ezh2 in Xist RNA spreading.

INTRODUCTION

In mammalian female somatic cells, one of the two X chromosomes is silenced to compensate the X-linked

gene dosage between males and females. This phenomenon is known as X chromosome inactivation (XCI)

(Payer and Lee, 2008). Inactivated X chromosome-specific transcript (Xist) plays an essential role in XCI

(Payer and Lee, 2008). Upon the initiation of XCI, Xist transcription is up-regulated from the future inactive

X chromosome (Xi), and the RNA transcripts spread out to paint the entire chromosome territory to estab-

lish chromosome-wide gene silencing. Coating of the Xi by Xist transcripts produces an interesting Xist

‘‘cloud’’ signal in RNA fluorescence in situ hybridization (FISH) (Clemson et al., 1996). To date, labeling

of Xist RNA in the cellular context is nearly exclusively achieved by RNA FISH. Visualizing the spatial distri-

bution and dynamics of Xist RNA in live cells may provide important insights into the functional mechanism

of Xist.

However, although various approaches have been proposed and developed (Urbanek et al., 2014), live-cell

imaging of RNA remains technically challenging. A previous study reported that based on the interaction

between an RNAmotif (MS2motif) from theMS2 phage and theMS2 RNA-binding protein (MCP), Xist RNA

fused to a tandem array of MS2 motifs can be visualized by GFP-tagged MCP (MCP-GFP) (Ng et al., 2011).

An inducible Xist cDNA transgene fused with 24 MS2 motifs at its 30 end was constructed, and a transgenic

cell line carrying 7 copies of the Xist cDNA transgene on chromosome 7 was established for live-cell imag-

ing. Possibly due to technical limitations, the report did not provide any time-lapse video file to illustrate

the RNA’s behavior in live cells.
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RESULTS

The Experimental System

In this study, we took advantage of programmable sequence-specific RNA binding by the Pumilio homol-

ogy domain (PUF) to visualize Xist RNA in live cells (Wang et al., 2002; Cheong and Hall, 2006). A total of

25 copies of PUF binding sites (PBSb) (Cheng et al., 2016) were fused to the 50 end of a full-length Xist trans-

gene. An inducible Xist cell line was then generated from Ainv15 cells (Kyba et al., 2002), a male mouse

embryonic stem (ES) cell line carrying an engineered cassette upstream of the X-linked Hprt gene

(Figure 1A). Through Cre-mediated gene targeting, the transgene was inserted downstream of the tetra-

cycline response element (TRE) of Ainv15 cells, restoring neomycin resistance (Figure 1A). Moreover, a red
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Figure 1. The Experimental System and the Inducible Xist Cell Lines

(A) Schemes of the iXist cell line and the inducible Xist allele. TRE, tetracycline response element; DNeo, the coding

region of neomycin resistance gene without the start codon; pPGK-ATG: PGK promoter and a start codon.

(B) Diagrams of the live-cell imaging system and the different engineered inducible Xist alleles used in this study. PUF,

Pumilio homology domain; PBS: PUF binding site.

(C) RNA FISH to validate live-cell labeling of Xist. The RNA FISH probe was Cy3-labeled (red). DNA was counterstained

with DAPI (blue). The cell was imaged in high resolution by Airyscan Super-resolution Confocal Microscope (Carl Zeiss).

The images shown are from a single Z-section. Note: although the emission spectrums of Cy3 and tdTomato are

overlapping, the Xist RNA FISH signals were clearly detected. This is possibly due to the RNA FISH signal intensity and/or

Xist-mediated gene silencing on the tdTomato reporter. Scale bar: 5 mm.

See also Figure S1.
fluorescent protein (tdTomato) was included as a reporter gene (Figure 1A). The resulting cell line is a male

mouse ES cell line carrying an inducible, single-copy and full-length Xist transgene on its X chromosome

(Figure 1A). Both neomycin resistance and tdTomato were used as reporters to assess the functionality

of the inducible Xist transgene. Ectopic expression of PUFb-GFP fusion protein resulted in a cell line

(GFP-iXist) that permits the spatiotemporal analysis of Xist RNA distribution and dynamics in live cells

(Figure 1B).

To take advantage of the Pumilio system, which provides multiple PUFs and PBSs, we engineered an induc-

ible Xist ES cell line in which the A-repeat of Xist was replaced by 10 copies of PBSa (Cheng et al., 2016)

(GFP-PBSa-iXist) (Figure 1B). A-repeat is a conserved region of Xist, which is functionally important

for Xist-mediated gene silencing (Wutz et al., 2002). GFP-PBSa-iXist can be regarded as a ‘‘DA mutant’’

of the inducible Xist transgene. Currently, a growing list of proteins are identified as proteins involved

in XCI, including enhancer of zeste homolog 2 (Ezh2), a critical member of the polycomb repressive

complex 2 (PRC2) (Plath et al., 2003; Cao et al., 2002); Spen (split end), a transcription repressor (McHugh

et al., 2015, Chu et al., 2015, Minajigi et al., 2015, Monfort et al., 2015, Moindrot et al., 2015); and YTH

domain-containing 1 (Ythdc1), a nuclear protein that recognizes N6-methyladenosine (m6A), binds directly

to the A-repeat region, and plays a role in XCI (Patil et al., 2016). These proteins can be fused to PUFa, which

helps to artificially tether individual candidate proteins back onto the DA mutant Xist transcripts as

‘‘effector’’ proteins (Figure 1B). This experimental system helps to further dissect the functionality of Xist
2 iScience 8, 1–14, October 26, 2018



and its binding proteins. Ectopic expression of PUFa-effector fusion proteins resulted in additional trans-

genic cell lines (Figure 1B).

We validated the live-cell labeling of Xist in the established transgenic cell lines. With a 24-hr doxycycline

(dox) treatment, GFP-labeled Xist clouds could be clearly detected in�70%–90% of nuclei in all established

cell lines (data not shown). Xist RNA FISH on fixed cells confirmed that the Xist signals labeled by GFP over-

lap with the RNA signal detected by the RNA FISH probe (Figure 1C). Since two PUFs are involved in this

study and they are highly homologous to each other, we then tested the binding specificity of a PUF with its

PBS. When PUFa-EGFP was expressed in a cell line carrying PBSb-Xist fusion, no Xist signals were detected

after a 24-hr dox treatment (Figure S1A). This result confirms that there is no cross-reactivity between PUFa

and PBSb. Furthermore, this result also helps to address the concern on the PBSa sites located within the

endogenous sequence of Xist. We analyzed the sequence of the Xist gene body, including introns, and

identified two PBSa sites and two antisense PBSa sites (Figure S1B). Meanwhile, no PBSb sites were iden-

tified (Figure S1B). It is a concern that the endogenous PBSa sites may interact with PUFa. It is also a prob-

ability in theory that the endogenous antisense PBSa sites may interact with the PBSa tag and in conse-

quence affect the secondary structure of Xist. We performed multiple experiments to address these

concerns. Here, the result that no Xist signals were observed in the induced cells overexpressing PUFa-

EGFP (Figure S1A) shows that the endogenous PBSa sites did not result in ‘‘unspecific’’ signals in live-

cell imaging.

