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Abstract

Background: In a previous experimental study, new bone was found growing within granules of HA/B-TCP. In vitro
and experimental studies have shown increased protein adsorption and cell adhesion graft material bioactivated
with Argon plasma. The aims of the present experiment were to study new bone ingrowth into 3-TCP/HA granules
used as filler material for sinus lifting and the influence on the healing of the bioactivation of the graft with argon
plasma.

Methods: Sinus lifting was carried out in 20 rabbits using 60% HA and 40% [-TCP as filler material either bio-
activated with argon plasma (plasma group) or left untreated (control group). The antrostomies were closed with
collagen membranes. Biopsies representing the healing after 2 and 10 weeks were collected, and ground sections
were prepared for histomorphometric analyses. Various regions of the elevated space were analyzed both around
(outer bone; OB) and inside (interpenetrating bone network, IBN) the graft particles.

Results: After 2 weeks of healing, 8.2% and 9.3% (n = 10; p = 0.635) of total new bone (OB + IBN) was found in the
plasma and control groups, respectively. Small fractions of IBN were found, spreading from the periphery inward of
the graft particles. After 10 weeks of healing, the total new bone was 34.0% in the plasma and 31.3% in Control
groups (n = 9; p = 0.594). The respective fractions of IBN were 18.0% and 16.0%. New bone was penetrating from
the peripheral regions inside the remnants of graft particles, where it was forming a network of bridges in
continuity to the remnants of biomaterial through its porosities. The biomaterial decreased in proportion between
2 and 10 weeks from 52.1 to 28.3% in the plasma group, and from 52.5% to 31.9% in the control group.

Conclusion: The bio-activation with argon plasma on a synthetic graft composed of 60% HA and 40% [3-TCP used
as filler material for sinus lifting showed a tendency to improve bone formation; however, the difference with the
control group was neither statistically significant nor clinically relevant.
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Introduction

The use of biomaterials to maintain the volume obtained
after sinus floor elevation is a procedure well docu-
mented in scientific literature [1-3]. Depending on the
degrees of resorption of the graft used, different propor-
tions of bone might be found inside the elevated space.
In a systematic review with meta-analysis [4], it was
shown that the autologous bone alone produced the
highest amount of new bone when compared to xeno-
grafts or synthetical biomaterials.

A literature review [5] showed the intrinsic healing
pattern of this anatomical structure, underlining the im-
portance of the bone walls of the sinus cavity, which
were recognized to be the most important source of
blood supply and regenerative potential.

The histologically pattern of this clinical
phenomenon was clarified in several animal studies
[6—-14] These studies in fact confirmed that the re-
generation process starts from the bony walls and in-
creases if the lateral bony wall is maintained attached
to the mucosa [15, 16]..

Although the importance of the graft material to fill
the sinus cavity was questioned by a recent systematic
review [17] highlighting the possibility to longitudinally
maintain implants in a sinus lifted without graft, how-
ever a significant difference in terms of survival rate was
found when compared to grafted sinus.

Although the best material was documented to be the
autologous bone, due to its osteo-inductive properties, it
was documented that the use of a graft material, mostly
in case of critical anatomical conditions, could speed
and enhance the quality of hard tissue regeneration
under the sinus mucosa [18].

All the graft materials, however, share the same bio-
logic path to be osseointegrated: the key factor is repre-
sented by their wettability once exposed to the blood
proteins. In fact, linking proteins (extracellular matrix
molecules) are essential for the initiation and modula-
tion of cell adhesion with regenerative potential [19].
Then, the material properties, moreover the wettability
of the graft granules, may represent a key factor in bone
regeneration.

One technique recently appeared on the literature to
increase the graft surface hydrophilicity, is plasma of
Argon which through the alteration of the electronic
mantel of the surface, positively alter the surface charge
of the material [20]. In fact, the treatment with argon
plasma has been tested in an in vitro study in which four
types of discs made of synthetic pure hydroxyapatite, bi-
phasic calcium phosphate (60% HA, 40% B-TCP), can-
cellous and cortical xenogeneic bone matrix were used
[21]. It was shown that the bioactivation increased sig-
nificantly protein adsorption and cell adhesion. Plasma
treatment has been shown to increase also the

Page 2 of 10

osteoconductivity on biomaterials [22] and osseointegra-
tion on implants [23].

