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Genomic reconstruction of the SARS-CoV-2 
epidemic in England

Harald S. Vöhringer1, Theo Sanderson2,3, Matthew Sinnott2, Nicola De Maio1, Thuy Nguyen2, 
Richard Goater2, Frank Schwach2,4, Ian Harrison4, Joel Hellewell5, Cristina V. Ariani2, 
Sonia Gonçalves2, David K. Jackson2, Ian Johnston2, Alexander W. Jung1, Callum Saint2, 
John Sillitoe2, Maria Suciu2, Nick Goldman1, Jasmina Panovska-Griffiths6, The Wellcome 
Sanger Institute COVID-19 Surveillance Team*, The COVID-19 Genomics UK (COG-UK) 
Consortium*, Ewan Birney1, Erik Volz7, Sebastian Funk5, Dominic Kwiatkowski2, 
Meera Chand4,8, Inigo Martincorena2, Jeffrey C. Barrett2 ✉ & Moritz Gerstung1,9 ✉

The evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
virus leads to new variants that warrant timely epidemiological characterization.  
Here we use the dense genomic surveillance data generated by the COVID-19 Genomics 
UK Consortium to reconstruct the dynamics of 71 different lineages in each of 315 
English local authorities between September 2020 and June 2021. This analysis reveals a  
series of subepidemics that peaked in early autumn 2020, followed by a jump in 
transmissibility of the B.1.1.7/Alpha lineage. The Alpha variant grew when other lineages 
declined during the second national lockdown and regionally tiered restrictions 
between November and December 2020. A third more stringent national lockdown 
suppressed the Alpha variant and eliminated nearly all other lineages in early 2021.  
Yet a series of variants (most of which contained the spike E484K mutation) defied these 
trends and persisted at moderately increasing proportions. However, by accounting for 
sustained introductions, we found that the transmissibility of these variants is unlikely 
to have exceeded the transmissibility of the Alpha variant. Finally, B.1.617.2/Delta was 
repeatedly introduced in England and grew rapidly in early summer 2021, constituting 
approximately 98% of sampled SARS-CoV-2 genomes on 26 June 2021.

The SARS-CoV-2 virus accumulates approximately 24 point muta-
tions per year, or 0.3 mutations per viral generation1–3. Most of these 
mutations appear to be evolutionarily neutral but, as the SARS-CoV-2 
epidemic spread around the world during spring 2020, it became 
apparent that the virus is continuing to adapt to its human host.  
An initial sign was the emergence and global spread of the spike protein 
variant D614G in the second quarter of 2020. Epidemiological analyses 
estimated that this mutation, which defines the B.1 lineage, confers a 
20% transmissibility advantage over the original A lineage that was 
isolated in Wuhan, China4.

A broad range of lineages have been defined since that can be used to 
track SARS-CoV-2 transmission across the globe5,6. For example, B.1.177/
EU-1 emerged in Spain in early summer 2020 and spread across Europe 
through travel7. Subsequently, four variants of concern (VOCs) have 
been identified by the WHO and other public health authorities: the 
B.1.351/Beta lineage was discovered in South Africa8, where it spread 
rapidly in late 2020. The B.1.1.7/Alpha lineage was first observed in 
Kent in September 2020 (ref. 9) from where it swept through the United 
Kingdom and large parts of the world due to a 50–60% increase10–13 in 
transmissibility. P.1/Gamma originated in Brazil14,15 and has spread 

throughout South America. Most recently, B.1.617.2/Delta was associ-
ated with a large surge of coronavirus disease 2019 (COVID-19) in India 
in April 2021 and subsequently around the world.

Epidemiology of SARS-CoV-2 in England
In the United Kingdom, by late June 2021 the COVID-19 Genomics UK 
Consortium (COG-UK) had sequenced close to 600,000 viral sam-
ples. These data have enabled a detailed reconstruction of the dynam-
ics of the first wave of the epidemic in the United Kingdom between 
February and August 2020 (ref. 16). Here we leverage a subset of those 
data—genomic surveillance data generated at the Wellcome Sanger 
Institute—to characterize the growth rates and geographical spread 
of different SARS-CoV-2 lineages and reconstruct how newly emerging 
variants changed the course of the epidemic.

Our data cover England between 1 September 2020 and 26 June 
2021, encompassing three epidemic waves and two national lock-
downs (Fig. 1a). In this time period, we sequenced 281,178 viral 
genomes, corresponding to an average of 7.2% (281,178/3,894,234) 
of all of the positive tests from PCR testing for the wider population, 
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ranging from 5% in winter 2020 to 38% in early summer 2021, and 
filtered to remove cases that were associated with international 
travel (Methods and Extended Data Fig. 1a, b). Overall, a total of 
328 SARS-CoV-2 lineages were identified using the PANGO lineage 
definition5. As some of these lineages were only rarely and intermit-
tently detected, we collapsed these on the basis of the underlying 
phylogenetic tree into a set of 71 lineages for modelling (Fig. 1b–d 
and Supplementary Tables 1 and 2).

These data reveal a diversity of lineages in the fall of 2020 followed 
by sweeps of the Alpha and Delta variants (Fig. 1b and Supplementary 
Tables 2 and 3). Figure 1c shows the geographical distribution of cases 
and of different lineages, studied at the level of 315 English lower tier 
local authorities (LTLAs), administrative regions with approximately 
100,000–200,000 inhabitants.

Modelling the dynamics of SARS-CoV-2
We developed a Bayesian statistical model that tracks the fraction 
of genomes from different lineages in each LTLA in each week and 
fits the daily total number of positive Pillar 2 tests (Methods and 
Extended Data Fig. 2). The multivariate logistic regression model 
is conceptually similar to previous approaches in its estimation of 
relative growth rates10,11. It accounts for differences in the epide-
miological dynamics between LTLAs, and enables the introduction 
of new lineages (Fig. 2a–c). Despite the sampling noise in a given 
week, the fitted proportions recapitulate the observed proportions 
of genomes as revealed by 35 example LTLAs covering the geography 
of England (Fig. 2b, c and Supplementary Notes 1 and 2). The quality 
of fit is confirmed by different probabilistic model selection criteria 
(Extended Data Fig. 3) and also evident at the aggregated regional 
level (Extended Data Fig. 4).

