
Top-Down Feedback in an HMAX-Like Cortical Model of
Object Perception Based on Hierarchical Bayesian
Networks and Belief Propagation
Salvador Dura-Bernal1*, Thomas Wennekers2, Susan L. Denham2

1 Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, New York, United States of America, 2 Cognition

Institute, University of Plymouth, Plymouth, Devon, United Kingdom

Abstract

Hierarchical generative models, such as Bayesian networks, and belief propagation have been shown to provide a
theoretical framework that can account for perceptual processes, including feedforward recognition and feedback
modulation. The framework explains both psychophysical and physiological experimental data and maps well onto the
hierarchical distributed cortical anatomy. However, the complexity required to model cortical processes makes inference,
even using approximate methods, very computationally expensive. Thus, existing object perception models based on this
approach are typically limited to tree-structured networks with no loops, use small toy examples or fail to account for
certain perceptual aspects such as invariance to transformations or feedback reconstruction. In this study we develop a
Bayesian network with an architecture similar to that of HMAX, a biologically-inspired hierarchical model of object
recognition, and use loopy belief propagation to approximate the model operations (selectivity and invariance). Crucially,
the resulting Bayesian network extends the functionality of HMAX by including top-down recursive feedback. Thus, the
proposed model not only achieves successful feedforward recognition invariant to noise, occlusions, and changes in
position and size, but is also able to reproduce modulatory effects such as illusory contour completion and attention. Our
novel and rigorous methodology covers key aspects such as learning using a layerwise greedy algorithm, combining
feedback information from multiple parents and reducing the number of operations required. Overall, this work extends an
established model of object recognition to include high-level feedback modulation, based on state-of-the-art probabilistic
approaches. The methodology employed, consistent with evidence from the visual cortex, can be potentially generalized to
build models of hierarchical perceptual organization that include top-down and bottom-up interactions, for example, in
other sensory modalities.

Citation: Dura-Bernal S, Wennekers T, Denham SL (2012) Top-Down Feedback in an HMAX-Like Cortical Model of Object Perception Based on Hierarchical
Bayesian Networks and Belief Propagation. PLoS ONE 7(11): e48216. doi:10.1371/journal.pone.0048216

Editor: Stefan Kiebel, Max Planck Institute for Human Cognitive and Brain Sciences, Germany

Received January 20, 2012; Accepted September 25, 2012; Published November 5, 2012

Copyright: � 2012 Dura-Bernal et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was supported by the European Community’s Seventh Framework Programme, grant no. 231168–SCANDLE:‘‘acoustic SCene ANalysis for
Detecting Living Entities’’ (http://www.scandle.eu). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Competing Interests: Co-author Thomas Wennekers is a PLOS ONE Editorial Board member. This does not alter the authors’ adherence to all the PLOS ONE
policies on sharing data and materials.

* E-mail: salvadordura@gmail.com

Introduction

The Bayesian Brain Hypothesis
Experimental evidence shows that feedback originating in

higher-level areas, such as V4, inferotemporal (IT) cortex, lateral

occipital complex (LOC) or middle temporal (MT) cortex with

bigger and more complex receptive fields, can modify and shape

V1 responses, accounting for contextual or extra-classical recep-

tive field effects [1–3].

While there is relative agreement that feedback connections

play a role in integrating global and local information from

different cortical regions to generate an integrated percept [4,5],

several differing approaches have attempted to explain the

underlying mechanisms. Generative models and the Bayesian

brain hypothesis [6] provide a framework that can quantitatively

model the interaction between prior knowledge and sensory

evidence, in order to represent the physical and statistical

properties of the environment. The Bayesian brain concept is

not just limited to the sensory cortex, but has also been applied to

motor cortex [7] and other brain regions such as the hippocampus

[8,9].

Overall, increasing evidence supports the proposal that Bayes-

ian inference provides a theoretical framework that maps well onto

cortical connectivity, explains both psychophysical and neuro-

physiological results, and can be used to build biologically

plausible models of brain function [6,10–12]. Within this

framework, Bayesian networks and belief propagation provide a

rigorous mathematical foundation for these principles. Belief

propagation has been found to be particularly well-suited to neural

implementation, due to its hierarchical distributed organization

and homogeneous internal structure and operations [5,13–16].

Current Limitations
However, modelling cortical perceptual processes using this

framework poses a number of problems. First of all, the main

drawback inherent in belief propagation is its great computational

PLOS ONE | www.plosone.org 1 November 2012 | Volume 7 | Issue 11 | e48216

cost in terms of speed and memory. The number of operations and

the required memory grows exponentially with the number of

parents of each node. Additionally, for networks with loops, such

as those that arise when modelling the large-scale cortical

connectivity, exact inference methods are intractable. Approxi-

mate solutions can be found using sampling methods [5,17,18],

variational methods [6,19,20] or loopy belief propagation [13,21],

although these can also be very demanding as they usually require

several iterations to converge.