Moreover, a recent publication showed that bovine
bone matrix in the rabbit sinus lift clearly identified a
significantly better regeneration pattern in the central
area of the sinus in case of bioactivated graft, the most
distant area from osteogenesis sources [24].

It was furthermore described in an experimental study
in sheep the pattern of healing of 40% -TCP/60% HA
granules used for sinus lifting. Large amounts of new
bone were found growing inward the synthetic biomate-
rial, interpenetrating the resorbing graft granules [25].

Hence, the aims of the present experiment were to
study new bone ingrowth into B-TCP/HA granules used
as filler material for sinus lifting and the influence on
the healing of the bioactivation of the graft with argon
plasma. The hypothesis was that the treatment with
argon plasma might enhance bone formation both
around and within of the HA and -TCP granules.

Materials and methods

Ethical statement

The ethical approval of the protocol for the present
study was given by the Ethical Committee at the School
of Dentistry, of Ribeirdo Preto, University of Sao Paulo
(USP), with the code 2018.1.454.58.2 signed on 19 Sep-
tember 2018. The ARRIVE checklist for animal studies
was followed. The international and local guidelines for
animal experiments were respected.

Study design

Sinus floor augmentation was performed bilaterally in 20
rabbits. The elevated spaces were grafted with a syn-
thetic biomaterial either activated (plasma group) or not
activated (control group) with argon plasma. Ten rabbits
were euthanized after 2 weeks and 10 rabbits after 10
weeks.

Bioactivation with argon plasma

The alloplastic granules were moved from the vials to a
sterile cup using a small spoon and then placed in an
argon plasma reactor (10 W, 1 bar for 12 min, plasma R,
Diener, Germany) for the activation procedure.

Experimental procedures

The sedation was performed using acepromazine 1.0
mg/kg (Acepran®, Vetnil, Louveira, Sdo Paulo, Brazil)
injected subcutaneously, followed by the anesthesia that
was carried out with xylazine 3.0 mg/kg (Dopaser®, Her-
tape Calier, Juatuba, Minas Gerais, Brazil) and ketamine
hydrochloride 50 mg/kg (Ketamin Agener, Unido Qui-
mica Farmacéutica Nacional S/A, Embu-Guacgt, Sio
Paulo, Brazil) IM. Local anesthesia was also carried out
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with mepivacaine 2% and epinephrine 1:100.000
(Mepiadre, Nova DFL, Rio de Janeiro, Brazil).

In all rabbits, a masked maxillofacial surgeon (ERS; see
the “Acknowledgements” section) performed a dermo-
periosteal incision, exposed the nasal bone, and prepared
rounded antrostomies with a trephine 3.5 mm in diam-
eter, both sides of the nasal-incisal suture (Fig. 1a). The
bone window was removed and the sinus mucosa was el-
evated and then grafted with similar amounts of bioma-
terial (~ 130 ml), composed of 60% hydroxyapatite and
40% beta-tricalcium phosphate irregular-shaped granules
(GUIDOR  calc-i-oss CRYSTALY; Sunstar, Etoy,
Switzerland), with dimension of 450—-1000 micrometers
(Fig. 1b). The granules contained macropores and only
those used for the test sites (plasma group) were bioacti-
vated in the argon plasma reactor. Both for the plasma
and control groups, the granules were maintained dried
until the placement in the elevated space. Collagen
membranes (Bio-Gide; Geistlich Biomaterials, Wolhusen,
LU, Switzerland) were used to cover both antrostomies
(Fig. 10).

Euthanasia

After sedation, the animals were euthanized with sodium
thiopental (1.0 g, 2 mL, Thiopentax®, Cristdlia Produtos
Quimicos Farmacéuticos, Itapira, Sdo Paulo, Brazil).

Experimental animals
Twenty New Zealand male rabbits of about 5-6 months
of age and 3-3.5 kg of weight used for the experiment.

Housing and husbandry

The animals were maintained individually in cages lo-
cated in rooms under a controlled environment at the
facilities of the School of Dentistry, USP, Ribeirdo Preto
(Brazil). Pain, biological functions and wounds were
daily monitored. No restrictions were applied for food
and water.