Although the relative growth rate of each lineage is modelled as 
identical across LTLAs, the local viral proportions change dynami-
cally due to the timing and rate of introduction of different lineages. 
The model also calculates total and lineage-specific local incidences 
and time-dependent growth rates and approximate reproduction num-
bers Rt by negative binomial spline fitting of the number of daily posi-
tive PCR tests (Methods, Fig. 2d and Extended Data Fig. 2c). Together, 
this enables a quantitative reconstruction of different periods of the 
epidemic, which we will discuss in chronological order.
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Fig. 1 | SARS-CoV-2 surveillance sequencing in England between September 
2020 and June 2021. a, Positive Pillar 2 SARS-CoV-2 tests in England. b, The 
relative frequency of 328 different PANGO lineages, representing 
approximately 7.2% of the tests shown in a. c, Positive tests (row 1) and the 
frequency of 4 major lineages (rows 2–5) across 315 English lower tier local 
authorities. d, The absolute frequency of sequenced genomes mapped to  
71 PANGO lineages. The blue areas in the pie charts are proportional to the 
fraction of LTLAs in which a given lineage was observed.
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Fig. 2 | Spatiotemporal model of 71 SARS-CoV-2 lineages in 315 English 
LTLAs between September 2020 and June 2021. a, The average growth rates 
for 71 lineages. Data are median ± 95% CI. b, Lineage-specific relative frequency 

for 35 selected LTLAs, arranged by longitude and latitude to geographically 
cover England. c, Fitted lineage-specific relative frequency for the same LTLAs 
as in b. d, Fitted lineage-specific incidence for the same LTLAs as in b.
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Multiple subepidemics in autumn 2020
Autumn 2020 was characterized by a surge of cases—concentrated in 
the north of England—that peaked in November, triggering a second 
national lockdown (Fig. 1a, c). This second wave initially featured B.1 
and B.1.1 sublineages, which were slightly more prevalent in the south 
and north of England, respectively (Fig. 2b, c). Yet, the proportion of 
B.1.177 and its geographically diverse sublineages steadily increased 
across LTLAs from around 25% at the beginning of September to 65% 
at the end of October. This corresponds to a growth rate of between 
8% (growth per 5.1 d; 95% confidence interval (CI) = 7–9%) and 12% (95% 
CI = 11–13%) greater than that of B.1 or B.1.1. The trend of B.1.177 expan-
sion relative to B.1 persisted throughout January (Extended Data Fig. 5a) 
and involved a number of monophyletic sublineages that arose in the 
UK, and similar patterns were observed in Denmark17 (Extended Data 
Fig. 5b). Such behaviour cannot easily be explained by international 
travel, which was the major factor in the initial spread of B.1. throughout 
Europe in summer 2020 (ref. 7). However, the underlying biological 
mechanism is unclear as the characteristic A222V spike variant is not 
believed to confer a growth advantage7.

The spread of Alpha during restrictions
The subsequent third wave from December 2020 to February 2021 was 
almost exclusively driven by Alpha/B.1.1.7, as described previously10,11,18. 
The rapid sweep of Alpha was due to an estimated transmissibility 
advantage of 1.52 compared with B.1.1 (growth per 5.1 d; 95% CI = 1.50–
1.55; Fig. 2a), assuming an unchanged generation interval distribution19. 
The growth advantage is thought to stem, at least in part, from spike 
mutations that facilitate ACE2 receptor binding (N501Y)20,21 and furin 
cleavage (P681H)22. Alpha grew during a period of restrictions, which 
proved to be insufficient to contain its spread (Fig. 3a).

The second national lockdown from 5 November to 1 December 
2020 successfully reduced the total number of cases, but this masked 
a lineage-specific increase (Rt > 1; defined as growth per 5.1 d) in Alpha 
and a simultaneous decrease in other hitherto dominant lineages (Rt < 1) 
in 78% (246/315) of LTLAs23 (Fig. 3b, c). This pattern of Alpha-specific 
growth during lockdown is supported by a model-agnostic analysis of 
raw case numbers and proportions of Alpha genomes (Fig. 3e).

Three levels of regionally tiered restrictions were introduced in 
December 2020 (ref. 24) (Fig. 3a). The areas under different tiers of 
restrictions visibly and quantitatively coincide with the resulting local  
Rt values, with greater Rt values in areas with lower restrictions (Fig. 3a–c). 
The reopening caused a surge of cases across all tiers with Rt > 1, which 
is also evident in selected time series (Fig. 3d). As Alpha cases surged, 
more areas were placed under tier 3 restrictions, and stricter tier 4 
restrictions were introduced. Nevertheless, Alpha continued to grow 
(Rt > 1) in most areas, presumably driven by increased social interaction 
over Christmas (Fig. 3c).

After the peak of 72,088 daily cases on 29 December 2020 (Fig. 1a), 
a third national lockdown was announced on 4 January 2021 (Fig. 3a). 
The lockdown and increasing immunity derived from infection and 
increasing vaccination25 led to a sustained contraction of the epidemic 
to approximately 5,500 daily cases by 8 March, when restrictions began 
to be lifted by reopening schools (further steps of easing occurred on 
12 April and 17 May). In contrast to the second national lockdown 93% 
(296/315) of LTLAs exhibited a contraction in both Alpha and other 
lineages (Fig. 3e).

Elimination of lineages in early 2021
The lineage-specific rates of decline during the third national lock-
down and throughout March 2021 resulted in large differences in 
lineage-specific incidence. Cases of Alpha contracted nationally from 
a peak of around 50,000 daily new cases to approximately 2,750 on 

1 April 2021 (Fig. 4a). At the same time, B.1.177—the most prevalent 
lineage in November 2020—fell to less than an estimated 10 cases per 
day. Moreover, the incidence of most other lineages present in autumn 
2020 was well below 1 after April 2021, implying that the majority of 
them have been eliminated. The number of observed distinct PANGO 
lineages declined from a peak of 137 to only 22 in the first week of April 
2021 (Fig. 4b). Although this may be attributed in part to how PANGO 
lineages were defined, we note that the period of contraction did not 
replenish the genetic diversity lost due to the selective sweep by Alpha 
(Extended Data Fig. 6).

