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A B S T R A C T   

Background: Despite commercial airlines mandating masks, there have been multiple documented events of 
COVID-19 superspreading on flights. Conventional models do not adequately explain superspreading patterns on 
flights, with infection spread wider than expected from proximity based on passenger seating. An important 
reason for this is that models typically do not consider the movement of passengers during the flight, boarding, or 
deplaning. Understanding the risks for each of these aspects could provide insight into effective mitigation 
measures. 
Methods: We modeled infection risk from seating and fine-grained movement patterns – boarding, deplaning, and 
inflight movement. We estimated infection model parameters from a prior superspreading event. We validated 
the model and the impact of interventions using available data from three flights, including cabin layout and seat 
locations of infected and uninfected passengers, to suggest interventions to mitigate COVID-19 superspreading 
events during air travel. Specifically, we studied: 1) London to Hanoi with 201 passengers, including 13 sec-
ondary infections among passengers; 2) Singapore to Hangzhou with 321 passengers, including 12 to 14 sec-
ondary infections; 3) a non-superspreading event on a private jet in Japan with 9 passengers and no secondary 
infections. 
Results: Our results show that the inclusion of passenger movement better explains the infection spread patterns 
than conventional models do. We also found that FFP2/N95 mask usage would have reduced infection by 
95–100%, while cloth masks would have reduced it by only 40–80%. Results indicate that leaving the middle 
seat vacant is effective in reducing infection, and the effectiveness increases when combined with good quality 
masks. However, with a good mask, the risk is quite low even without the middle seats being empty. 
Conclusions: Our results suggest the need for more stringent guidelines to reduce aviation-related superspreading 
events of COVID-19.   

1. Introduction 

1.1. Background 

COVID-19 transmission is primarily driven by proximity between an 
infective person and a susceptible person [1]. Superspreading events, 
which involve the secondary infection of an unusually large number of 
persons [2], often occur when groups of people are brought into close 
proximity. However, crowded events do not necessarily lead to super-
spreading. While it is difficult to predict if an event would lead to 
superspreading, it is possible to take preventive steps to reduce its 

possibility. 
There has been much concern about superspreading in airplanes, 

because large numbers of passengers are brought into close proximity 
there. While a lack of contact tracing has limited the availability of data 
on the extent of superspreading in planes, there have been multiple in-
cidents recorded [3]. The Centers for Disease Control and Prevention 
(CDC) has, therefore, suggested guidelines, such as the use of masks, to 
reduce the risk of COVID-19 spread on planes [4]. 

Mathematical models can provide insight into the mechanisms of 
superspreading on planes and help evaluate the potential effectiveness 
of mitigation measures in reducing the likelihood of such events. 
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However, conventional models are unable to adequately explain 
superspreading patterns on flights, with infection spread being wider 
than would be expected from proximity based on passenger seating [5, 
6]. An important reason for this is that models typically do not consider 
the movement of passengers during the flight, boarding, or deplaning 
[7]. Understanding the risks for each of these aspects could provide 
insight into effective mitigation measures. 

We have previously proposed an approach using pedestrian dy-
namics, a technique used to simulate the movement of individuals 
[8–10], to identify infection risk arising from proximity during boarding 
[11–14]. Here, we augment it with modeling of inflight transmission. 
We also use a new infection spread model that accounts for varying 
infection dose by distance to an infective person, and then include it in a 
standard exponential dose-response relationship for infection risk. It is 
difficult to identify model parameters a priori. Instead, we calibrate the 
model against a different superspreading event and modify the model to 
account for behavioral features such as mask wearing. 

In this paper we: (1) explain the modeling methodology, which could 
be adopted in a wide variety of contexts; (2) quantify the role of different 
categories of passenger movements on infection transmission in air-
planes; and (3) identify the impact of mask type on reducing the like-
lihood of superspreading events. 

We show that our modeling approach can explain the wider spread of 
COVID-19 than expected in the superspreading examples considered. 
Our model also shows that N95 masks would be around ten time more 
effective than regular cloth masks in reducing superspreading. 

1.2. Flights studied 

We studied three flights that had detailed information on in-flight 
COVID-19 seating arrangements and infection profiles of the passen-
gers as shown in Fig. 1. A London flight is used to study the impact of 
passenger movement on infection risk when masks are not used. A 
Singapore flight examines the impact of mask wearing. We use a non- 
superspreading event of a Japan flight to validate the insight from our 
simulations that widespread use of N95 masks can greatly reduce the 
risk of infection. 