The animals received a prophylactic dose of oxytetra-
cycline dehydrate (40 mg/kg, IM, Terramicina LA, Zoe-
tis Inddastria e Produtos Veterindrios, Campinas, Sao
Paulo, Brazil). Postoperatively, the animals received keto-
profen (3.0 mg/kg, IM., Ketofen 1%, Merial, Monte-Mor,
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Sao Paulo, Brazil) and tramadol hydrochloride (Trama-
dol 2%, 1.0 mg/kg, SC., Cronidor, Agener Unido Saude
Animal, Apucarana, Parana, Brazil) for 2 days.

Sample size

No data were available on similar treatment in vivo on
alloplastic graft with argon plasma so that a difference of
10% of new bone within the elevated space was judged
as clinically relevant. Applying a standard deviation of
10%, a power of 0.8 and an a = 0.05, a sample of 10 ani-
mals each group was calculated to disclose differences
clinically relevant. This allowed maintaining the number
of animals as low as possible, as required by the 3R rules
[26].

Randomization and allocation concealment

The randomization was made by a researcher that did
not participate to the surgery (DB) at the website www.
randomization.com. The allocation treatments were se-
cured in sealed opaque envelopes that were opened after
the elevation of both sinuses by an author (SPX) not in-
volved in the surgical procedures.

Histological preparation and analyses

The histological procedures were already described in a
previous article [10]. Briefly, the sections, each contain-
ing both sinuses, were prepared in blocks, fixed in 10%
buffered formalin, dehydrated in ascending concentra-
tions of alcohol, and then embedded in resin. Two
ground sections were prepared for each biopsy using the
Exakt equipment (Exakt’, Apparatebau, Norderstedt,
Germany). The histological slides were stained with ei-
ther Stevenel’s blue and alizarin red or toluidine blue.
Digital photomicrographs of all ground sections were
taken at a magnification x 100 using an EK14 motorized
stage (Nikon Corporation, Tokyo, Japan) connected to
an Eclipse Ci microscope (Nikon Corporation, Tokyo,
Japan).

Morphometric evaluations were performed in the
histological slides stained with Stevenel’s blue and ali-
zarin red. The software NIS-Elements D 5.11 (Labora-
tory Imaging, Nikon Corporation, Tokyo, Japan) was
used for measurements. For this purpose, a lattice with

grafted into the elevated space (plasma site on the left)

Fig. 1 Clinical view of the surgical procedures. a Rounded antrostomies were prepared with a trephine 3.5 mm in diameter, both sides of the
nasal-incisal suture. b After the elevation of the sinus mucosa, dried 60% hydroxyapatite and 40% beta-tricalcium phosphate granules were
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squares of 75 um in dimensions was superposed to the
images. Various regions of the sinus were evaluated: (i)
close to the bone walls (Bone walls region), (ii) the most
central area of the elevated space (Central region), (iii)
the region subjacent the sinus mucosa (Sub-mucosa re-
gion), (iv) and a region close to the antrostomy (close-
to-window region). The following tissues were assessed:
outer bone (OB; new bone outside the biomaterial resi-
dues), interpenetrating bone network (IBN; new bone
consolidated within the biomaterial residues), residual
alloplastic graft, soft tissues, vessels, osteoclastic zones,
and inflammatory infiltrate.

Calibration for histometric evaluations

An expert examiner, not included in the list of authors,
did all histological assessments (KAAA see the “Ac-
knowledgements” section), after having performed a cali-
bration with another expert (DB) that resulted in a K >
0.90 inter-rater agreement.

Experimental outcomes

The primary variables were the percentage of the inter-
penetrating bone network (IBN) and the percentage of
total bone within the elevated space that was calculated
as the sum of the outer bone (OB) and the interpenetrat-
ing bone network (IBN). The other variables, namely,
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outer bone, residual alloplastic graft, soft tissues, vessels,
osteoclastic zones, and inflammatory infiltrate were con-
sidered as secondary variable.

Statistical methods

Differences between plasma (test) and the control
groups were analyzed with a Wilcoxon test using the
software IBM SPSS Statistics (IBM Inc., Chicago, IL,
USA). An o = 5% was applied.

Results

None of the animals presented complications at the sur-
gery and during the maintenance period. However, one
histological specimen belonging to the 10 weeks group
was lost for technical problems so that #» = 10 and an #
= 9 were achieved for the 2-week and 10-week groups,
respectively.