Refractory variants with E484K mutations
Parallel to the elimination of many formerly dominant SARS-CoV-2 
lineages, a number of new variants were imported or emerged (Fig. 4a). 
These include the VOCs B.1.351/Beta and P.1/Gamma, which carry the 
spike variant N501Y that is also found in B.1.1.7/Alpha and a similar pair 
of mutations (K417N/T and E484K) that were each shown to reduce the 
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binding affinity of antibodies from vaccine-derived or convalescent 
sera20,26–29 . The ability to escape from previous immunity is consistent 
with the epidemiology of Beta in South Africa8 and especially the surge 
of Gamma in Manaus15. The variants B.1.525/Eta, B.1.526/Iota, B.1.1.318 
and P.2/Zeta also harbour E484K spike mutations as per their lineage 
definition, and sublineages of Alpha and A.23.1 that acquired E484K 
were found in England (Fig. 5a, b).

The proportion of these E484K-containing variants was consistently 
0.3–0.4% from January to early April 2021. A transient rise, especially 
of the Beta and Gamma variants, was observed in May 2021 (Fig. 5a, b). 
Yet, the dynamics were largely stochastic and characterized by a series 
of individual and localized outbreaks, possibly curtailed by local surge 
testing efforts against Beta and Gamma variants (Fig. 5c). Consistent 
with the transient nature of these outbreaks, the estimated growth rates 
of these variants were typically lower than Alpha (Fig. 2a).

Sustained imports from international travel were a critical driving 
mechanism behind the observed number of non-Alpha cases. A phy-
logeographical analysis establishing the most parsimonious sets of 
monophyletic and exclusively domestic clades, which can be inter-
preted as individual introductions, confirmed that A.23.1 with E484K (1 
clade) probably has a domestic origin as no genomes of the same clade 
were observed internationally (Methods, Fig. 5d and Extended Data 

Fig. 7). The estimated number of introductions was lowest for B.1.1.318 
(3 introductions, range = 1–6), and highest for Beta (49 introductions, 
range = 45–58) and Eta (30 introductions, range = 18–34). Although our 
data exclude genomes sampled directly from travellers, these repeated 
introductions show that the true rate of transmission is lower than the 
observed increase in the number of surveillance genomes.

The rise of Delta from April to June 2021
The B.1.617.1/Kappa and B.1.617.2/Delta lineages, which were first 
detected in India in 2020, first appeared in English surveillance sam-
ples in March 2021. In contrast to other VOCs, Delta/Kappa do not con-
tain N501Y or E484K mutations, but their L452R mutation may reduce 
antibody recognition27 and P681R enhances furin cleavage30, similar 
to the P681H mutation of Alpha. The frequency of Delta, which har-
bours further spike mutations of unknown function, increased rapidly 
and reached levels of 98% (12,474/12,689) on 26 June 2021 (Fig. 5a, b). 
Although initially constrained to a small number of large local clusters, 
such as in Bolton, in May 2021 (Fig. 5c), Delta was detected in all LTLAs 
by 26 June 2021 (Fig. 1c). The sweep of Delta occurred at a rate of around 
59% (growth per 5.1 d, CI = 53–66) higher than Alpha with minor regional 
variation (Fig. 2a, Extended Data Fig. 4e and Supplementary Table 4).

The rapid rise of Delta contrasts with Kappa, which grew more slowly 
despite being introduced at a similar time and into a similar demo-
graphic background (Figs. 2a and 5b). This is also evident in the phyloge-
ographical analysis (based on data as of 1 May 2021). The 224 genomes of 
Delta derive from larger clades (23 introductions, range = 6–40; around 
10 genomes for every introduction) compared with the 80 genomes 
of Kappa (17 introductions, range = 15–31; around 3–4 genomes per 
introduction) and also other variants (Fig. 5d and Extended Data Fig. 8). 
The AY.1 lineage, derived from Delta and containing an additional K417N 
mutation, appeared only transiently (Fig. 5b).

The sustained domestic growth of Delta and its international spread31 
relative to the Alpha lineage are the first evidence of a biological growth 
advantage. The causes appear to be a combination of increased trans-
missibility and immune evasion. Evidence for higher transmissibility 
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includes the fast growth in younger unvaccinated age groups, reports of 
elevated secondary attack rates32 and a higher viral load33. Furthermore, 
vaccine efficacy against infection by Delta is diminished, depending 
on the type of vaccine34,35, and reinfection is more frequent36, both sup-
ported by experimental research demonstrating the reduced antibody 
neutralization of Delta by vaccine-derived and convalescent sera37,38.

The higher growth rate of Delta—combined with gradual reopen-
ing and proceeding vaccination—repeated the dichotomous pattern 
of lineage-specific decline and growth, although now with declining 
Alpha (Rt < 1) and growing Delta (Rt > 1; Fig. 5e, f). Overall, we estimate 
that the spread of more transmissible variants between August 2020 
and early summer 2021 increased the average growth rate of circulating 
SARS-CoV-2 in England by a factor of 2.39 (95% CI = 2.25–2.42; Fig. 5g). 
Thus, previously effective interventions may prove to be insufficient 
to contain newly emerging and more transmissible variants.

Discussion
Our dense genomic surveillance analysis identified lineages that con-
sistently grew faster than others in each local authority and, therefore, 
at the same time, under the same restrictions and in a comparable 
population. This pinpointed a series of variants with elevated trans-
missibility, in broad agreement with other reports10,11,13,15,31. However, 
a number of limitations exist. The growth rates of rare new variants are 
stochastic due to introductions and superspreading. Local outbreaks 
of the Beta and Gamma variants triggered asymptomatic surge test-
ing, which may have reduced their spread. Furthermore, transmis-
sion depends both on the viral variant and the immunity of the host 
population, which changed from less than 20% to over 90% in the study 
period39. This will influence the growth rates of variants with immune 
evasion capabilities over time. The effect of immunity is currently not 
modelled, but may become more important in the future as SARS-CoV-2 
becomes endemic. Further limitations are discussed in the Limitations 
section of the Methods.

The third and fourth waves in England were each caused by more trans-
missible variants, which outgrew restrictions that were sufficient to 
suppress previous variants. During the second national lockdown, Alpha 
grew despite falling numbers for other lineages and, similarly, Delta took 
hold in April and May when cases of Alpha were declining. The fact that 
such growth was initially masked by the falling cases of dominant lineages 
highlights the need for dense genomic surveillance and rapid analysis to 
devise optimal and timely control strategies. Such surveillance should 
ideally be global as, even though Delta was associated with a large wave 
of cases in India, its transmissibility remained unclear at the time due to 
a lack of systematic genomic surveillance data.