The London flight departed from London to Hanoi on March 1st, 2020 
[5]. The 10-h flight had 16 crewmembers and 201 passengers onboard. 
Twenty-one of these passengers were in the business class cabin, 35 in 
premium economy, and 148 passengers were seated in the economy 
cabin. One index passenger was located in the business class, resulting in 
11 secondary infections in the first-class and two in the economy cabin. 
Mask usage was not mandated on this flight, and its use was only 
sporadic. 

The Singapore flight departed Singapore on January 24th, 2020 and 
landed in Hangzhou, China on January 25th [6,15]. The total flight 
duration was 5 h, with 321 passengers on board. Mask usage was 
mandatory for this flight. All infected cases were wearing the masks, 
although the mask type is not known [6,15]. There were two index cases 
on the plane, sitting far apart, with one sitting next to the window in the 
aft-economy cabin and the other next to the aisle in the mid-economy 
cabin. An additional 14 passengers tested positive within the 14 days 
quarantine. Some of these passengers could have been exposed outside 
of the flight [6], and the number of inflight infections is estimated as 12 
[15]. 

Fig. 1. Distribution of infections states on flights. Red denotes index cases, orange secondary infections, green PCR negative, and grey empty seats. (a) London flight, 
(b) Singapore flight, and (c) Japan flight. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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The Japan flight, a private jet, flew for 13.5 h to Israel on Feb 20th, 
2020 with 9 passengers, two of whom were infectious [16]. High quality 
FFP2 masks were used on this flight. No secondary infections occurred. 
We included this non-superspreading flight to increase the robustness of 
our model by examining a “control” scenario where secondary infections 
did not occur. 

2. Methods 

We use pedestrian dynamics to model the movement of passengers 
during boarding and deplaning. and inflight movement. We use results 
from existing literature to model inflight movement [19]. We then input 
the passenger trajectories and seating arrangements into a fine-scaled 
infection spread model to identify infection risk. We describe the 
models and related parameter estimation below. 

2.1. Infection risk model 

The data-driven infection spread model developed here consists of 
following two components: (i) quantification of the amount of patho-
gens ingested (infection dose) by a susceptible individual while in close 
vicinity of an infectious individual, with the dose monotonically 
decreasing with distance, and (ii) computation of the differential risk of 
successful transmission during a certain event using infection dose. The 
primary mechanisms captured in the model include the duration and 
intensity of the effective contact with an infectious individual and the 
temporal distribution of distance between individuals, which are ob-
tained from passenger seating and movement during air travel. 

The model leverages the results of pedestrian dynamics that captures 
population mixing behaviors that depend on the environment’s layout, 
the behavioral preferences of people, and proxemic behavior of walking 
groups, which determine an individual’s path of movement. Pedestrian 
dynamics provides the trajectories of people by outputting the position 
of each person every Δt seconds. If we know the positions of infective 
and susceptible persons at a given time, then we can estimate the virus 
dose that each susceptible person is exposed to in a small time-interval 
using our new model. 

We sum the virus dose over all time intervals to find a normalized, 
unitless measure Vn of total dose received by the nth susceptible person 
over the duration of the simulation. There are numerous dose-response 
relationships available to estimate infection probability from the dose 
[18,19]. The commonly used exponential model yields the infection 
probability Pn for the nth susceptible person as given in Eq. (1). Pn is 
summed over all passengers to yield the expected number of infections 
over the flight. 

Pn = 1 − exp( − Vn) (1) 

The viral load will decay with distance, and we assume a threshold d0 
beyond which the viral load is zero. We note that the viral load decreases 
with distance and that in a short time interval, the exposure is propor-
tional to the time of exposure. We incorporate these insights into a 
functional form that gives the dose Vn,t on susceptible person n from M 
infective persons in the tth time step as: 

Vn,t = κ.Δt.
∑M

m=1

(

1 −
dn,m

do

)α

, dn,m < do (2) 

Here, dn,m is the distance between the nth and mth passengers at time 
t. Vn is obtained by summing Vn,t over all the time steps. The parameter κ 
is a measure of the dose a person is exposed to per unit time while α 
controls how quickly the virus concentration drops with distance. The 
model parameters κ, α, and do are unknown. They are estimated by 
fitting against a known superspreading event. 

2.2. Scenario to estimate infection model parameters 

We fit parameters to the above model based on a superspreading 
event in a restaurant in Guangzhou, China early in the pandemic [20]. 
This situation involves no movement, which makes parameter estima-
tion easier than it would be otherwise. We focus on one room with five 
occupied tables where one infected person spread the infection to 
several others belonging to three families. Further details on the 
parameter estimation are provided in the appendix. Parameter values of 
κ = 0.15 min-1, α = 2.5, and d0 = 3.5 m fit the data. 