After 2 weeks of healing (Fig. 2a—d), in both groups,
new bone was found surrounding the graft particles in
the periphery (outer bone, OB) and spreading inward
the graft particles in small quantities (interpenetrating
bone network, IBN). Soft tissues, cells and vessels were
visible both around and within the graft. Osteoclasts
were found in the periphery of the biomaterial. The total
new bone was 8.2 + 7.0% and 9.3 + 8.5% at the plasma
and control group, respectively (p = 0.635; Table 1).

(green). Stevenel's blue and alizarin red stain

Fig. 2 Graft particles showing various grades of resorption after 2 weeks of healing. New bone was found surrounding the graft particles in the
periphery (outer bone; OB) and spreading inward the graft particles in small quantities (interpenetrating bone network; IBN). Soft tissues, cells and
vessels are visible within the graft. Osteoclastic zones were found in the periphery of the graft (red arrows in a and b indicate some examples). a,
b Plasma group. ¢, d Control group. a—c Bone wall regions. b—d Sub-mucosa regions. The asterisks indicate examples of OB (yellow) and IBN
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Table 1 Tissues components in percentages (%) in the elevated area in the plasma and control sites after 2 and 10 weeks of
healing. Mean values (in bold) +standard deviation and 95% confidence interval (upper; lower)

OB IBN Total new bone  B-TCP HA Soft tissues  Vessels Osteoclastic zones  Inflammatory infiltrate

2 weeks plasma 6.1 £49 22 +24 82+70 52.1+124 374+84 22+13 0.1+02 0.1 £ 04
(3.0;9.1) (0.7;3.6) (39;126) (444;59.7)  (32.2,425) (14,300 (00;0.1) (0.0; 04)

2 weeks control  6.0+50 33+43 93+85 525+ 8.1 35659 26+11 0.0+0]1 0.0 £ 00
(29;9.1) (0.6; 6.0) (4.0 164) (47.5; 57.5) (319;393) (19,33 (0.0; 0.1) (0.0; 0.0)

p 0.59%4 0.093 0635 0.575 0.507 0.069 0.180 0317

10 weeks plasma  16.0£92 18.0+90 340+ 173 2831126 357+80 19+07 0.1=%01 0.1+02
(9.9; 22.0) (122, 239) (22.7;454) (20.1; 36.5) (305;41.00 (14, 23) (0.0; 0.1) (=0.1,02)

10 weeks control 153 +51 16.0+83 313+119 319+ 118 346+t54 19%10 02+03 0.1+02
(120;187)  (106; 21.5)  (23.5; 39.1) (24.2; 39.6) (31.3;381) (12,25 (0.0;0.3) (0.0;0.2)

p 0.767 0.407 0.5%4 0314 0678 0.726 0416 0317

OB outer bone, INB interpenetrating bone network. Total new bone = OB + INB. B-TCP HA residual alloplastic graft.

None of the difference was statistically significant

Most of the new bone was located outside (OB) the resi-
dues of the granules of biomaterial. However, few frac-
tions of 2.2 + 2.4% and 3.3+4.3% (p=0.093) of new bone
was found inside the residues of the granules (IBN). Bio-
material devoid of new bone was found in proportion of
52.1 + 12.4% in the plasma group, and 52.5 + 8.1% in
the control group (p = 0.575).

Within the various regions examined, the highest amount
of new bone was found in the Bone walls region while the
lowest amount was in the central region (Table 2). Most
commonly, higher amounts of OB were found compared to
IBN. The highest fractions of IBN (~ 5%) were found in the

Bone walls regions of both groups and in the Sub-mucosa
region of the control group. No differences were found be-
tween groups for any of the variables evaluated.