The 2.4-fold increase in growth rate during the study period as a result 
of new variants is also likely to have consequences for the future course 
of the pandemic. If this increase in growth rate was explained solely by 
higher transmissibility, it would raise the basic reproduction number R0 
from a value of around 2.5–3 in spring 2020 (ref. 40) to the range of 6–7 
for Delta. This is likely to spur new waves of the epidemic in countries 
that have to date been able to control the epidemic despite low vaccina-
tion rates, and it may exacerbate the situation elsewhere. Although the 
exact herd-immunity threshold depends on contact patterns and the 
distribution of immunity across age groups41,42, it is worth considering 
that Delta may increase the threshold to values around 0.85. Given 
current estimates of vaccine efficacy34,35,43 this would require nearly 
100% vaccination coverage. Even though more than 90% of adults had 
antibodies against SARS-CoV-2 (ref. 39) and close to 70% had received 
two doses of vaccination, England saw rising Delta variant cases in the 
first weeks of July 2021. It can therefore be expected that other countries 
with high vaccination coverage are also likely to experience rising cases 
when restrictions are lifted.

SARS-CoV-2 is likely to continue its evolutionary adaptation process 
to humans44. To date, variants with considerably higher transmissibility 

have had strongest positive selection, and swept through England dur-
ing the 10 months of this investigation. However, the possibility that 
an increasingly immune population may now select for variants with 
better immune escape highlights the need for continued systematic 
and, ideally, global genomic surveillance.
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Methods

Pillar 2 SARS-CoV-2 testing data
Publicly available daily SARS-CoV-2 test result data from testing for the 
wider population outside the National Health Service (Pillar 2 newCas-
esBySpecimenDate) were downloaded from https://coronavirus.data.
gov.uk/ spanning the date range from 1 September 2020 to 30 June 
2021 for 315 English LTLAs (downloaded on 20 July 2021). These data 
are mostly positive PCR tests, with about 4% of results from lateral flow 
tests without PCR confirmation. In this dataset, the City of London is 
merged with Hackney, and the Isles of Scilly are merged with Cornwall 
due to their small number of inhabitants, thereby reducing the number 
of English LTLAs from 317 to 315. Population data for each LTLA were 
downloaded from the Office of National Statistics (ONS; https://www.
ons.gov.uk/peoplepopulationandcommunity/populationandmigra-
tion/populationestimates/datasets/populationestimatesforukeng-
landandwalesscotlandandnorthernireland).

SARS-CoV-2 surveillance sequencing
In total, 281,178 tests (September 2020 to June 2021) were collected as 
part of random surveillance of positive tests of residents of England 
from four Pillar 2 Lighthouse laboratories. The samples were collected 
between 1 September 2020 and 26 June 2021. A random selection of 
samples was taken, after excluding those that were known to be taken 
during quarantine of recent travellers, and samples from targeted and 
local surge testing efforts. The available metadata made this selection 
imperfect, but these samples should be an approximately random 
selection of infections in England during this time period, and the large 
sample size makes our subsequent inferences robust.

We amplified RNA extracts from these tests with Ct < 30 using the 
ARTIC amplicon protocol (https://www.protocols.io/workspaces/
coguk/publications). We sequenced 384-sample pools on Illumina 
NovaSeq, and produced consensus fasta sequences according to the 
ARTIC nextflow processing pipeline (https://github.com/connor-lab/
ncov2019-artic-nf). Lineage assignments were made using Pangolin5, 
according to the latest lineage definitions at the time, except for B.1.617, 
which we reanalysed after the designation of sublineages B.1.617.1, 
B.1.617.2 and B.1.617.3. Lineage prevalence was computed from 281,178 
genome sequences. The genomes were mapped to the same 315 English 
LTLAs as for the testing data described above. Mapping was performed 
from outer postcodes to LTLA, which can introduce some misassign-
ment to neighbouring LTLAs. Furthermore, lineages in each LTLA were 
aggregated to counts per week for a total of 43 weeks, defined beginning 
on Sunday and ending on Saturday.

Finally, the complete set of 328 SARS-CoV-2 PANGO lineages was col-
lapsed into l = 71 lineages using the underlying phylogenetic tree, such 
that each resulting lineage constituted at least 100 genomes, unless the 
lineage has been designated a VOC, variant under investigation (VUI) 
or variant in monitoring by Public Health England32.

Spatiotemporal genomic surveillance model
A hierarchical Bayesian model was used to fit local incidence data in 
a given day in each local authority and jointly estimate the relative 
historical prevalence and transmission parameters. In the following, t 
denotes time and is measured in days. We use the convention that bold 
lowercase symbols, such as b, indicate vectors.

Motivation
Suppose that t r t t′( ) = ( + ( )) ⋅ ( )0x b x   describes the ordinary differential 
equation (ODE) for the viral dynamics for a set of l different lineages. 
Here r0(t) is a scalar time-dependent logarithmic growth rate that is 
thought to reflect lineage-independent transmission determinants, 
which changes over time in response to behaviour, non-pharmaceuti-
cal interventions (NPIs) and immunity. This reflects a scenario in which 
the lineages differ only in terms of the intensity of transmission, but 

not the intergeneration time distribution. The ODE is solved by 
t ν t( ) = e = e ( )∫t r t t t+ + ( )d +0t

t

0x c b c b . The term ν(t) contributes the same fac-
tor to each lineage and therefore drops from the relative proportions 
of lineages t( ) = ∝ e

t
t

t( )
∑ ( )

+p x
x

c b .
In the given model, the lineage prevalence p(t) follows a multinomial 

logistic-linear trajectory. Moreover, the total incidence factorizes into 
t ν t( ) = ( ) ∑ e t+µ c b, which provides a basis to separately estimate the total 

incidence µ(t) from Pillar 2 test data and lineage-specific prevalence 
p(t) from genomic surveillance data (which are taken from a varying 
proportion of positive tests). By using the equations above, one can 
subsequently calculate lineage-specific estimates by multiplying µ(t) 
with the respective genomic proportions p(t).

Incidence
In the following text, we describe a flexible semi-parametric model of 
the incidence. Let µ(t) be the expected daily number of positive Pillar 
2 tests and s the population size in each of 315 LTLAs. Denote 
λ µt t s( ) = log ( ) − log( )  the logarithmic daily incidence per capita at 
time t in each of the 315 LTLAs.