The Difficulties of ‘‘Sunrise’’ in Undifferentiated ES Cells

With the established cell lines, we first examined the emergence and growth of Xist RNA signals upon dox

treatment (the ‘‘sunrise’’ process). Live-cell imaging was performed 1 hr after dox treatment, which allowed

us to monitor the sunrise process in most of the differentiating cells within the 2-hr time span of live-cell

imaging. Interestingly, the sunrise behavior was markedly different between differentiating and undifferen-

tiated ES cells. In differentiating cells, the Xist RNA signals emerged quickly (Figure 2A) and in a synchro-

nizedmanner (Video S1). Most Xist RNA signals first appeared as small puncta that then gradually grew into

�2-mm-large Xist RNA clouds within 60–90 min (Figures 2B and S2). In undifferentiated cells, the onset of

sunrise occurred later and was more heterogeneous (Figure 2A and Videos S2, S3, and S4). Some Xist RNA

puncta gradually developed into clouds, very much like the Xist RNA signals in differentiating cells (we call

this behavior ‘‘blossom’’). However, a large fraction of Xist RNA puncta never showed significant growth

within �60 min (Figure 2C) (we call this behavior ‘‘star’’). Even after a prolonged treatment with dox

(2 hr) before live cell imaging, a significant fraction of undifferentiated cells did not develop Xist RNA clouds

during the subsequent 2-hr time span of live-cell imaging (Videos S2, S3, and S4). In general, Xist RNA

growth in undifferentiated cells was significantly slower than in differentiating cells (Figures 2D and 2E).

The ‘‘Tug of War’’ between the Induced XCI and the Intrinsic XCR

To further study the special sunrise behaviors, we examined the effects of induced Xist expression on

X-linked genes. The induced Xist expression clearly repressed the transcription of X-linked genes in

both undifferentiated (Figure S3) and differentiating cells (Figure 3A). However, Xist-mediated gene

silencing is much weaker or inefficient in undifferentiated cells (Figure 3A). In the 6 X-linked genes tested,

the induced Xist expression levels are comparable between undifferentiated and differentiating cells. Hprt

showed a slightly higher expression level in differentiating cells than in undifferentiated cells, which can be

explained by the close head-to-head orientation of the Hprt promoter and the TRE (Figure 1A). The strong

transcriptional activity of TREmay cause hypermorphic expression of Hprt. The rest of the 4 X-linked genes

tested all showed significantly lower expression levels in differentiating cells (Figure 3A). Therefore, the dif-

ficulties of sunrise in undifferentiated cells are associated with weaker Xist-mediated silencing.

The inducible Xist transgene is X-linked. Therefore, inducible Xist expression causes cell death and growth

arrest due to Xist-mediated gene silencing along the single X chromosome in male cells. This ‘‘killing ef-

fect’’ of induced XCI can be used to assess the functionality of Xist-mediated gene silencing. Indeed,

dox treatment showed a stronger killing effect in differentiating cells, which is consistent with the more effi-

cient Xist-mediated gene silencing in differentiating cells (Figures 3B and 3C).

Moreover, it is known that the undifferentiated ES cells are maintained in culture in metastable pluripotent

states with a heterogeneous population of Nanog-high and Nanog-low cells (Chambers et al., 2007).

We observed that during the early hours of dox treatment, Xist clouds appear more frequently in
iScience 8, 1–14, October 26, 2018 3
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Figure 2. The Difficulties of ‘‘Sunrise’’ in Undifferentiated ES Cells

(A) Xist signals in live cells treated with dox for 2 hr.

(B and C) The emergence of Xist RNA signals in an (C) undifferentiated ES cell and a (B) differentiating ES cell. All the live-

cell imaging, unless explicitly mentioned, was carried out in a 2-hr time span with a time interval of 2 min. For direct

comparison between the two Xist signals, images are shown in a 66-min time span with a 6-min time interval. The time

point when a signal was first detected is defined as time zero for the signal. Maximum intensity z projections are shown.

Arrows point out the Xist clouds.

(D) The growth curves of Xist RNA signals. Measurements of Xist RNA signal size increment over time. The size (area) of a

signal when it was first detected is defined as ‘‘size one’’ for the signal. Xist RNA signals were analyzed in 20 cells randomly

selected from each sample. Data are shown as mean G SEM with a trend line.

(E) The growth curves of ‘‘star’’ and ‘‘blossom,’’ two behaviors of Xist RNA signal emergence in undifferentiated ES cells

upon doxycycline treatment.

See also Figure S2 and Videos S2, S3, and S4.
Nanog-low cells (Figures 3D and S4). Taken together, these results argue for the biological significance un-

derlying the difficulties of sunrise observed in undifferentiated cells.

It is well known that an undifferentiated ES cell is able to reprogram or dedifferentiate a somatic cell back to

pluripotency, if the two cells are fused (Ohhata and Wutz, 2013). During this process, the Xi is also reacti-

vated (Ohhata and Wutz, 2013). Therefore, a pluripotent mouse ES cell possesses a built-in capacity for

X chromosome reactivation (XCR). We speculated that the induced XCI status in undifferentiated iXist cells

is a balanced outcome of two counteracting forces, the induced XCI and the intrinsic XCR (Figure 3E). Thus,
4 iScience 8, 1–14, October 26, 2018
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Figure 3. The ‘‘Tug of War’’ between Induced XCI and Intrinsic XCR

(A) Quantitative RT-PCR results to show the Xist-mediated silencing effect on X-linked genes between undifferentiated

and differentiating cells. Doxycycline treatment was carried out for 24 hr. The results are shown in relative fold expression.

Normalization was performed using Actb and Gapdh. The expression level of each gene in undifferentiated cells is set

as 1. Error bars indicate SEM (n = 3). The statistical analysis used is Student’s t test. p Value was calculated between the

pair of datasets of each gene. *p < 0.05.

(B and C) (B) Doxycycline-induced cell death assay on iXist cells. Cells were cultured either as undifferentiated or as

differentiating ES cells. Doxycycline treatment was carried out for 4 days. (C) Cell survival rate for differentiating cells was

calculated by measuring the area stained by crystal violet staining. Cell survival rate for undifferentiated cells was

calculated by alkaline phosphatase-stained colony counts. Data are shown as mean G SEM of biological triplicate. The

statistical analysis used is Student’s t test. *p < 0.05.