After 10 weeks of healing, in both groups, higher
amounts of newly formed bone were observed compared
to the previous period analyzed. Biomaterial was still
present, but in lower percentages compared the 2-week
period. New bone was penetrating from the peripheral
regions inside the remnants of graft particles forming a
network of bridges interconnecting the outer bone with
the biomaterial through its porosities (Fig. 3 a-d). Within
the elevated space, new bone increased to 34.0 + 17.3%

Table 2 Hard tissue components in percentages (%) in the various regions of the elevated area in the plasma and control sites after
2 weeks of healing. Mean values (in bold) +standard deviation and 95% confidence interval (upper; lower)

OB IBN Total new bone B-TCP HA
Bone walls plasma 12.1 + 64 52+55 17.3 £ 10.7 42.7 +97
8.1, 16.1) (1.8, 86) (10.6; 23.9) (36.7; 48.8)
Bone wall control 11.5+78 5.1+57 16.6 + 11.7 46.5+ 11.8
(6.7, 16.4) (1.6, 87) (94; 23.9) (39.2; 53.8)
p 0.646 0.635 0575 0.169
Central plasma 2.1 +31 1.0+18 3.1 + 41 58.0 + 15.1
0.2, 4.1) (=0.1;21) (06;5.7) (48.6; 67.3)
Central control 21 +27 19+ 34 4.0+ 57 59.9 + 94
(0.5, 3.8) (—0.2,4.0) (0.5, 7.6) (54.1; 65.7)
p 1.000 0.465 0.345 0.721
Sub-mucosa plasma 6.9 +93 24 +29 93+ 119 55.1 + 137
(1.2, 12.6) 0.6;4.1) (19, 16.7) (46.6; 63.6)
Sub-mucosa control 4.0 + 45 53+69 94+ 114 51.7 + 133
(1.2, 6.8) (1.0, 96) (2.3, 16.4) (434; 59.9)
p 0310 0.075 0.866 0.284
Close-to-window plasma 33 +45 0.6 £ 20 4.0 £ 63 56.3 + 153
(0.5, 6.1) (—=06;19) (0.1, 7.9 (46.8; 65.8)
Close-to-window control 52+54 25+ 36 7.7 £ 80 52.6 + 149
(1.9, 86) (03;4.7) (2.8, 12.7) (434;61.9)
P 0271 0.068 0.128 0.767

OB outer bone, INB interpenetrating bone network. Total new bone = OB + INB. 3-TCP HA residual alloplastic graft

None of the difference was statistically significant.
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: f b L OpoeN
Fig. 3 Healing after 10 weeks. Higher amounts of newly formed bone were observed in this period of healing compared the previous period
analyzed, in both the plasma group (a, b) and the control group (c, d). New bone was penetrating from the peripheral regions (outer bone; OB)
inside the remnants of graft particles forming a network of bridges interconnecting the peripheral bone with the biomaterial through its
porosities (Interpenetrating bone network; IBN). a Central region. b—d Sub-mucosa regions. ¢ Next to the bone wall region. The asterisks indicate
examples of OB (yellow) and IBN (green). Stevenel’s blue and alizarin red

Table 3 Hard tissue components in percentages (%) in the various regions of the elevated area in the plasma and control sites after
10 weeks of healing. Mean values (in bold) +standard deviation and 95% confidence interval (upper; lower)

OB IBN Total new bone B-TCP HA
Bone walls plasma 251+75 220+ 68 47.1 + 124 20.1 £ 10.1
(20.1; 30.0) (17.5; 26.5) (39.0; 55.1) (13.5; 26.8)
Bone walls control 244 + 85 175+ 87 41.9 + 125 250+ 119
(189; 29.9) (11.8;23.2) (33.7, 50.1) (17.2,32.8)
p 0.859 0.051 0214 0.051
Central plasma 118116 214+ 112 33.2+ 196 294 + 186
(4.2, 194) (14.1; 28.8) (20.4; 46.0) (17.2,41.6)
Central control 59+65 179 £ 133 23.8 + 19.1 38.9+ 150
(1.6, 10.1) (9.2, 26.6) (11.3; 36.2) (29.1; 48.7)
p 0.161 0362 0.208 0214
Sub-mucosa plasma 122+ 117 124+ 118 24,6 + 205 38.1 + 200
(4.5, 19.8) (4.7, 20.1) (11.2; 38.0) (25.0; 51.2)
Sub-mucosa control 85+ 119 128 + 11.7 21.2 + 208 409 +214
(0.7, 16.3) (5.1, 204) (7.7, 34.8) (26.9; 54.9)
p 0515 0.678 0.594 0678
Close-to-window plasma 129+ 119 15.9 + 85 288 £ 176 294 + 122
(5.1, 20.7) (104; 21.5) (17.3; 40.3) (214;37.4)
Close-to-window control 134 + 84 145+ 97 279 + 159 29.8 + 164
(7.9, 18.9) (8.1, 20.8) (17.5, 38.3) (19.1; 40.5)
p 0.767 0.594 0813 0.906