For this reason, much of the research effort in the field focuses

on strategies to optimize loopy belief propagation: reducing the

complexity to generate messages [22–25]; grouping nodes with

similar properties, such as in lifted networks [26] or tilebased

propagation [24]; or message-passing schedules for faster conver-

gence, for example using bipartite graphs [23,25] or residual belief

propagation [27,28]. However, many of these solutions require

specific types of variables, for example having a Gaussian

distribution, or specific graph topologies, such as single-layer

Markov random fields, which are not compatible with the

hierarchical architecture required for object perception.

The second problem arises when modelling invariance to object

transformations using probabilistic inference in graphical models.

A classic non-probablistic approach is to extend the classic work by

Hubel and Wiesel on simple and complex cells to generate multi-

stage Hubel-Wiesel architectures, such as the multilayer percep-

tron [29], convolutional neural networks (ConvNets) [30] or the

HMAX model [31]. These architectures alternate feature selec-

tivity layers with pooling or subsampling layers, where the pooling

operation is typically the max or average function.

The Hierarchical Temporal Memory (HTM) [13] attempts to

replicate this structure in probabilistic terms by defining nodes that

contain features and sequences of features. Thus, simple and

complex nodes are merged into a single node, which differs from

the conventional definition of Bayesian node and so requires an

adapted version of the belief propagation algorithm.

Recently, Convolutional Deep Belief Networks (CDBNs) have

been proposed [32] to bridge the gap between Deep Belief

Networks [17] and the multi-stage Hubel-Wiesel architecture.

Deep Belief Networks consist of multiple layers of Restricted

Boltzmann Machines, an undirected graphical model of binary

variables, that can perform probabilistic inference using Gibbs

sampling. CDBNs extend this model by incorporating a proba-

bilistic max-pooling operation and weight sharing, enabling it to

implement alternating selectivity and invariance layers and

yielding state-of-the-art results in object recognition.

Proposal
In this paper we first provide a description of HMAX, a

biologically-inspired hierarchical model of object recognition,

which our proposed model aims to reformulate in probabilistic

terms and extend with feedback. We then provide an introduction

to Bayesian networks and belief propagation, the modelling tools

used in our approach. Afterwards, we describe the proposed

model: a Bayesian network with discrete-valued variables that

reproduces an HMAX-like architecture and employs loopy belief

propagation to approximate the functionality of HMAX, i.e.

selectivity and invariance in alternating layers. A detailed toy-

example is then employed to explain how the model works and

how the HMAX operations are approximated. The layerwise

greedy learning algorithm, vital to achieve the desired function-

ality, are subsequently detailed.

The Methods section also includes a description of several

approximations that simplify the belief propagation algorithm and

allow it to run on large-scale Bayesian networks, such as the one

proposed. The most important approximation consists of sampling

the incoming messages to keep only the highest values of the

distributions with the highest variance, in order to reduce the

exponential number of operations in belief propagation. Finally,

we propose the implementation of the weighted sum method [33]

which approximates the weight matrices in such a way that the

number of parameters grows linearly and not exponentially with

the number of parents.

In the Results section we compare the response of our model

with that of HMAX demonstrating the succesful approximatin of

the invariance operation. The dataset is described and used to

train and test our model, demonstrating that it is able to account

for feedforward categorization, invariant to occlusion, noise, and

changes in position and size. Crucially, the inherent properties of

Bayesian networks allow us to naturally extend the original

feedforward model to include recursive feedback connectivity and

account for high-level modulatory effects, such as illusory contour

completion and attention, which are also illustrated in the Results

section.

In the Discussion section, we provide a comparison with

previous models, discuss the biological realism of the model and

examine the feedforward and feedbackresults, providing further

insights into the model. We conclude by proposing a number of

open questions and interesting model extensions for the future.

Methods

Multi-stage Hubel-Wiesel Networks and the HMAX Model
This section introduces a common type of object recognition

architecture, the multi-stage Hubel-Wiesel network, and describes

the HMAX model. The model proposed in this paper attempts to

reproduce the structure and functionality of HMAX from a

probabilistic perspective and extend it with feedback connectivity.