(D) Immuno-RNA FISH to detect Nanog and Xist in undifferentiated iXist cells treated with dox for 3 hr. DNA was

counterstained with DAPI (blue). Cells were cultured in the conventional Lif-containing ES culture medium without 2i. The

nuclei in the image relevant for the discussion are labeled as #1–6. The RNA FISH probe was Cy3-labeled (red). White arrows

indicate the threeXist cloud signals detected in nuclei #3–5.Nanogwasdetectedby immunostaining (green). TheNanog-high

and Nanog-low cells were identified by ImageJ with a selected signal intensity threshold. Nuclei #1 and #2 are Nanog-high,

because the entire nucleus or a large part of it was recognized as a single ‘‘particle’’ (the yellow outline highlighting the

perimeter) above the selected signal intensity threshold. Nucleus #6 could be grouped into either Nanog-high cells or

undetermined cells depending on the subjectivity of the data analyzer. Nuclei #3–5 belong to Nanog-low cells.

(E) Thecounteracting forcesofXCIandXCRdetermine theX inactivationstatus inundifferentiated iXist cells upondox induction.

(F) The rate of Xist RNA signal disappearance upon doxycycline removal.

See also Figures S3–S5.
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we examined the ‘‘sunset’’ process (disappearance of Xist signals upon dox removal), which reflects XCR.

The results show that sunset proceeds at a faster rate in undifferentiated cells than in differentiating cells,

indicating higher activity of XCR in undifferentiated cells (Figure 3F). Here, one concern is that the Xist

clouds may dissipate more rapidly in fast dividing cells. To find out whether the faster sunset rate observed

in undifferentiated cells is related to a faster cell division rate, we examined the cell division rates of the two

samples during the 3-hr time window of the live-cell imaging experiment (Figure S5). Although undifferen-

tiated ES cells divide faster than differentiating cells under normal tissue culture conditions, the cell growth

rates may differ under the live-cell imaging experimental conditions. The cells (both undifferentiated and

differentiating cells) were trypsinized shortly before the experiments. Cell colony formation and feeder

cells were avoided for imaging purposes. Therefore, the trypsinized cells were directly attached to the

fibronectin-coated glass surface of the MatTec dish in low cell density without feeder cells. The live-cell

imaging experiments were then carried out within a 3-hr time window. Based on our measurements, the

undifferentiated cells and the differentiating cells showed nearly identical cell division rates under these

conditions (Figure S5). More importantly, limited amount of cell division was detected during the 3-hr

time window of live-cell imaging. Taken together, the result of the sunset experiment rules out the technical

concern that the difficulties of sunrise in undifferentiated cells are due to their insensitivity to dox treat-

ment. Most importantly, these results explain the heterogeneous, late onset and slow sunrise observed

in undifferentiated cells and confirm that the induced XCI status in undifferentiated cells is determined

by the two counteracting forces of XCI and XCR. Therefore, the established experimental system can be

used as a unique tool to study both XCI and XCR. Manipulating genes involved in either XCI or XCR can

tip the balance toward a predictable side.

The Roles of Histone Acetyltransferase Kat8 Protein Complex in XCR

Spen, a transcriptional repressor associated with histone deacetylase (HDAC) activities, was recently iden-

tified as a Xist-binding protein functionally important forXist-mediated gene silencing (McHugh et al., 2015,

Chu et al., 2015,Minajigi et al., 2015,Monfort et al., 2015,Moindrot et al., 2015). Therefore, we hypothesized

that histone acetyltransferases (HATs) may be involved in XCR. To test this, we selected a few candidate

HATs and their protein partners, which are expressed in undifferentiated ES cells (Figure S6). Short hairpin

RNA (shRNA)-mediated knockdown of lysine acetyltransferase 8 (Kat8) and its protein partner male-specific

lethal 2 (Msl2) significantly increased the killing effect of induced XCI in undifferentiated iXist cells (Figures

4A, 4B, and, S6). To rule out the off-targeting effect of shRNAs, we used a second shRNA against Kat8

and Msl2 and obtained similar results (Figure S7). A previous study showed that homozygous deletion of

Kat8 disrupts pluripotency, whereas the effect of heterozygous deletion was moderate and the mutant

animals were largely normal (Li et al., 2012). To confirm that Kat8 and Msl2 are directly involved in XCR,

we confirmed the shRNA knockdown of Kat8 and Msl2 (Figure S6) and showed that knocking down the

candidate genes did not affect the expression of key pluripotency-related genes in the established cell

lines (Figure S8). To further investigate the involvement of Kat8 and Msl2 in XCR, we examined Xist

signals in live cells. shRNA against Kat8 andMsl2 helped to correct the late-onset and slow-growth sunrise

behaviors in undifferentiated cells (Figures 4C and 4D). Meanwhile, shRNA Msl2 also helped to slow down

sunset in undifferentiated cells (Figure 4E). These results suggest that Kat8 and Msl2 are involved in XCR.

The Small Size of DA Mutant Xist Clouds

The sunrise behavior in undifferentiated cells during early hours of dox treatment is the outcome of a tug of

war between XCI and XCR. Long hours of dox treatment unavoidably tip the balance toward XCI. Xist

clouds could be observed in �70%–90% of cells in all the established inducible Xist cell lines after a

24-hr dox treatment. We consider the Xist clouds observed at this stage as full-sized Xist signals. In

wild-type cells, the Xist clouds are large and often associated with speckles scattered around a defined

main territory covered by the cloud (Figure 5A). Interestingly, we noticed that the full-sized Xist clouds in

DA mutants are significantly smaller and more compact compared with the wild-type clouds (Figures

5A–5C). We name this phenomenon ‘‘stopped budding.’’ This observation holds true whether or not the

cells were cultured as undifferentiated or differentiating cells (Figures 5B, 5C, and S9). We also generated

cell lines in which A-repeat was deleted but not replaced with any exogenous sequences and obtained

similar results (data not shown).

This result clarifies an issue regarding the DA Xist RNA signals. Based on RNA and DNA FISH techniques, it

has been observed that, at the onset of XCI, the Xist RNA transcripts first form a silencing compartment (the

core), which excludes the Pol II transcription machinery. At a later step, actively transcribed X-linked genes,
6 iScience 8, 1–14, October 26, 2018



A B

EC

D

Figure 4. The Putative Roles of Histone Acetyltransferase Kat8 Protein Complex in XCR

(A and B) (A) Doxycycline-induced cell death assay on different inducible Xist cell lines. Cells were cultured as

undifferentiated ES cells. Doxycycline treatment was carried out for 4 days. (B) Cell survival rate was calculated by alkaline

phosphatase-stained colony counts. Data are shown as mean G SEM of biological triplicate. The statistical analysis used

is Student’s t test. *p < 0.05.

(C) The growth curves of Xist RNA signals. The size (area) of a signal when it was first detected is defined as ‘‘size one’’

for the signal. Xist RNA signals were analyzed in 20 cells randomly selected from each sample. Data are shown as

mean G SEM with a trend line.

(D) Xist signals in live cells treated with dox for 2 hr. Representative images of Xist RNA signals in live cells after 2-hr dox

treatment are shown as maximum intensity z projections. Scale bars, 5 mM.