OB outer bone, INB interpenetrating bone network. Total new bone = OB + INB. 3-TCP HA residual alloplastic graft
None of the difference was statistically significant
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in the plasma group and to 31.3 + 11.9% in the control
group (p = 0.594; Table 1). In this stage on healing,
slightly higher amounts of IBN within the granule resi-
dues were found compared to the OB formed outside of
these residues. No statistically significant differences
were found between groups for both the OB (p = 0.767)
and IBN (p = 0.407).

Within the various regions examined, the highest
amount of new bone was found again in the bone walls
region, reaching proportions of 47.1 + 12.4% and 41.9 +
12.5% in the plasma and control group, respectively (p =
0.214; Table 3). The new bone increased in all regions
examined and higher amounts of IBN were found com-
pared to OB in all regions with the exclusion of the Bone
walls region.

Discussion

The aims of the present experiment were to study new
bone ingrowth into B-TCP/HA granules used as filler
material for sinus lifting and the influence on the healing
of the bioactivation of the graft with argon plasma.

Small fractions of interpenetrating bone network
(IBN) were already present after 2 weeks of healing.
After 10 weeks, IBN reached similar percentages of the
outer bone (OB).

After 2 weeks of healing, similar amounts of new bone
were found in the plasma (8.2%) and in the control sites
(9.3%). After 10 weeks of healing, bone increased consid-
erably in both groups, with a tendency of higher bone
formation in the plasma (34.0 + 17.3%) compared to the
control group (31.3 + 11.9%). However, no statistically
significant differences were found both after two (p =
0.635) and 10 (p = 0.594) weeks of healing.

The results from the present study are in agreement
with those from another similar study in which DBBM
granules were used [24]. In that study, similarly to the
present study, the granules of the biomaterial planned to
be grafted into the sinus of the test sites were activated
with argon plasma. After 2 weeks of healing, similar
fractions of woven bone were detected in both test
(5.2%) and control (5.0%) sites. In the present study,
after 2 weeks of healing, slightly higher values of new
bone were found compared to that of the study men-
tioned above. These higher values might be related to
that fact that bone was also formed inside the remnants
of biomaterial (interpenetrating bone network) so that
the total amount of new bone was expressed as the sum
of the IBN and the outer bone (OB) formed outside the
remaining graft.

In the study mentioned above [24], only the bone out-
side the granules of DBBM was assessed. The bone that
possibly grew within the DBBM was not visible at the
histological examination maybe because of its reduced
quantity due to the high density, the low rate of
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resorption, and the low size of the porosities of that bio-
material [9, 27, 28]. In the present study, slightly over-
lighting the histological slides at the light microscope,
the new bone turned out to be visible through the graft
under resorption. This allowed an evaluation also of this
bone (IBN) that was penetrating inside the graft, forming
a network of bridges interconnecting the outer bone
with the remnants of the porous biomaterial. This aspect
had been already described in a previous experimental
study on sinus lifting in sheep [25]. After sinus mucosa
elevation, the elevated space was filled with a similar
graft used in the present study, also composed of 60%
HA and 40% B-TCP. At the test sites, the bone window
was repositioned on the antrostomy while, at the control
site, the antrostomy was protected with a citric acid ester
membrane. The graft was found interpenetrated by new
bone for 37.1% and 33.1% at the test and control sties,
respectively. The outer bone outside the graft was 16.4%
and 15.0%, respectively.

After 10 weeks of healing, in a study mentioned above
[24], 23.5% and 21.3% of new bone was found at the
plasma and control groups, respectively. These propor-
tions were higher compared to those of the OB assessed
outside the graft granules in the present study that were
16.0% and 15.3% in the plasma and control group, respect-
ively. However, in the present study, the IBN contributed
to increase the total amount of new bone to 34.0% in the
plasma group and 31.3% in the control group.