Modelling visual perception requires building internal repre-

sentations of the world that are able to capture the relevant

information while being invariant to irrelevant variations. The

family of models known as Multi-Stage Hubel-Wiesel networks,

inspired by biophysiological principles derived from the study of

primary visual cortex [34], provide a flexible and trainable

hierarchical architecture that can learn selective and invariant

features for categorization. Some well known models that belong

to this family are Fukushima’s Multilayer Perceptron or Neocog-

nitron [35], LeCun’s ConvNets [30,36] and Poggio’s HMAX

model [31,37]. The common factor of this set of models is the use

of two operations implemented in alternating stages: 1) selectivity,

a template-matching or convolutional operation using a set of

prototypes (or filter bank), inspired by V1 simple cells; and 2)

invariance, a pooling and subsampling operation, inspired by V1

complex cells.

The HMAX model is a well-known model which, since its first

publication in 1999 [31], has been further developed and

improved in several subsequent versions [37–40]. The main

difference between HMAX and other multi-stage Hubel-Wiesel

architectures is that it has focused on reproducing anatomical,

physiological [37] and psychophysical [39] properties of the

ventral path of the visual system, comprising areas V1, V2, V4 and

IT. For example, the lower-level prototypes in HMAX are not

obtained through unsupervised learning as in ConvNets but are

hard-wired Gabor filters with physiologically realistic parameters.

The model is grounded on widely accepted neurophysiological

principles, such as a hierarchical increase in receptive field size and

complexity, and shows high level responses that are consistent with

our current knowledge of extrastriate cortex functionality. These

responses reproduce V4 shape selectivity distributions [41] and

Object Perception Using Bayesian Networks

PLOS ONE | www.plosone.org 2 November 2012 | Volume 7 | Issue 11 | e48216

predict human performance during a rapid categorization task

[39]. Hence, HMAX has been described as the standard model [40]

and has been employed as the base model to simulate other

phenomena such as attention [42], biological motion [43] and

learning using spike-time dependent plasticity (STDP) [44]. For

these same reasons we have chosen HMAX as our base model,

and therefore provide some details of its structure and function-

ality before describing our proposal.

The version of HMAX we will focus on [37] comprises three

different levels representing V1, V2/V4 and IT, which are each

subdivided into two layers, simple and complex. Two operations

are performed in alternating layers of the hierarchy: the invariance

operation, which occurs between layers of the same level (e.g. from

S1 to C1); and the selectivity operation implemented between

layers of different levels (e.g. from C1 to S2). Each unit in the

model receives input from a subset or pool of afferent units in the

layer below. For this reason the operations are sometimes denoted

as pooling operations, where the pooling size refers to the number

of afferent units (similar to the receptive field size).

Invariance is implemented by applying the max-pooling function

over a set of afferent units selective to the same feature but with

slightly different positions and sizes. If any of the afferent simple

units within the complex unit’s spatial pooling range is activated,

then the complex unit will also emit an equivalent response. If

several afferent simple units are active, the response of a complex

unit will be equivalent to the response of the afferent simple unit

with the highest value. This means complex units achieve a certain

degree of invariance to spatial translation and scale.

Selectivity is generated by a template-matching operation over a

set of afferents tuned to different features, implemented as a Radial

Basis Function network [45]. First, a dictionary of features or

prototypes is learned. Each prototype represents a specific

response configuration of the afferent complex units from the

level below, feeding into the simple unit in the level above. Each

simple unit is then tuned to a specific feature of the dictionary,

eliciting the maximum response when the input stimuli in the

spatial region covered by the unit matches the learned feature.

The response is determined by a Gaussian tuning function which

provides a similarity measure between the input and the prototype.

Learning in the model takes place at the top level in a supervised

way, while at the intermediate levels the feature prototypes are

learned in an unsupervised manner. The model implements

developmental-like learning, such that units store the synaptic

weights of the current pattern of activity from its afferent inputs, in

response to the part of image that falls within its receptive field. It

simulates the temporal variation in the input images (motion)

during learning by moving the RF of a single unit across the whole

input image and then generalizing the selectivity features learned

to all the units in that layer (weight sharing).

For readers who are not familiar with the HMAX model, a

more detailed description as well as the equations for each of the

layers is included in Text S1.

Taken as a whole the HMAX model provides useful insights

into how the selectivity and invariance properties observed along

the ventral path can be gradually built. Howver, the model also

has several serious limitations. Firstly, learning occurs offline

during an initial training stage, and assumes a set of hard-wired

features in the lowest level (S1). Secondly, at present the model

only provides a static account of the recognition process, i.e. each

unit produces a single response for a given input image. This

clearly doesn’t capture the complexity and dynamics of neural

computations in cortex, and omits challenging aspects, such as the

temporal evolution of responses and the interplay between

excitation and inhibition to achieve stability. Thirdly, the

framework relies entirely on a feedforward architecture, ignoring

many connections which are known to exist along the visual

pathways. Both long-range horizontal and feedback connections

are likely to play an important role in modulating and integrating

information across cortical regions [2,3]. To what degree these are

involved in early stages of immediate object recognition is still an

open question [46,47]. Nonetheless the the lack of feedback

connectivity has been identified by the authors as one of the main

limitations of their model [37].