We next explain how we account for a counterfactual situation where 
people wear masks. Masks act in two ways; first, they reduce the level of 
contagion in the vicinity of the index case and second, they decrease the 
distance threshold for viral activity. We vary the parameters κ and d0 to 
account for these two factors. N95/FFP2 masks are roughly 97% effec-
tive in preventing leakage under normal fit [21]; therefore, we reduce 
the κ parameter to 3% of the no-mask case. For a regular mask, we use 
the filtration efficiency of 50% for a cotton bandana “folded surgeon 
general style” [22]. Another report indicates that the distance traveled 
by the by respiratory droplets halves at any given time with surgical 
mask usage [23]. So, we take d0 as 1.7 m for all masks. 

2.3. Pedestrian dynamics for boarding 

Social force models for pedestrian dynamics model the pedestrians as 
particles whose motion is determined by a balance of repulsive and 
propelling forces [10]. While the agency of the pedestrians to reach a 
specified target is described in propelling force, the tendency to avoid 
collision and impenetrability with other individuals in high-density 
crowds and immobile obstacles in the pedestrian’s path are repre-
sented by the repulsive terms. These repulsive and attractive forces are 
summed to obtain the net force acting on ith pedestrian (or particle) as 
shown in Eq. (3), with further details provided in Ref. [14]. 

f i =
mi

τ
(
vi

o(t) − vi(t)
)
+
∑

j∕=i

f ij(t) (3) 

The dynamics of pedestrian movement is accomplished by obtaining 
the velocity and positions at next time steps through numerical inte-
gration. In prior work, this model has been validated and applied to 
movement of people in airplanes and pedestrian queues, where the re-
sults from Eq. (3) are augmented by human behavior features, such as 
time for stowing luggage and seat conflicts [11–13]. The pedestrian 
model parameters are based on our previous study [14]. There is sto-
chasticity as to the order of boarding within each cabin. This is 
accounted for by averaging the trajectories over 50 simulations. 

2.4. Modeling inflight movement 

Hertzberg et al. [17] indicate that about 62% of the passengers move 
from their seat for a median duration of 5.4 min (167, in flights of 
211–313 min duration. Due to the longer duration of the London flight, 
we consider that all 56 passengers in business and premium economy 
cabins move for an average of 5.4 min out of their seat and 24% of them 
leave the seat more than once. The typical path of the passenger involves 
movement to the closest restroom and back to the seat. To account for 
stochasticity in pedestrian movement, we performed 50 simulations of 
inflight pedestrian movement for each case analyzed. 

Given the location of the index case in the business class cabin, the 
in-flight movement of passengers in the economy cabin at the back of the 
aircraft is not relevant, as it would not bring those passengers into 
contact with the index case. Further, based on Eq. (1), we can combine 
the dose due to the different processes (seated co-location, inflight 
movement and, boarding/deplaning) and combine the resulting 
probabilities. 
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3. Results 

3.1. Impact of passenger movement 

We estimate infection risk in the London flight in order to (i) verify 
that the model yields reasonable results in the absence of masks and (i) 
to examine the role of passenger movement in explaining super-
spreading patterns. Table 1 shows that the expected number of cases 
from the simulations – 12.86 – is close to the observed 13 cases. In 
addition, it also explains the two cases observed in the economy section. 
Fig. 2 illustrates the infection risk probabilities. 

We next examine the impact of passenger movement by simulating 
(i) no passenger movement, (ii) inflight movement without boarding/ 
deplaning, and (iii) only boarding/deplaning. Without passenger 
movement, the simulations estimate around nine secondary infections in 
the Business class cabin, which is not far off from the observed eleven 
cases. But it yields no infections in the premium economy and economy 
cabins. We next examine if inflight movement can explain these cases. 
However, adding inflight movement results only in expected 0.4 cases in 
the premium economy and economy cabins. Table 1 shows that the 
boarding/deplaning processes contribute more to infection risk than 
inflight movement does. Note that the combined expected number of 
cases for the flight is less than for (i) and (iii) combined because the 
infection from (ii) and (iii) are not mutually exclusive. 