It should be considered that the biomaterial used in
the present experiment exhibited macroporosity and a
higher degradation compared to the rate of resorption
reported for the DBBM. The intrinsic characteristics of
the synthetic biomaterial used in the present study
allowed the new bone to invade part of the graft while it
was resorbing. In the DBBM study, instead, the new
bone was laying on the surface of the graft. A larger por-
tion of the elevated space was still occupied by this bio-
material after 10 weeks of healing compared to that
found in the present study. In fact, even though, after 2
weeks of healing, the proportion of biomaterial was
higher in the present experiment by 3—-4% compared to
the DBBM study [24]; after 10 weeks, the percentages of
HA/B-CTP turned out to be lower compared to the
DBBM percentage. This, in turn, means that the DBBM
granules were still occupying larger part of the elevated
space of the sinus, allowing the bone to grow on their
surface and within the zones interposed among granules.
Instead, the higher rate of graft degradation of the HA/
B-TCP in conjunction with the growth of bone inside
the macroporosities of the graft provided a further envir-
onment into which the bone could grow. This might ex-
plain the higher amount of new bone found in the
present experiment compared to that reported in the
DBBM study.
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Bone formation in sinuses lifted using DBBM has been
described in several studies [9, 14, 29, 30]. It was re-
ported that new bone is mainly formed from the sinus
bone walls and then propagates within the elevated
space, towards the other regions. The DBBM granules
are initially surrounded by a dense tissue rich in mesen-
chymal cells that, over time, is substituted by new bone
contributing to the consolidation of the graft into the
newly formed bone [9].

Similar experiments in rabbits used a collagenated
cortico-cancellous porcine bone that presented a different
pattern of healing compared to the present study [10-13,
31]. In one of these experiments [12], the bony window
was repositioned on the antrostomy at the test site while,
at control site, a collagen membrane was applied. After 2
weeks of healing, ~ 2% of new bone and 40% of xenograft
were found in both sites. About 3% of resorption zones
containing multinucleated cells were identified while, in
the present study, only 0.1-0.2% of these cells was found.
After 8 weeks of healing, new bone reached proportions
of ~ 23-24% and the xenograft was reduced to ~ 11%.
About 2% of resorptive zones with multicellular units
were still observed. The collagenated cortico-cancellous
porcine bone was either resorbed before allowing bone
formation or, similarly to the DBBM, it was enclosed into
new bone formed on its surface. No bone within the graft
remnants was identified.

In the present study, after 10 weeks of healing, only
2.7% higher amount of total new bone was found at the
plasma compared to the control group. The highest differ-
ence (9.4%; p = 0.208) in favor of the plasma group was
registered in the central region of the elevated space. This
result agrees with that reported in a study mentioned
above in which DBBM was used [24]. In that study, after
10 weeks of healing, a statistically significant difference
was found in favor of the plasma group only for the cen-
tral region. It might be speculated that, own to the low
rate of resorption of the DBBM, a high content of bioacti-
vated biomaterial was still present in this period of heal-
ing, yielding a higher bone formation in the plasma sites
compared to the untreated control sites. It was concluded
that the bio-activation of the DBBM increased bone for-
mation in regions far from the osteogenic sources.

In the present study, the highest percentages of new
bone were found in the bone walls region. This agrees
with the outcomes reported by several experimental
studies on sinus lifting [9-14], that showed that the
most important source for bone formation is repre-
sented by the pre-exiting sinus bony walls. Instead, the
role of the sinus membrane in the early phases of heal-
ing is still under debate [7-10, 32—37].

In conclusion, the bio-activation with argon plasma on
a synthetic graft composed of HA and B-TCP used as
filler material for sinus lifting showed a tendency to
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improve bone formation. This tendency was higher in
the central region, far from the osteogenic sources.
However, the difference between test and control sites
was neither statistically significant nor clinically relevant.
The properties of the synthetic biomaterial allowed new
bone ingrowth into the graft, forming a network of brid-
ges interconnecting the bone formed outside the gran-
ules with the remnants of the porous biomaterial.

A limitation of the present study was the limited sample
and the loss of the specimen of one animal. The animal
model used is another limitation due to its accelerate rate
of healing compared to that in human [38]. Comparisons
with biomaterial with a lower rate of resorption should be
performed to disclose differences. Biopsies in humans
should be performed to confirm the histological data,
using similar synthetic biomaterial, and studying new
bone formation around and inside the graft.
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