(E) The rate of Xist RNA signal disappearance upon doxycycline removal. The cells were cultured as undifferentiated

ES cells and treated with dox overnight before dox removal (n > 175 for the samples of each time point).

See also Figures S6–S8.
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Figure 5. The Small Size of DA Mutant Xist Clouds

(A) Representative images of Xist RNA signals in live cells. Images are shown as maximum intensity z projections.

(B and C) (B) Xist cloud size measurement (n R 50 for each dataset). Cells were cultured as differentiating ES cells.

Doxycycline treatment was carried out for 24 hr. (C) Statistical analysis (Student’s t test) was carried out to compare the Xist

cloud size between all sample pairs within the experimental panel. p Values greater than 0.05 are labeled in red.

See also Figure S9.
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which are located outside or at the periphery of the compartment, are silenced (Chaumeil et al., 2006). The

formation of silencing core does not depend on A-repeat, but the later step does. Recently, genomic

mapping results further provided direct evidence that the DA mutant Xist transcripts could not efficiently

cover actively transcribed genes (Engreitz et al., 2013). Based on these results, it is straightforward to as-

sume that the DA Xist cloud should have a smaller size than the wild-type, because it only covers the

silencing core but has difficulties to reach out to efficiently cover the actively transcribed genes located

at the peripheral region. However, possibly because of the technical limitations of RNA FISH, it was

concluded that the appearances of Xist clouds were ‘‘comparable’’ between the wild-type and the DA

mutant (Chaumeil et al., 2006; Wutz et al., 2002; Engreitz et al., 2013), even though undersized DA mutant

Xist clouds can be seen in the published data (Engreitz et al., 2013). Our live-cell imaging experiments

clarify this issue, and the results fit in more comfortably with the previous observations.
Artificial Tethering of Ezh2 Restored the Attenuated PRC Activities along the DA Mutant

Xist RNA

In our experimental system, PUFa can be fused with individual candidate proteins and tethers the protein

back onto the DA mutant Xist transcripts to dissect the Xist functionality. Three candidate proteins (Ezh2,

Spen, and Ythdc1) were selected for this study. Unfortunately, we encountered difficulties in generating

the large DNA constructs of SPEN (�3,700 amino acids). Spen (split end), as its name suggests, contains

two functional domains separated by a large linker region (Ariyoshi and Schwabe, 2003). The two func-

tional domains are the N-terminal RNA binding domain and the SPOC domain (Spen paralog and ortho-

log C terminal). It is a reasonable assumption that SPOC is the critical functional domain directly involved

in XCI. We, therefore, tethered the SPOC domain onto the DA mutant transcripts. Artificial tethering of

Ezh2, SPOC, and Ythdc1 all partially rescued the ‘‘stopped budding’’ mutant phenotype, whereas Ezh2

clearly showed the most significant rescue effect among the three (Figures 5A–5C). This result shows

that Ezh2 is functionally related to Xist RNA spreading. To assess the functionality of Xist-mediated

gene silencing, we measured the killing effect of induced XCI (Figure 6A). The results show that GFP-iXist

is functionally equivalent to the wild-type iXist. Replacing of A-repeat with PBSa in GFP-PBSa-iXist (DA

mutant) clearly disrupted the Xist-mediated gene silencing (Figure 6A). This mutant phenotype was signif-

icantly rescued by artificially tethering any of the three candidate proteins onto the mutant Xist transcripts

(Figure 6A). Other than the killing effect, we also examined the direct effect of Ezh2 tethering on X-linked

gene expression. The results confirm that Ezh2 tethering helped to restore the capacity of Xist-mediated

gene silencing (Figure S10). To confirm that the observed rescue effect is due to the tethering of the

candidate proteins onto the deleted A-repeat region but not the two endogenous PBSa sites along

Xist, we overexpressed Ezh2-PUFa in cells carrying a Xist transgene untagged with PBSa (Figure S11A).

Induced Xist expression in these cells showed a killing effect comparable to the iXist control cells. This

result shows that the possible interaction between Ezh2-PUFa and the two endogenous PBSa sites within

Xist did not generate a detectable effect in the cell killing assay (Figure S11A). Moreover, when Ezh2-

PUFa overexpression was uncoupled from the induced Xist expression, Ezh2 overexpression alone was

not able to silence the neomycin resistance gene and generate a detectable effect on cell growth (Fig-

ure S11B). Taken together, these results show that Ezh2 is important for both Xist RNA spreading and

Xist-mediated gene silencing. Ythdc1 and SPOC play more specialized roles in Xist-mediated gene

silencing.

It is known that PRC proteins play important roles in establishing the repressive chromatin states in XCI

(Brockdorff, 2017). There are two major PRCs, PRC1 and PRC2. PRC1 catalyzes mono-ubiquitylation of his-

tone H2A lysine 119 (H2AK119u1). Ezh2 is the enzyme of the PRC2 complex, which methylates histone H3

lysine 27 (H3K27me3). Currently, how PRC activities are recruited in XCI is under debate. One hypothesis is

that PRC2 is recruited through the direct interaction between Ezh2 and Xist (Zhao et al., 2008). The other

hypothesis is that the PRC1 activity recruits PRC2 (Almeida et al., 2017). To study the PRC activities in

XCI, we performed immunostaining to detect H3K27me3 and H2AK119ub enrichment along Xi. Interest-

ingly, different from what is reported in the supplementary section of a previous literature (Almeida

et al., 2017), we observed that the PRC activities (H3K27me3 and H2AK119ub enrichment) were significantly

attenuated in DA mutant (Figure 6B). This result shows that the A-repeat is involved in recruiting or

spreading PRC activities. Artificial tethering of Ezh2 onto the DA mutant Xist transcripts significantly

restored not only the H3K27me3 enrichment but also the H2AK119ub enrichment (Figure 6B). This result

confirms, regardless of whether PRC2 is recruited in XCI through PRC1 in the first place, the synergetic

mechanism between PRC1 and PRC2: one helps to recruit the other (Almeida et al., 2017).
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A

B

Figure 6. Artificial Tethering of Ezh2 Restored the Attenuated PRC Activities along the DA Mutant Xist RNA

(A) Functional validation of the inducible Xist alleles by doxycycline-induced cell death. Cells were cultured as

undifferentiated ES cells. Doxycycline treatment was carried out for 5 days. Cell survival rate was calculated by measuring

area stained by alkaline phosphatase staining. Data are shown as mean G SEM of biological triplicate. The statistical

analysis used is Student’s t test. The cell survival rate of DA mutant was compared with the other 4 samples. *p < 0.05.

(B) Immuno-RNA FISH to detect H3K27me3, H2AK119ub, and Xist in cells, which were differentiated and treated with dox

for 48 hr. The immunostains were performed before the RNA FISH. DNAwas counterstained with DAPI. Data are shown as

mean G SD of biological triplicate (n = 63–153 for each sample). Scale bar, 5 mM.