3.2. Impact of mask usage 

We now examine the impact of different types of masks, using the 
Singapore flight, where masks were mandated, as the example. The 
specific type of masks used is not known. We assume a regular mask. The 
estimated number of cases from the simulations, including passenger 
movement, is 10.7. This matches well with the 12 secondary cases re-
ported to be from the flight [15]. Fig. 3 shows the risk profile as a 
function of the seat. 

We now examine the counterfactuals of N95/FFP2 mask use and no 
mask use. If everyone had used FFP2 or N95 masks for the entire 
duration of the flight, then the model indicates that there would be 2.3 
secondary infections. If there had been no mask usage, then there would 
be 55 secondary infections. 

We next examine the impact of different mask leakages, varying from 
3% (N95 with normal fit) to 100% (no mask) to provide insight on the 
impact of different mask qualities. We also consider various distance 
thresholds. These would be useful when the actual distance to which 
droplets and aerosols travel is known for different airflow patterns and 
masks. Fig. 4 presents these results, which could be used to estimate risk 
when future empirical results identify suitable values for these two 
parameters. 

We finally examine if the different infection results from different 
mask usages (no mask, regular mask, N95/FFP2) are statistically sig-
nificant. Table 2 presents the mean and 95% confidence intervals for the 
three masking cases with 50 simulations each and found that none of the 
upper or lower bounds overlap. Additionally, we performed paired two- 

sample t-tests between various combinations of masking scenarios (No 
mask vs Cloth, Cloth vs FFP2, No mask vs FFP2) for both full capacity 
and middle seat vacant conditions. We also performed similar analyses 
comparing full capacity and middle seat vacant conditions for identical 
masking scenarios. The p-values reported in Table 3 and the confidence 
intervals listed in Table 2 indicate that each masking scenario clearly has 
a different impact. 

3.3. Validating the impact of N95/FFP2 masks 

To validate the impact of N95/FFP2 masks, we consider the Japan 
flight, where all passengers used FFP2 masks. This was a long flight 
(13.5 h), which we would expect to lead to high infection risk. Simu-
lations with parameters corresponding to FFP2 masks estimate 0.02 new 
infections with the two index cases in this flight. This is a good estimate 
of the zero observed cases. Our simulations showed that regular masks 
would have resulted in 1.7 new infections, while no mask would lead to 
2.8 new infections. Thus, N95/FFP2 masks conferred significant benefit. 

3.4. Impact of vacant middle seats 

In response to COVID-19, many airlines had adopted strategies to 
lower density including keeping middle seats vacant [24]. Airlines have 
discontinued such practices as air travel increased in recent months 
[25]. A recent study suggested that keeping middle seats empty lowers 
exposure (dose) significantly [26]. But it did not calculate the infection 
risk, account for passenger movement, or study the impact of masks. 

Here, we examine the impact of keeping middle seats vacant on 
infection risk while account for passenger movement. We use the 
Singapore flight as an example in the results presented in Fig. 5. The 
same index cases, flight duration, boarding, deplaning and inflight 
movement are considered, but the middle seats in the economy cabin are 
unoccupied. 

3.5. Sensitivity analysis 

We carry out global parameter sensitivity analysis to evaluate the 
robustness in model outcomes using the sampling based Partial Rank 
Correlation Coefficients (PRCC) sensitivity analysis to evaluate vari-
ability in model predictions, using the method described in Refs. [27, 
28]. We examined the effects of the uncertain parameters on the primary 
outcome the number of new infections, for the Singapore flight with (i) 
the original configuration, and (ii) with middle seat vacant. PRCCs are 
used to identify the key parameters contributing to the imprecision in 
predicting the future infection probability. Details are provided in the 
appendix. 

Our results shown in Fig. 6 indicate that both input parameters have 
a positive PRCC. Both parameters have positive PRCC values and were 
significantly different from 0 (p-value < 0.05). The results suggest that 
for both outcome variables, infection distance parameter is most influ-
ential in determining the magnitude of outcome variable (|PRCC| > 0.9 
at p < 0.05 significance level). However, the influence of both input 
variables (κ reduction and ro) is much higher for the middle seat vacant 
case compared to the original seating configuration. 

4. Discussion 

Our method is able to explain the superspreading events on the 
Hanoi and Singapore flights. Typical simulations and empirical studies 
do not include movement and so cannot explain such spread [7,29]. 
Consequently, contact tracing is performed only for two rows in front 
and back of the index cases [3]. We show that inclusion of passenger 
movement can quantitatively explain the spread of infection far from the 
index cases. Furthermore, boarding/deplaning has a greater impact than 
inflight movement. 

Empirical observation even from before the COVID-19 pandemic had 

Table 1 
Simulation results for secondary infection by passenger status during the London 
flight.  