Suppose f(t) is the daily number of new infections caused by the 
number of people infected at time t. As new cases are noticed and tested 
only after a delay u with distribution g, the observed number of cases 
f   *(t) will be given by the convolution

∫f t g u f t u u g f t( ) = ( ) ( − )d = ( )( ).
0

∞

∗∗

The time from infection to test is given by the incubation time plus 
the largely unknown distribution of the time from symptoms to test, 
which, in England, was required to take place within 5 d of symptom 
onset. To account for these factors, the log normal incubation time 
distribution from ref. 46 is scaled by the equivalent of changing the 
mean by 2 d. The convolution shifts cases approximately 6 d into the 
future and also spreads them out according to the width of g (Extended 
Data Fig. 2a).

To parametrize the short- and longer-term changes of the logarith-
mic incidence λ t( ), we use a combination of h weekly and k − h monthly 
cubic basis splines f t f t f t( ) = ( ( ), …, ( )).k1  The knots of the h weekly splines 
uniformly tile the observation period except for the last 6 weeks.

Each spline basis function is convolved with the time to test distribu-
tion g, ∗ ∗ ∗t f t f t( ) = ( ( ), …, ( ))k1f  as outlined above and used to fit the 
logarithmic incidence. The derivatives of the original basis f′(t) are 
used to calculate the underlying growth rates and Rt values, as shown 
further below. The convolved spline basis f*(t) is used to fit the per 
capita incidence in each LTLA as (Extended Data Fig. 2b):

λ B f ∗t t( ) = × ( ).

This implies that fitting the incidence function for each of the m local 

authorities is achieved by a suitable choice of coefficients R∈ m k×B , 
that is one coefficient for each spline function for each of the LTLAs. 
The parameters B have a univariate normal prior distribution each, 
which reads for LTLA i and spline j:

B N σ(0, ).i j j, ∼

The s.d. of the prior regularizes the amplitude of the splines and is 
chosen as σ = 0.2j   for weekly splines and σ = 1j   for monthly splines. This 
choice was found to reduce the overall variance resulting from the high 
number of weekly splines, meant to capture rapid changes in growth 
rates, but which can lead to instabilities particularly at the end of the 
time series, when not all effects of changes in growth rates are observed 
yet. The less regularized monthly splines reflect trends on the scale of 
several weeks and are therefore subject to less noise.

https://coronavirus.data.gov.uk/
https://coronavirus.data.gov.uk/
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/datasets/populationestimatesforukenglandandwalesscotlandandnorthernireland
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/datasets/populationestimatesforukenglandandwalesscotlandandnorthernireland
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/datasets/populationestimatesforukenglandandwalesscotlandandnorthernireland
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/datasets/populationestimatesforukenglandandwalesscotlandandnorthernireland
https://www.protocols.io/workspaces/coguk/publications
https://www.protocols.io/workspaces/coguk/publications
https://github.com/connor-lab/ncov2019-artic-nf
https://github.com/connor-lab/ncov2019-artic-nf


Finally, we introduce a term accounting for periodic differences in 
weekly testing patterns (there are typically 30% lower specimens taken 
on weekends; Fig. 1a):

µ µ t δ t~ = ( ) ⋅ ( ),

where the scalar δ t δ t i i( ) = ( − × 7) ∀ ∈ N  and prior distribution 
δ t( ) LogNormal(0, 1)∼  for t = 1, …, 6 and δ(0) = 1.

The total incidence was fitted to the observed number of positive 
daily tests X by a negative binomial with a dispersion ω = 10. The over-
dispersion buffers against non-Poissonian uncorrelated fluctuations 
in the number of daily tests.

X µ∼t t ω( ) NB( ~ ( ), ).

The equation above assumes that all elements of X(t) are independ-
ent, conditional on  t( )µ̃ .

Growth rates and Rt values
A convenient consequence of the spline basis of log( ) =µ λ, is that the 
delay-adjusted daily logarithmic growth rate r(t) = λ′(t) of the local 
epidemic simplifies to:

t t( ) = × ′( ),r B f

where t′ ( )jf  represents the first derivative of the jth cubic spline basis 
function.

To express the daily growth rate as an approximate reproductive 
number Rt, one needs to consider the distribution of the intergenera-
tion time, which is assumed to be gamma distributed with mean 6.3 d 
(α = 2.29, β = 0.36)46. The Rt value can be expressed as a Laplace trans-
form of the intergeneration time distribution47. Effectively, this short-
ens the relative time period because the exponential dynamics put 
disproportionally more weight on stochastically early transmissions 
over late ones. For reasons of simplicity and being mindful also of the 
uncertainties of the intergeneration time distribution, we approximate 
Rt values by multiplying the logarithmic growth rates with a value of  
τe = 5.1 d, which was found to be a reasonable approximation to the 
convolution required to calculate Rt values (denoted here by the lower 
case symbol ρ t( ) in line with our convention for vector-variate symbols 
and to avoid confusion with the epidemiological growth rate rt),

t
t

t
τ t τlog( ( )) ≈

d log( ( ))
d

¯ = ( )¯e eρ
µ

r

Thus, the overall growth rate scaled to an effective inter generation 
time of 5.1 d can be readily derived from the derivatives of the spline 
basis and the corresponding coefficients. The values derived from 
the approach are in very close agreement with those of the method of 
ref. 48, but shifted according to the typical delay from infection to test 
(Extended Data Fig. 2b).

Genomic prevalence
The dynamics of the relative frequency P(t) of each lineage was mod-
elled using a logistic-linear model in each LTLA, as described above. 
The logistic prevalence of each lineage in each LTLA is defined as 

t t( ) = logit( ( ))L P . This is modelled using the piecewise linear expression

L C b tt( ) = + ⋅ ,+

where b may be interpreted as a lineage-specific growth advantage 
and C as an offset term of dimension (LTLA × lineages). Time +t  is meas-
ured since introduction t0 and is defined as

t t tt t= − if > else − ∞+ 0 0

and accounts for the fact that lineages can be entirely absent prior to 
a stochastically distributed time period preceding their first observa-
tion. This is because, in the absence of such a term, the absence of a 
lineage prior to the point of observation can only be explained by a 
higher growth rate compared with the preceding lineages, which may 
not necessarily be the case. As the exact time of introduction is gener-
ally unknown, a stochastic three-week period of ∼t tUnif(−14, 0) +0 0

obs

prior to the first observation t0
obs was chosen.