See also Figures S10 and S11.
DISCUSSION

The Pumilio-Based System Provides Both a Label and an Effector in Studying Long Non-

coding RNAs

In summary, the Pumilio-based labeling system we report here enables high-quality live-cell imaging of Xist

RNA and provides insightful details into the RNA’s behavior in live cells. Utilizing a second PBS to artificially

tether candidate proteins onto Xist provides a ‘‘second handle’’ in the system, which helps to dissect the

functional mechanisms underlying XCI. This approach can be applied to study other RNAs, in particular

long non-coding RNAs.
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Inducible XCI in Undifferentiated ES Cells Provides a Tool to Study Both XCI and XCR

XCI and XCR are two excellent biological events for studying epigenetic mechanisms. As opposed to XCI,

XCR is poorly investigated. Two waves of XCR occur during the natural life cycle of a mouse, blastocyst for-

mation and primordial germ cell specification (Ohhata and Wutz, 2013), which are two embryonic develop-

mental events difficult to be recapitulated in vitro. XCR also occurs in the artificial experimental system of

induced pluripotent stem cell (iPSC) formation (Ohhata andWutz, 2013), which is a slow, sporadic, and het-

erogeneous event less favorable for detailed studies on XCR. In this study, we show that the induced XCI

status in undifferentiated cells is the balanced outcome of two counteracting forces, XCI and XCR. Genetic

manipulation on related genes may tip the balance toward a predictable direction. Using this unique

experimental system, we identify Kat8 andMsl2, two proteins ofDrosophila dosage compensation respon-

sible for enhancing the gene transcription from the single X chromosome in males (Lucchesi and Kuroda,

2015), as two players involved in mammalian XCR.

The observed ‘‘star’’ behavior of sunrise in undifferentiated cells indicates an underlying mechanism pre-

venting Xist cloud formation. Whether Kat8 and Msl2 are directly involved in Xist cloud formation remains

to be elucidated by future studies. It should also be noted that Kat8 expression may not be perfectly

restricted in undifferentiated ES cells. Although Western blot results have shown that the protein level

of Kat8 is sharply down-regulated during in vitro differentiation of ES cells (Li et al., 2012), our quantitative

RT-PCR data did not detect the similar pattern at the RNA level (data not shown). However, somatic expres-

sion of a gene cannot rule out the gene’s role in XCR. We believe XCI is achieved through multiple layers of

epigenetic modifications. In theory, genes involved in reactivating the ‘‘inner’’ layers of epigenetic silencing

may still be expressed in somatic cells without reactivating the silenced X chromosome. Meanwhile, it

would be interesting to manipulate the expression level of Kat8 and Msl2 in female cells (ES cells, somatic

cells, or iPSCs) to study their effect on XCI.

A previous study showed that Kat8-associated protein complexes positively regulate Tsix expression and,

as a consequence, repress Xist expression (Chelmicki et al., 2014). It is known that Tsix counteracts Xist

through the action of antisense transcription across the gene body of Xist (Shibata and Lee, 2004; Luiken-

huis et al., 2001). The inducible Xist transgene involved in this study does not contain the 50 region of Tsix,

including the gene’s promoter (Figure S12). Moreover, the Xist transgene is controlled by a doxycycline-

inducible promoter and located �50 Mb away from the endogenous Tsix gene. We performed RT-PCR

and confirmed that no antisense transcription occurs along the 50 region of the inducible Xist transgene

(Figure S12).

Other than the intrinsic XCR, the difficulties of sunrise in undifferentiated cells could also be explained by

the shortage of resources required in XCI, which are only up-regulated upon differentiation. The two pos-

sibilities are not mutually exclusive. The results of sunset experiments help to confirm that the XCR is one

reason behind the difficulties of sunrise in undifferentiated cells, but do not rule out the other possibility.

Functional Dissection of Xist: Spreading versus Silencing

Artificially recruiting Ezh2, SPOC, and Ythdc1 onto the DA mutant Xist transcripts showed the effects of all

three proteins on both Xist RNA spreading and Xist-mediated gene silencing, whereas Ezh2 showed the

most significant role in Xist RNA spreading among the three. With little effect on rescuing the Xist RNA

spreading defect, artificially recruiting Ythdc1 alone or SPOC alone significantly restored the killing effect.

This result can be explained by the neomycin resistance gene located close to the inducible Xist transgene.

A significant fraction of cell death caused by induced XCI is due to Xist-mediated silencing of the nearby

neomycin-resistant gene. We carried out control experiments and confirmed that the silencing of the

nearby neomycin-resistant gene was mediated by Xist, as the Ezh2 transgene showed no detectable effect

when its expression was uncoupled from the induced Xist expression (Figure S11).

Technical Limitation of DNA/RNA FISH: Sensitivity versus Specificity

A variety of approaches are used in RNA or DNA FISH to increase the signal specificity. For example, a high

concentration of Cot-1 DNA is mixed with the FISH probes to block unspecific hybridization. As junk DNA,

the unlabeled Cot-1 DNA helps to increase the detection specificity, but it unavoidably decreases the

detection resolution and sensitivity. In this study, our live-cell imaging experiments clearly revealed

the small size of the DA mutant Xist clouds. We believe the small and compact Xist clouds observed in

the DA mutant are Xist RNAs covering the silencing core. For the wild-type Xist clouds, we believe many
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speckles, if not all, that scattered from the main territory of an Xist cloud are Xist RNAs associated with

actively transcribed genes positioned further away from the main territory. Indeed, the results of RNA po-

lymerase II (Pol II) immunostaining show that the silencing core territory devoid of Pol II staining is smaller

than the territory marked by iXist-GFP (Figure S13). In fact, the scattered appearance of the wild-type Xist

clouds is occasionally seen in RNA FISH (data not shown). Similarly, DNA FISH on X-linked genes occasion-

ally detects a gene located ‘‘far away’’ from a Xist cloud detected in RNA FISH or a ‘‘chromosome territory’’

detected by chromosome paint probes in DNA FISH (Chen et al., 2016). However, no specific interpretation

has been made on these observations. We believe many actively transcribed X-linked genes are located

outside of the ‘‘chromosome territory’’ defined by the Xist RNA FISH signals or the chromosome paint

DNA FISH signals. The scattered appearance of Xist clouds clearly detected in live-cell imaging indicates

Xist RNAs spreading out to cover the actively transcribed genes, which are located not only at the periphery

of the main territory of a Xist cloud but also farther away from it. How Xist RNA spreads out and precisely

covers X-linked genes that are actively transcribed from its host chromosome and located ‘‘far away’’ from

the main chromosome territory awaits future studies.

Technical Limitations of the Study

It is noticeable that the experimental system of this study has its own technical limitations. The ‘‘wild-

type’’ Xist in this study is an induced transgene in male cells located at the Hprt locus carrying PBSb

tags on its 50 end. Its behavior may not be identical to that of the endogenous Xist in female cells.