Passenger status Total 
secondary 
infections 

Secondary 
infections in 
business class 

Secondary infections 
in the economy 
cabins 

Only seated 9.1 9.1 0 
Seated +

inflight 
movement 

9.8 9.4 0.4 

Boarding/ 
deplaning 

4.4 3.3 1.1 

Complete flight 12.34 10.86 1.48  
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shown that infection can spread far from the index case and that such 
cases can contribute significantly to the average number of secondary 
infections during outbreaks on flights [30]. On one flight with distant 
secondary transmission of COVID-19, the use of a common toilet was 
suggested as the cause [31], although the general possibility from 
boarding was also identified. The London flight had separate restrooms 
for business and economy classes, and so this cannot explain the 

infection spread while boarding does. 
We have also considered the impact of masking. Infection spread has 

been observed on flights with passengers wearing surgical masks [32], 
which are more effective than cloth masks. Our results suggest that FFP2 
or equivalent masks can almost eliminate all risk of secondary infections 
during a potential superspreading event, with 95–100% reduction on 
the flights considered in this paper. Cloth masks are not as effective, 
although they are considerably better than no mask, leading to 40–80% 

Fig. 2. Model results of the distribution of secondary infections in the London flight for the duration of the flight.  

Fig. 3. Model results of the distribution of secondary infections in the Singapore flight for the duration of the flight.  

Fig. 4. Model results of the distribution of secondary infections in the Singapore flight for varying mask leakage and infectivity distance thresholds.  

Table 2 
Statistical analysis of the impact of masks.  

Mask Middle seat 
vacant 

Mean secondary 
infections 

Upper bound 
– 95% 

Lower bound 
– 95% 

None No 55.03 55.30 54.76 
Cloth No 10.46 10.48 10.44 
N95/ 

FFP2 
No 2.32 2.39 2.33 

None Yes 29.75 29.93 29.58 
Cloth Yes 5.72 5.74 5.71 
N95/ 

FFP2 
Yes 0.99 0.99 0.99  

Table 3 
The p-values for various masking scenarios.  

Full capacity p- 
value 

Middle Seat 
Vacant 

p- 
value 

Full capacity vs 
Middle seat 
vacant 

p- 
value 

No mask vs 
Cloth 

≪10− 6 No mask vs 
Cloth 

≪10− 6 No mask vs No 
mask 

≪10− 6 

Cloth vs 
N95/FFP2 

≪10− 6 Cloth vs 
N95/FFP2 

≪10− 6 Cloth vs Cloth ≪10− 6 

No mask vs 
N95/FFP2 

≪10− 6 No mask vs 
N95/FFP2 

≪10− 6 N95/FFP2 vs 
N95/FFP2 

≪10− 6  
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reduction in cases. Consequently, the number of cases with an N95/FFP2 
would be a factor ten lower than with a cloth mask. 

Keeping middle seats empty can reduce infection risk by (i) reducing 
the number of people exposed and (ii) reducing exposure to the conta-
gion through distancing. In the Singapore flight, the number of pas-
sengers with this strategy is reduced from 321 to 222, a 30.8% 
reduction. The reduction in the fraction of infections is greater than this, 
showing the impact of reduced exposure. However, except for the lowest 
distance threshold, the reduction in the number of persons plays a 
greater role in the reduced risk. A reduction in the distance threshold 
plays a greater role than mask efficiency in reducing infection risk. 

Our results suggest the following. (i) Good quality masks ought to be 
recommended; regular masks have significantly lower impact on long 
flights. (ii) Leaving middle seat empty is effective and its effectiveness 
increases when combined with good quality masks. However, with a 
good mask, the risk is quite low even without middle seats empty. 
Consequently, use of an N95 mask might be financially more viable than 
keeping middle seats vacant. (iii) Effective boarding strategies could 
mitigate the risk of a wide infection outbreak on flights [21,30]. It is not 
the dominant factor, but it does play a noticeable role. 

Our work has the following limitations. (i) We do not aim to predict 
the risk of a superspreading event. Rather, we aim to obtain insight into 

Fig. 5. (a) Model results of the distribution of secondary infections in the Singapore flight for varying mask usage with middle seat vacant. (b) Relative reduction in 
number of infections comparing middle seat vacant and original aircraft. 