As the inverse logit transformation projects onto the l − 1 dimensional 
simplex Sl−1 and therefore loses one degree of freedom, B.1.177 was set 
as a baseline with

t( ) = 0.⋅,0L

The offset parameters C are modelled across LTLAs as indepen-
dently distributed multivariate normal random variables with a 
lineage-specific mean c and covariance IΣ = 10 ⋅ l−1, where Il−1 denotes 
an l l( − 1) × ( − 1)  identity matrix. The lineage-specific parameters 
growth rate b and average offset c are modelled using IID Normal 
prior distributions

b N(0, 0.2)∼

c N(−10, 5)∼

The time-dependent relative prevalence P(t) of SARS-CoV2 lineages 
was fitted to the number of weekly genomes Y(t) in each LTLA by a 
Dirichlet-multinomial distribution with expectation E Y P Gt t t[ ( )] ≈ ( ) ⋅ ( ) 
where G(t) are the total number of genomes sequenced from each LTLA 
in each week. For LTLA i, this is defined as:

t α t t( ) DirMult( + ( ), ( )).i i i,⋅ 0 1 ,⋅Y α P G∼

The scalar parameter αα = 0.010  can be interpreted as a weak prior 
with expectation 1/n, making the model less sensitive to the introduc-
tion of single new lineages, which can otherwise exert a very strong 
effect. Furthermore, the array α =1

cases
2  increases the variance to 

account for the fact that, especially at high sequencing coverage 
(genomes ≈ cases), cases and therefore genomes are likely to be  
correlated and overdispersed as they may derive from a single trans-
mission event. Other choices such as αα = 1, 0001  , which make the model 
converge to a standard multinomial, leave the conclusions qualita-
tively unchanged. This model aspect is illustrated in Extended Data 
Fig. 2c.

Lineage-specific incidence and growth rates
From the two definitions above it follows that the lineage-specific 
incidence is given by multiplying the total incidence in each LTLA µ(t) 
with the corresponding lineage frequency estimate P(t)for lineage j 
at each time point

t t t( ) = ( ) ⋅ ( )j j⋅, ⋅,M µ P  for j l= 0, …, − 1

Further corresponding lineage-specific Rt values R(t) in each LTLA 
can be calculated from the lineage-agnostic average Rt value ρ(t) and 
the lineage proportions P(t) as

t t τ tlog ( ) = log ( ) + ¯ ( − ( ) × )eR ρ b P b

By adding the log-transformed growth rate fold changes b and sub-
tracting the average log-transformed growth rate change P bt( ) × , it 
follows that R R bt t( ) = ( )ei i

τ
,⋅ ,0

ē , where t( )i,0R  is the Rt value of the refer-
ence lineage j = 0 (for which = 00b ) in LTLA i. It follows that all other 
lineage-specific the Rt values are proportional to this baseline at any 
given point in time with factor eτeb.
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Inference
The model was implemented in numpyro49,50 and fitted using stochastic 
variational inference51. Guide functions were multivariate normal dis-
tributions for each row (corresponding to an LTLA) of B, C to preserve 
the correlations across lineages and time as well as for (b, c) to also 
model correlations between growth rates and typical introduction.

Phylogeographic analyses
To infer VOC introduction events into the UK and corresponding clade 
sizes, we investigated VOC genome sequences from GISAID (https://
www.gisaid.org/) available from any country. We downloaded multiple  
sequence alignments of genome sequences with the release dates 
17 April 2021 (for the analysis of the lineages A.23.1, B.1.1.318, B.1.351 
andB.1.525) and 5 May 2021 (for the analysis of the B.1.617 sublineages). 
We next extracted a subalignment from each lineage (according to the 
1 April 2021 version of PANGOlin for the 17 April 2021 alignment and the 
23 April 2021 version of PANGOlin for the 5 May 2021 alignment) and, 
for each subalignment, we inferred a phylogeny through maximum 
likelihood using FastTree2 (v.2.1.11)52 with the default options and GTR 
substitution model53.

On each VOC/VUI phylogeny, we inferred the minimum and maxi-
mum number of introductions of the considered SARS-CoV-2 lineage 
into the UK compatible with a parsimonious migration history of the 
ancestors of the considered samples; we also measured clade sizes for 
one specific example parsimonious migration history. We counted only 
introduction events into the UK that resulted in at least one descend-
ant from the set of UK samples that we considered in this work for our 
hierarchical Bayesian model; similarly, we measured clade sizes by 
the number of UK samples considered here included in such clades. 
Multiple occurrences of identical sequences were counted as separate 
cases, as this helped us to identify rapid SARS-CoV-2 spread.

When using parsimony, we considered only migration histories along 
a phylogenetic tree that are parsimonious in terms of the number of 
migration events from and to the UK (in practice, we collapse all of 
the non-UK locations into a single one). Furthermore, as SARS-CoV-2 
phylogenies present substantial numbers of polytomies, that is, phylo-
genetic nodes where the tree topology cannot be reconstructed due to 
a lack of mutation events on certain branches, we developed a tailored 
dynamic programming approach to efficiently integrate over all pos-
sible splits of polytomies and over all possible parsimonious migration 
histories. The idea of this method is somewhat similar to typical Bayes-
ian phylogeographic inference54 in that it enables us to at least in part 
integrate over phylogenetic uncertainty and uncertainty in migration 
history; however, it also represents a very simplified version of these 
analyses, more so than ref. 16, as it considers most of the phylogenetic 
tree as fixed, ignores sampling times and uses parsimony instead of a 
likelihood-based approach. Parsimony is expected to represent a good 
approximation in the context of SARS-CoV-2, due to the shortness (both 
in time and substitutions) of the phylogenetic branches considered55,56. 
The main advantage of our approach is that, owing to the dynamic 
programming implementation, it is more computationally efficient 
than Bayesian alternatives, as the most computationally demanding 
step is the inference of the maximum likelihood phylogenetic tree. 
This enables us to infer plausible ranges for numbers of introduction 
events for large datasets and to quickly update our analyses as new 
sequences become available. The other advantage of this approach 
is that it enables us to easily customize the analysis and to focus on 
inferred UK introductions that result in at least one UK surveillance 
sample, while still making use of non-surveillance UK samples to inform 
the inferred phylogenetic tree and migration history. Note that pos-
sible biases due to uneven sequencing rates across the world55 apply to 
our approach as well as other popular phylogeographic methods. Our 
approach works by traversing the maximum likelihood tree starting 
from the terminal nodes and ending at the root (postorder traversal). 