However, all the foregoing artificial features are commonly shared by the ‘‘wild-type’’ and the mutant

Xist, in undifferentiated and differentiating cells. The comparison between the ‘‘wild-type’’ and the

mutant and the comparison between undifferentiated and differentiating cells help to reveal the biolog-

ical insights, as the observed differences cannot be attributed to the artificial features commonly shared

by all parties.

It should be also noticed that, with the secondary structure of Xist largely unknown, any tagging of the

RNA has the potential risk of disrupting the RNA’s putative secondary structure. However, it is unlikely

that the long RNA forms a single rigid secondary structure. In a study using a serial deletion approach

to functionally dissect Xist, A-repeat was identified as the single most critical domain for the Xist function-

ality (Wutz et al., 2002). This result argues against the possibility that the full-length Xist RNA forms a scaf-

fold with a rigid structure. Indeed, it is hypothesized that Xist functions as a malleable scaffold with

modular and swappable functional domains (Guttman and Rinn, 2012). Based on current research,

A-repeat may form its own structural domain independent from the remaining parts of the long RNA

(Liu et al., 2017). Therefore, replacing A-repeat with PBS may not affect the global secondary structure

of the long Xist RNA. Sequence wise, the A-repeat region consists of 7.5 sequence repeats (Brockdorff

et al., 1992). Structure wise, the region may form an elaborated secondary structure in which the sequence

repeats behave differently in forming different structural units (Liu et al., 2017). How the structural units

recruit proteins and how many copies of each protein are recruited by the structural units remain un-

known. In this study, we assumed that each sequence repeat recruits one copy of the candidate protein

and used 10 copies of PBSa to replace the A-repeat region. In theory, 10 copies of each target protein can

be tethered onto each RNA transcript maximally. The actual amount of each candidate protein recruited

onto each RNA transcript in this study may differ from the endogenous situation and can be further

optimized in future studies.

Xist is a long RNA with the critical functional domain near its 50 end. In theory, the live-cell imaging tag can

be placed either at the 50 or 30 end of the RNA. Tagging at the 30 end may prevent the imaging tag from

interfering with the functional domain of Xist. On the other hand, 30 tagging may not allow the system to

closely monitor the RNA’s behavior in live cells. Labeling at the 50 end provides the opposite advantage

and disadvantage. In this study, we chose 50 tagging, because we encountered technical difficulties in

generating the DNA constructs of 30 tagging. Our data show that the Xist functionality remains largely

intact with 50 tagging.

In live-cell imaging, the length of the observation time window is limited to 2–3 hr due to technical issues,

such as photobleaching, cell tracing, re-focusing, and stage drifting.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
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Figure S1: The cross-reactivity of PUFa / PBSb and the PBSa sites 

identified in the endogenous sequence of Xist (Related to Figure 1). (A) The 

inducible Xist transgene carries 25 copies of PBSb at its 5’ end. The cells were 

transiently transfected with a plasmid carrying a PUFa-EGFP fusion gene. The 

transfected cells were treated with dox for 24 hours. A live-cell image of the GFP 

channel is shown. The image was taken using a wide-field fluorescent 

microscope. No Xist signals were detected from the entire cell population, which 

confirms no cross-reactivity between PUFa and PBSb. (B) A map of Xist gene 

with the PBSa sites identified in its endogenous sequence. 

  



 

 

 

 

 

 

Figure S2: The emergence of an Xist RNA signal upon dox induction 

(Related to Figure 2). The emergence of an Xist RNA signal in a differentiating 

ES cell. Images are shown in a 90-min time span with a 10-min time interval. The 

time point when the signal was first detected is defined as time zero. Maximum 

intensity z-projections are shown. 

  



 

 

 

 

 

Figure S3: Quantitative RT-PCR results to show the effect of induced Xist 

expression on X-linked genes in undifferentiated cells (Related to Figure 3). 

Dox treatment was carried out for 24 hours. The results are shown in relative fold 

expression. Normalization was performed using Actb and Gapdh. Error bars 

indicate SEM (n = 3). The statistical analysis used is the Student’s t-test. One 

asterisk indicates P-value smaller than 0.05. 

  



 

 

 

Figure S4: Measurement of Nanog signal intensity (Related to Figure 3). 

Immuno-RNA FISH to detect Nanog and Xist in undifferentiated iXist cells treated 

with dox for 3 hours. Cells were cultured in the conventional Lif-containing ES 

culture medium without 2i. Nanog was detected by immunostain. The mean 

Nanog signal intensity in each cell was measure by ImageJ. To normalize the 

signal intensity variance among difference microscope images, the cells within 

one image were ranked according to the mean Nanog signal intensity within each 

cell. The cell with the highest ranking was scored 1 for its “Relative Nanog Signal 

Intensity”. The cell with the lowest ranking was scored 0.  The rest of the cells 

from the same image were scored between 1 and 0 proportionally according to 

each cell’s mean Nanog signal intensity. The relative Nanog signal intensity 

value 0.5 is marked by a dashed line.    



 

 

 

 

 

Figure S5: The growth curves of GFP-iXist cells during the 6-hour time 

window after Dox removal (Related to Figure 3). Data are shown as mean ± 

S.D. of biological triplicate. 

  



 

 

 

 

Figure S6: Test on the involvement of histone acetyltransferase candidate 

proteins in XCR (Related to Figure 4). (a) Doxycycline-induced cell death 

assay was carried out on iXist cells. The cells were either treated with chemical 

inhibitors for p300 or transfected with shRNAs against different candidate 



proteins. Dox treatment was carried out for 4 days. Data are shown as mean ± 

S.E.M of biological triplicate. Note: The cell survival rates were calculated based 

on hemocytometer cell count, which has more experimental error than alkaline 

phosphatase staining. (b) Quantitative RT-PCR to validate the effects of shRNA 

knocking-down. Data are shown in relative fold expression. Normalization was 

performed using Actb and Gapdh. Error bars indicate SEM (n = 3).  

  



 
 
Figure S7: Using a 2nd shRNA against Kat8 and Msl2 to rule out the shRNA 

off-targeting effect (Related to Figure 4). (A, B) Doxycycline-induced cell 

death assay on different inducible Xist cell lines. Cells were cultured as 

undifferentiated ES cells. Dox treatment was carried out for 4 days. Cell survival 

rate was calculated by AP stained colony counts. Data are shown as mean ± 

S.E.M of biological triplicate. The statistical analysis used is the Student’s t-test. 

One asterisk indicates P-value smaller than 0.05. (C) Quantitative RT-PCR to 

validate the effects of shRNA knocking-down. Data are shown in relative fold 

expression. Normalization was performed using Actb and Gapdh. Error bars 

indicate SEM (n = 3).  



 

 
 
Figure S8: Expression profile of pluripotency-related genes in iXist and 

cells carrying shRNAs against Kat8 and Msl2 (Related to Figure 4). 