Fig. 6. PRCC of the number of infections for the original Singapore flight 
configuration and with middle seat vacant. 
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superspreading events so that the risk of such events could be reduced. 
(ii) We have not accounted for social interactions at the boarding gate or 
during other aspects of air travel. (iii) We used empirical comparison 
against the Japan flight to validate our model with FFP2 masks. How-
ever, there is a possibility that the index cases on that flight were not 
superspreaders. Nevertheless, the relative impacts of the masks would 
be accurately captured in the simulations. (iv) We did not consider the 
characteristics of different variants of concern (VOC) of the virus. 
Furthermore, the study only included small outbreaks in airplanes with a 
small sample size. Thus, one needs to be careful while extrapolating the 
current findings to other contexts. (v) We have not accounted for vac-
cinations. The number of secondary infections can be expected to 
decrease, although the different strategies would have similar relative 
benefits because the response would still be a monotonic function of the 
dose. (vi) In future work, we intend generalizing the parameter esti-
mation so that results from the mechanisms of infection spread, such as 
through computational fluid dynamics modeling along with knowledge 
of virus shedding distributions, could be used to calibrate it for new 
scenarios. 

5. Conclusions 

We developed a model that includes passenger movement in the 
analysis of infection risk on flights. We validated it against observed 
superspreading events on flights. Our results show that the inclusion of 
passenger movement better explains the infection spread patterns than 
conventional models do. We also found that FFP2/N95 mask usage 
would have reduced infection by 95–100%, while cloth masks would 

have reduced it by only 40–80%. This suggests the need for more 
stringent guidelines to reduce aviation-related superspreading events of 
COVID-19. 
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Appendix 

A. Distance to the infective person 

The appendix to Ref. [19] includes detailed seating arrangements, from which we calculated the distance of each person to the infective person. 
The superspreader belonged to the family in Table A, and so we exclude that family from the analysis, because they could have been infected through 
contact elsewhere. We consider other tables, two of which yielded secondary infections – Tables B and C, and two of which did not – Tables E and F. 
This study also gave the overlap between the infective person and Tables B and C as 53 min and 73 min for Tables B and C respectively. The number of 
secondary infections was between four and five, because there was a possibility of one person being exposed to COVID-19 elsewhere. Information on 
the exposure is provided in Table A1 below.  

Table A1 
Exposure distance and time to infective person.  

Person Distance (m) Exposure time (minutes)* Secondary infection status 

B1 1.796 53 Infected 
B2 0.998 53 Infected 
B3 1.531 53 Infected 
B4 2.117 53 Not infected 
C1 2.833 73 Infected 
C2 3.398 73 Possibly infected 
C3 3.182 73 Not infected 
C4 3.414 73 Not infected 
C5 3.057 73 Not infected 
C6 2.546 73 Not infected 
C7 2.210 73 Not infected 
E1 3.675 20 Not infected 
E2 3.145 20 Not infected 
E3 2.566 20 Not infected 
E4 2.114 20 Not infected 
E5 2.105 20 Not infected 
F1 3.986 20 Not infected 
F2 4.694 20 Not infected 
F3 4.700 20 Not infected 
F4 4.175 20 Not infected 
F5 2.984 20 Not infected 

* The exposure time at Tables D and E was not available. We assumed a shorter exposure time of 20 min for those tables. 
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B. Parameter estimation 

We fit parameters to the infection model as follows. There is only one infected person; so, M = 1, rn,m is independent of time, giving the distance 
between the infective person and a susceptible person, Δt is taken as the exposure time in Eq. (2), and there is only one time step, giving Vn,t = Vn. We 
substitute Vn into Eq. (1) to get the probability of infection for each susceptible person. We add the infection probabilities of all susceptible persons to 
get the expected number of susceptible persons. We determine the range of parameters for which the number of infected persons is between 4 and 5. 
We also required the parameter range to reflect the absence of secondary infections in Tables D and E by yielding the expected number of infections as 
close to 0. 

C. Sensitivity analysis procedure 
Following PRCC methodology described in Refs. [26,27], we rank the uncertain parameters, κ and d0, in the sampling matrix together with the 

outcome measures. The PRCC measures the effect of each input parameter on outcome variable, assuming the parameters to be independent. A 
positive PRCC value indicates that an increase in that parameter leads to an increase in an outcome variable, while a negative value shows that 
increasing that parameter decreases the outcome variable. Two linear regression models are generated in response to each parameter and outcome 
measure. A Pearson rank correlation coefficient for the residuals from the two regression models gives the PRCC values for that specific parameter. We 
consider a uniform distribution for all model parameters. PRCC and p-value of the data are computed using 100 runs of sampling from input pa-
rameters distribution. 
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