Here, we define a ‘UK clade’ as a maximal subtree of the total phylog-
eny for which all terminal nodes are from the UK, all internal nodes 
are inferred to be from the UK and at least one terminal node is a UK 
surveillance sample; the size of a UK clade is defined as the number 
of UK surveillance samples in it. At each node, using values already 
calculated for all children nodes (possibly more than two children in 
the case of a multifurcation), we calculate the following quantities: 
(1) the maximum and minimum number of possible descendant UK 
clades of the current node, over the space of possible parsimonious 
migration histories, and conditional on the current node being UK or 
non-UK; (2) the number of migration events compatible with a parsi-
monious migration history in the subtree below the current node, and 
conditional on the current node being UK or non-UK; (3) the size so 
far of the UK clade the current node is part of, conditional on it being 
UK; and (4) a sample of UK clade sizes for the subtree below the node. 
To calculate these quantities, for each internal node, and conditional 
on each possible node state (UK or non-UK), we consider the possible 
scenarios of having 0 of 1 migration events between the internal node 
and its children nodes (migration histories with more than 1 migration 
event between the node and its children are surely not parsimonious 
in our analysis and can be ignored).

To confirm the results of our analyses based on parsimony, we 
also used the new Bayesian phylogenetic approach Thorney BEAST16 
(https://beast.community/thorney_beast) for VOCs for which it was 
computationally feasible, that is, excluding B.1.351. For each VOC, we 
used in Thorney BEAST the same topology inferred with FastTree2 as 
for our parsimony analysis; we also used treetime57 v.0.8.2 to estimate 
a timed tree and branch divergences for use in Thorney BEAST.  
We used a two-state (UK and non-UK) migration model54 of migration to 
infer introductions into the UK but again counted, from the posterior 
sample trees, only UK clades with at least one UK surveillance sample. 
We used a Skygrid58 tree coalescent prior with six time intervals.  
The comparison of parsimony and Bayesian estimates is shown in 
Extended Data Fig. 8d.

ONS infection survey analysis
Data from the cross-sectional infection survey were downloaded from 
https://www.ons.gov.uk/peoplepopulationandcommunity/healthand-
socialcare/conditionsanddiseases/bulletins/coronaviruscovid19infe
ctionsurveypilot/30april2021.

Comparison of ONS incidence estimates with hospitalization, case 
and death rates was conducted by estimating infection trajectories 
separately from observed cases, hospitalizations and deaths59,60, con-
volving them with estimated PCR detection curves61, and dividing the 
resulting PCR prevalence estimates by the estimated prevalence from 
the ONS Community Infection Survey at the midpoints of the two-week 
intervals over which prevalence was reported in the survey.

Maps
Maps were plotted using LTLA shapefiles (https://geoportal.statistics.
gov.uk/datasets/69dc11c7386943b4ad8893c45648b1e1), sourced from 
the ONS, which is licensed under the Open Government Licence v.3.0.

Limitations
A main limitation of the analysis is that the transmission model is 
deterministic, whereas the spread of variants is a stochastic process. 
Although the logistic growth assumption is a consistent estimator of 
the average transmission dynamics, individual outbreaks may devi-
ate from these averages and therefore produce unreliable estimates.

Stochastic growth effects are accounted for only in terms of (uncor-
related) overdispersion and the offset at the time of the introduction. 
For these reasons, the estimated growth rates may not accurately reflect 
the viral transmissibility, especially at a low prevalence. It is therefore 
important to assess whether consistent growth patterns in multiple 
independent areas are observed. We note that the posterior distribution 

https://www.gisaid.org/
https://www.gisaid.org/
https://beast.community/thorney_beast
https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/bulletins/coronaviruscovid19infectionsurveypilot/30april2021
https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/bulletins/coronaviruscovid19infectionsurveypilot/30april2021
https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/bulletins/coronaviruscovid19infectionsurveypilot/30april2021
https://geoportal.statistics.gov.uk/datasets/69dc11c7386943b4ad8893c45648b1e1
https://geoportal.statistics.gov.uk/datasets/69dc11c7386943b4ad8893c45648b1e1


of the growth rates of rare variants tends to be biased to the baseline 
due to the centred prior.

In its current form, the model accounts for only a single introduction 
event per LTLA. Although this problem is in part alleviated by the high 
spatial resolution, which spreads introductions across 315 LTLAs, it is 
important to investigate whether sustained introductions inflate the 
observed growth rates, as in the case of the Delta variant or other VOCs 
and VUIs. This can be achieved by a more detailed phylogeographic 
assessment and through the assessment of monophyletic sublineages.

Furthermore, there is no explicit transmission modelled from one 
LTLA to another. As each introduction is therefore modelled separately, 
this makes the model conservative in ascertaining elevated transmis-
sion as single observed cases across different LTLAs can be explained 
by their introduction.

The inferred growth rates also cannot identify a particular mecha-
nism of altered transmission. Biological mechanisms include a higher 
viral load, longer infectivity or greater susceptibility. Lineages could 
potentially differ by their intergeneration time, which would lead to 
nonlinear scaling. Here we did not find convincing evidence in inci-
dence data for such effects, in contrast to previous reports23. However, 
contact-tracing data indicate that the intergeneration time may be 
shortening for more transmissible lineages such as Delta33,62. Cases 
of the Beta and Gamma VOCs may have been more intensely contact 
traced and triggered asymptomatic surge testing in some postcode 
areas. This may have reduced the observed growth rates relative to 
other lineages.

Lineages, such as Beta, Gamma or Delta also differ in their ability to 
evade previous immunity. As immunity changes over time, this might 
lead to a differential growth advantage over time. It is therefore advis-
able to assess whether a growth advantage is constant over periods in 
which immunity changes considerably.

A further limitation underlies the nature of lineage definition and 
assignment. The PANGO lineage definition5 assigns lineages to geo-
graphical clusters, which have by definition expanded, and this can 
induce a certain survivor bias, often followed by winner’s curse. Another 
issue results from the fact that very recent variants may not be classified 
as a lineage despite having grown, which can inflate the growth rate of 
ancestral lineages over sublineages.