Quantitative RT-PCR results are shown in relative fold expression. Normalization 

was performed using Actb and Gapdh. Error bars indicate SEM (n = 3). Cells 

were cultured as undifferentiated cells. Nanog, Sox2, Oct4, Klf4 and Fut9 are 

supposed to be expressed at high levels in undifferentiated cells. Gata4 and Fgf5 

are not supposed to be expressed or expressed at very low levels in 

undifferentiated cells. To show the low expression levels of Gata4 and Fgf5, 

Nanog expression level in iXist was included in the plots for direct comparison.  



 

 

 

Figure S9: The Repeat A region of Xist is involved in the spreading of Xist 

RNA along the chromosome territory (Related to Figure 5). Cells were 

cultured as undifferentiated ES cells. Dox treatment was carried out for 24 hr. 

Representative images of Xist RNA signals in live cells are shown as maximum 

intensity z-projections.  



 
 
 

 
 
 
 
Figure S10: Quantitative RT-PCR results to show the effect of Ezh2-

tethering on X-linked gene expression (Related to Figure 6). Cells were 

cultured as undifferentiated cells. Dox treatment was carried out for 24 hours. 

The results are shown in relative fold expression. Normalization was performed 

using Actb. Error bars indicate SEM (n = 3).  

 

 



 
 
Figure S11: The side effects of Ezh2-PUFa overexpression without the 

induced Xist expression (Related to Figure 6). (A) Doxycycline-induced cell 

death assay was carried out for 6 days and alkaline phosphatase staining was 

performed. Data are shown as mean ± S.D. of biological triplicate. (B) The 

growth curves of Ezh2-PUFa overexpressing ΔA cells cultured with or without 

G418. Data are shown as mean ± S.D. of biological triplicate. 

  



 
 

Figure S12: RT-PCR to detect the endogenous Tsix expression and the 

antisense transcription along the inducible Xist transgene (Related to 

Figure 4). Total RNA was isolated from undifferentiated iXist cells. Reverse 

transcription reactions were carried out using either a gene-specific primer for the 

endogenous Tsix (the blue arrowhead) or a gene-specific primer designed for the 

antisense transcription across the inducible Xist transgene (the orange 

arrowhead). cDNA samples were PCR amplified using a primer pair (the two 

black arrowheads) targeting the 5’ region of Xist exon 1. The black arrow points 

to the PCR amplicon with the expected size.  



 
 
 
 

 

 

Figure S13: ImmunoRNA FISH of RNA polymerase II (Pol II) and Xist 

(Related to Figure 5). (A) Immunostain of Pol II on an undifferentiated GFP-iXist 

cell treated with dox for 24 hours. 3D localization of Pol II (Alexa 647), Xist (GFP) 

and DAPI were examined using Airyscan Super-resolution Confocal Microscope 

(Carl Zeiss) (X-Y: 36nm per pixel; Z: 140nm per pixel). Red dotted lines illustrate 

the silencing core territory of the Xist cloud without Pol II staining. Yellow dotted 

lines illustrate the main territory of the Xist cloud. Scale Bar: 2 µm. (B) Graphical 

illustration showing the Pol II staining pattern and the Xist cloud in 3D.  



Transparent Methods 

Cell lines and culture 

If not explicitly stated otherwise, mouse ES cells were cultured in 2i medium with 

Lif (Ying et al., 2008). For in vitro differentiation, cells were cultured in 

differentiating medium containing 50 μg/ml L-ascorbic acid (Sigma). Doxycycline 

treatment of 1 μg/ml was used throughout the study. G418 

(ThermoFisher)treatment was carried out at 400 μg/ml. Inhibitors for p300, 

L002(Sigma) and C646 (Sigma), were used at 10 μM and 25 μM respectively. 

Alkaline phosphatase (AP) staining (Vector Laboratories) and Crystal 

Violet staining (Merck) were used to quantify undifferentiated ES cells and 

differentiating ES cells respectively. CellProfiler (Carpenter et al., 2006) and 

ImageJ (Schneider et al., 2012) were used to analyze AP staining data and 

Crystal Violet staining data respectively.  

 

RNA FISH, immunostaining and immuno-RNA FISH 

RNA FISH, immunostaining and immuno-RNA FISH were carried out as 

previously described (Zhang et al., 2007). Immunostaining for Nanog was 

performed using a rabbit polyclonal antibody against Nanog (Abcam; ab80892; 

1:200) with a secondary antibody conjugated with Alexa-488 (ThermoFisher; A-

11008; 1:1000). Immunostaining for Pol II was performed using a mouse 

monoclonal antibody against Pol II (Santa Cruz; sc-47701; 1:500) with a 

secondary antibody conjugated with Alexa-647 (ThermoFisher; A-21236; 1:500). 



Immunostaining for H3K27me3 was performed using a mouse monoclonal 

antibody (Abcam; ab6002; 1:1000) with a secondary antibody conjugated with 

Alexa-647 (ThermoFisher; A-21236; 1:1000). Immunostaining for H2AK119ub 

was performed using a rabbit monoclonal antibody (Cell Signaling Technology; 

D27C4; 1:2000) with a secondary antibody conjugated with Alexa-647 (Abcam; 

ab150075; 1:1000). Immunostaining was followed by RNA FISH. The Xist RNA 

was detected with Sx9 probe, a P1 DNA construct containing a 40 kb genomic 

fragment covering the Xist gene. Nucleotide analogs used in probe labeling were 

Cy3-dUTP (Amersham, Cat# PA53022).  

 

Quantitative RT-PCR 

Total RNA was isolated by TRIzol (Life technologies). cDNA was synthesized 

using iScript reverse transcription kit (170-8840, Bio-Rad). The real-time PCR 

was carried out on the CFX Connect real-time PCR system (Bio-Rad) using the 

SsoAdvanced Universal SYBR Green Supermix (Bio-Rad). The following PCR 

primers were used: Actb (F:5’- ACTGCCGCATCCTCTTCCTC-3’, R: 5’-

CCGCTCGTTGCCAATAGTGA-3’); Gapdh (F:5’-CCAATGTGTCCGTCGTGGAT-

3’, R: 5’-TGCCTGCTTCACCACCTTCT-3’); Nanog (F:5’-

TCGAATTCTGGGAACGCCTC-3’, R: 5’-GTCTTCAGAGGAAGGGCGAG-3’); 

Sox2 (F:5’-TTCGAGGAAAGGGTTCTTGCTG-3’, R: 5’-

TCCTTCCTTGTTTGTAACGGTCCT-3’); Oct4 (F:5’-

TGTTCCCGTCACTGCTCTGG-3’, R: 5’-TTGCCTTGGCTCACAGCATC-3’); Klf4 



(F:5’-GTGCCCCGACTAACCGTTG-3’, R: 5’-GTCGTTGAACTCCTCGGTCT-3’); 