As the total incidence is modelled on the basis of the total number 
of positive PCR tests, it may be influenced by testing capacity; the total 
number of tests approximately tripled between September 2020 and 
March 2021. This can potentially lead to a time trend in recorded cases 
and therefore baseline Rt values if the access to testing changed, for 
example, by too few tests being available tests during periods of high 
incidence, or changes to the eligibility to intermittently test with fewer 
symptoms. Generally, the observed incidence was in good agreement 
with representative cross-sectional estimates from the ONS63,64, except 
for a period of peak incidence from late December 2020 to January 2021 
(Extended Data Fig. 1d). Values after 8 March 2021 need to be interpreted 
with caution as Pillar 2 PCR testing was supplemented by lateral flow 
devices, which increased the number of daily tests to more than 1.5 mil-
lion. Positive cases were usually confirmed by PCR and counted only once.

The modelled curves are smoothed over intervals of approximately 
7 d using cubic splines, creating the possibility that later time points 
influence the period of investigation and cause a certain waviness of the 
Rt value pattern. An alternative parameterization using piecewise linear 
basis functions per week (that is, constant Rt values per week) leaves 
the overall conclusions and extracted parameters broadly unchanged.

Ethical approval
This study was performed as part of surveillance for COVID-19 under 
the auspices of Section 251 of the National Health Service Act 2006. It 
therefore did not require individual patient consent or ethical approval. 
The COG-UK study protocol was approved by the Public Health England 
Research Ethics Governance Group.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
PCR test data are publicly available online (https://coronavirus.data.
gov.uk/). A filtered, privacy conserving version of the lineage–LTLA–
week dataset is publicly available online (https://covid19.sanger.ac.uk/
downloads) and enables strong reproduction of our results, despite a 
small number of cells having been suppressed to avoid disclosure. Full 
SARS-CoV-2 genome data and geolocations can be obtained under con-
trolled access from https://www.cogconsortium.uk/data/. Application 
for full data access requires a description of the planned analysis and can 
be initiated at coguk_DataAccess@medschl.cam.ac.uk. The data and a 
version of the analysis with fewer lineages can be interactively explored 
at https://covid19.sanger.ac.uk. Source data are provided with this paper.

Code availability
The genomic surveillance model is implemented in Python and avail-
able at GitHub (https://github.com/gerstung-lab/genomicsurveillance) 
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Extended Data Fig. 1 | SARS-CoV-2 surveillance sequencing in England 
between September 2020 and June 2021. a. Local monthly coverage across 
315 LTLAs. b. Weekly coverage of genomic surveillance sequencing.  

c. Hospitalization, case and infection fatality rates relative to ONS prevalence. 
Dots denote mean estimates and error bars 95% CIs.
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Extended Data Fig. 2 | Genomic surveillance model of total incidence and 
lineage-specific frequencies. a. Cubic basis splines (top row) are convolved 
with the infection to test distribution (row 2 and 3) and used to fit the log 
incidence in a LTLA and its corresponding derivatives (growth rates; bottom 
row). b. Example incidence (top row), logarithmic incidence with individual 
convolved basis functions (dashed lines, row 2), growth rate with individual 
spline basis derivatives (dashed lines, row 3) and resulting (case) reproduction 

numbers (growth rate per 5.1d) from our approach (GenomicSurveillance) and 
estimates by EpiEstim48, shifted by 10d to approximate a case reproduction 
number. c. The relative frequencies of 62 different lineages are modelled using 
piecewise multinomial logistic regression. The linear logits are modelled to 
jump stochastically within 21d prior to first observation to account for the 
effects of new introductions. Shown are the logits of 5 selected lineages in  
two different LTLAs.



Extended Data Fig. 3 | Genomic surveillance model selection. a. Model loss 
in terms of the ELBO objective function and the model hyperparameters 
alpha0 and alpha1 (see Methods). b. Model deviance (calculated as −2 x log 
pointwise predictive density) with respect to the model hyperparameters 

α0 and α1 (see Methods). c. Mean squared error (MSE) of modelled weekly 
proportions of highly prevalent lineages with respect to the model 
parameters  α0 and  α1 (see Methods). d. Same as in c, but for lineages exhibiting 
low frequencies (VOCs).
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Extended Data Fig. 4 | Spatiotemporal model of 71 SARS-CoV-2 lineages in 
315 English LTLAs between September 2020 and June 2021. a. Regional 
lineage specific relative frequency of lineages contributing more than 50 
genomes during the time period shown. Dots denote observed data, lines the 
fits aggregated to each region. b. Same as a, but on a log scale. c. Same data as 

in a, shown as stacked bar charts. Colours resemble major lineages as indicated 
and shadings thereof indicate sublineages. d. Same fits as in a, shown as 
stacked segments. e. Average growth rates for 71 SARS-Cov2 lineages 
estimated in different regions in England. Dots denote median estimates and 
error bars 95% CIs.



Extended Data Fig. 5 | Relative growth of B.1.177. a. Lineage-specific relative 
frequency data in England, excluding B.1.1.7 and other VOCs/VUIs (Category 
Other includes: A, A.18, A.20, A.23, A.25, A.27, A.28, B, B.29, B.40, None). 
Colours resemble major lineages as indicated and shadings thereof indicate 
sublineages. b. Lineage-specific relative frequency data in Denmark, excluding 
B.1.1.7 and other VOCs/VUIs. Colours resemble major lineages as indicated and 
shadings thereof indicate sublineages.
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Extended Data Fig. 6 | Genomic diversity of the SARS-CoV-2 epidemic. 
Shown is the entropy (blue), total number of observed Pango lineages  
(grey, divided by 4), as well as the proportion of B.1.1.7 (orange, right axis).  
The sweep of B.1.1.7 causes an intermittent decline of genomic diversity as 
measured by the entropy.



Extended Data Fig. 7 | Global phylogenetic trees of selected VOCs/VUIs. English surveillance and other (targeted and quarantine) samples are highlighted 
respectively orange and red.
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Extended Data Fig. 8 | Global phylogenetic trees of B.1.617 sublineages.  
a, b and c. English surveillance and other (targeted and quarantine) samples are 
highlighted respectively orange and red. The trees of B.1.617.1 and B.1.617.2 are 

rooted. d. Number of UK introductions inferred by parsimony (minimum and 
maximum numbers) and by Thorney BEAST (95% posterior CI) for each VOC.
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