Fut9 (F:5’-CAGTCCAATGGAGTCTGCAA-3’, R: 5’-

CCATACCCAAACCAGAATGG-3’); Gata4 (F:5’-

CCTGGAAGACACCCCAATCTC-3’, R: 5’-GGTAGTGTCCCGTCCCATC-3’); 

Fgf5 (F:5’-CCTTGCGACCCAGGAGCTTA-3’, R: 5’-

CCGTCTGTGGTTTCTGTTGAGG-3’); Kat8 (F:5’-

AACCAGAAGTCACCGTGGAG-3’, R: 5’-TCCTGGTCATTCACTCGAGAC-3’); 

Msl2 (F:5’-CCCGGTGACTCTCTTTTGCT-3’, R: 5’-

GCTTCCAAGTTTGGCTGCAA-3’) ); Mecp2 (F:5’-

CAGGGAGGAAAAGTCAGAAGACC-3’, R: 5’AATGGTGGGCTGAAGGTTGTA-

3’); Hprt (F:5’-GATTAGCGATGATGAACCAGGTT-3’, R: 5’-

CCTCCCATCTCCTTCATGACA-3’); Gpc4 (F:5’-GGCAGCTGGCACTAGTTTG-

3’, R: 5’-AACGGTGCTTGGGAGAGAG-3’); Neomycin (F:5’-

GGCTATTCGGCTATGACTGGGC-3’, R: 5’-GCAGTTCATTCAGGGCACCG-3’); 

tdTomato (F:5’-CCGACATCCCCGATTACAAGAAGC-3’, R: 5’-

TTGTAGATCAGCGTGCCGTC-3’); Xist (E1_F: 5’-

CGGCCTCTAGTTTGTCCATT-3’, E1_R: 5’-GATGGCATGATGGAATTGAG-3’). 

 

Plasmid Constructs 

PBS and PUF plasmids were obtained as gifts from Dr. Wang Haoyi. galK-

mediated recombineering system was used to generate all the DNA constructs of 

inducible Xist transgenes (Warming et al., 2005).  



 A human SPEN cDNA (~11kb) clone was purchased from OriGene 

(RC213922). A frame shift mutation (3351_3352insA) within the coding region of 

SPEN was found in the original cDNA clone. The coding region of the SPOC 

domain is intact and was PCR amplified. cDNA of Ezh2 and Ythdc1 were 

generated using SuperScript III reverse transcriptase kit (ThermoFisher) followed 

by PCR amplification using Herculase II Fusion Enzyme (Agilent Technologies). 

The sequences of the cloned cDNA fragments of SPOC, Ezh2 and Ythdc1 were 

confirmed by Sanger sequencing (data not shown). The following PCR primers 

were used: Ezh2 (F:5’-ATGGGCCAGACTGGGAAGAAATC-3’, R:5’-

CATTTCTCGTTCGATGCCCACATAC-3’); Ythdc1 (F:5’-

ATGGCGGCCGACAGC-3’, R:5’- AACGACCTCTCTCCCCTCGG-3’); SPOC 

(F:5’-ATGCCTCAAGTGTCCCAGGAG-3’, R:5’-

AATGACAATCATGAGGTGGGGAGAG-3’). Plasmid constructs for fusion 

proteins, PUF-EGFP and PUF-effector, were established using Gibson Assembly 

(NEB). 

 An shRNA system (OligoEngine, pSUPER RNAi System) was used. The 

following shRNA sequences were designed against Msl1 (5'-

GTACCTTTCCACCACAGAAAT-3'), Msl2 (5'-CCCAGTCTCTTAGCCATAATG-

3'), Msl2-2(5'- CTGATCCTCAAGCTAGCTTAT-3'), Msl3 (5'-

GCTGCGTTCAAGAAAGGAAAT-3'), Kat7 (5'-CCTCGAACTCCAACCGGAAAT-

3') and Kat8 (5'-GTGATCCAGTCTCGAGTGA-3'), Kat8-2(5'- 

GCGAAAGCATGATGAGATCAA-3'). 



Microscopy  

Wide-field fluorescent microscopy work was carried out on an Eclipse Ti 

microscope (Nikon) with a digital camera (Clara Series model C01, Andor). 

Airyscan microscopy was carried out on a Zeiss LSM 710 inverted confocal 

microscope with Airyscan detector and an oil immersion alpha Plan-Apochromat 

100x/1.4 Oil M27 objective lens. 

Live-cell imaging was carried out on a CorrSight spinning disk confocal 

system (FEI Company) equipped with an Orca R2 CCD camera (Hamamatsu). 1 

day before imaging, 800K feeder-free ES cells were seeded on fibronectin-

coated glass-bottom dishes (MatTec Corp). Prior to live-cell imaging, cells were 

washed with 1x PBS and replaced with imaging medium composing complete 

medium with DMEM substituted with FluoroBrite DMEM (ThermoFisher). For 

sunrise experiments, 1 μg/ml of doxycycline was supplemented to the imaging 

medium to induce Xist expression. For sunset experiments, Xist was induced by 

1 μg/ ml of doxycycline for at least 16 hr. The cells were washed a few times 

using 1x PBS. The culture medium was then switched to the imaging medium 

free of doxycycline. For live-cell time-lapse video recording, cells were placed 

into the microscope cell culture chamber heated to 37 °C at least 1 hr before 

imaging. Imaging was carried out in a closed chamber maintained at 37 °C with 

5% CO2 and 90% humidity. DNA dyes, such as Hoechst, was avoided due to its 

toxicity in long-term live-cell imaging. A 488-nm laser line (iChrome MLE-LFA) 

was set at 100% laser power. Images were acquired using a PlanApo 63x/ 1.4 



N.A. oil-immersion objective (Zeiss) (heated to 37 °C) with standard filter sets. 

The exposure time was set at 200 ms. All live-cell time-lapse video recording, 

unless explicitly stated otherwise, was carried out in a 2-hr time span with a 2-

min time interval. For each time point, a 10-μm thick Z-stack with a 1-μm interval 

was collected. Autofocus system (Focus Clamp) was used to minimize out-of-

focus throughout the recordings. Time-lapse imaging was started 2 hr after the 

addition of doxycycline for undifferentiated cells and 1 hr after the addition of 

doxycycline for differentiating cells. Other than time-lapse video recording, the 

snap-shot images of Xist signals in live cells were captured with an 800-ms 

exposure time at 100% laser power in 10-μm Z-stacks at 1-μm intervals. 

Maximum intensity Z-projection was used to represent each Z-stack. All acquired 

images were processed and analyzed using ImageJ (Schneider et al., 2012). 

Drift correction was applied to all time-lapse recordings. 

 

Statistical analyses 

All data were analyzed by one-tailed Student’s t-test for equal variances and 

were conducted in Excel. A P-value that is less than 0.05 is considered 

statistically significant. Statistical tests used for all experiments were described in 

detail in the relevant figure legends of the Results and Supplemental Information. 
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