Our proposal contributes to mitigating the second and third

limitations by completely reformulating a simplified version of the

HMAX model under a probabilistic framework that includes the

temporal dimension and feedback connectivity.

Bayesian Networks and Belief Propagation
This section provides a definition of Bayesian networks and

introduces the equations of the loopy belief propagation algorithm.

Several modifications will be introduced later on to some of these

equations in order to facilitate their implementation within the

large-scale proposed model.

A Bayesian network is a specific type of graphical model called a

directed acyclic graph, where each node in the network represents a

random variable, and arrows establish a causal dependency

between nodes. Therefore, each arrow represents a conditional

probability distribution P(X DPX) which relates node X to its

parents PX . Crucially, the network is defined such that the

probability of a node X being in a particular state depends only on

the state of its parents, PX . Consequently, a Bayesian network of

N random variables Xi defines a joint probability distribution

which can be factorized as follows,

P(X1,:::,XN)~P
i

P(Xi DPXi
): ð1Þ

More formally, a Bayesian network is a pair B~(G,P), where.

N G~(V ,A) is an acyclic directed graph with V~fX1,X2,:::,Xng,
a set of nodes (vertices); and A~(V|V , a set of arcs defined

over the nodes;

N P(V), a joint probability distribution over V , given by

Equation (1).

Given the structure of the network and the conditional

probabilities defining the joint probability distribution (Equation

(1)), it is possible to analytically compute the marginal probability

of each node, in terms of sums over all the possible states of all

other nodes in the system i.e. using marginalization.

However, this computation is impractical, specially for large

networks, as the number of terms in the sums grows exponentially

with the number of variables. Furthermore, there are many

common intermediate terms in the expressions for the different

marginal probabilities, which implies a high redundancy and thus

low efficiency in the calculations. Additionally, when new evidence

arrives into the network, the effects of the observed node modify the

marginal probabilities of all other nodes, requiring the whole

marginalization process to be repeated for each variable.

Belief propagation is a message-passing algorithm that manages

to perform inference in a singly-connected Bayesian network in a

way that grows only linearly with the number of nodes, as it

exploits the common intermediate terms that appear in the

calculations. In belief propagation the effects of the observation are

propagated throughout the network by passing messages between

nodes. The final belief, or posterior probability, is computed

Object Perception Using Bayesian Networks

PLOS ONE | www.plosone.org 3 November 2012 | Volume 7 | Issue 11 | e48216

locally at each node by combining all incoming messages, i.e.

evidence from higher and lower levels.

Note for nodes without parents (root nodes), the conditional

probability of Xi is equal to its prior probability, i.e.

P(Xi DPXi
)~P(Xi). Thus, defining the whole structure of a

Bayesian network requires specification of the conditional

probability distribution of each node with parents, P(Xi DPXi
),

plus the prior probability distributions of all root nodes, P(Xroot).

In Bayesian networks with loops the original belief propagation

algorithm is no longer valid and approximate methods have to be

employed. One such method is loopy belief propagation, which

naively implements the original belief propagation algorithm

leading to messages circulating in the network indefinitely.

However, for pyramidal networks, such as the ones considered

here, the method has been empirically demonstrated to obtain

good approximations to the exact beliefs, once the approximate

beliefs have converged after several iterations [48]. See [49] for a

more detailed exploration of loopy belief propagation and its

relation to Bethe free energy minimization.

Below we describe the computations performed locally by a

node in the generic section of a hierarchical Bayesian network

represented in Figure 1. Note that the equations include the

temporal dimension because they are capturing the loopy belief

propagation algorithm, which requires several iterations to

converge. Given a node X with parent nodes U1,::,UN , and a

set of child nodes C1,::,CM , the loopy belief propagation

operations for each node can be described in three steps:

1. Node X receives all bottom-up messages lC1
(x),:::,lCM (x)

from its children, and all top-down messages pX (u1),:::,pX (uN)
from its parents.

2. Given the fixed conditional probability distribution

P(xDu1,:::,uN) that relates node X to its immediate parents

U1,:::,UN , node X can calculate its belief as

Beltz1(x)~a:ltz1(x):ptz1(x), ð2Þ

ltz1(x)~ P
j~1::M

lt
Cj

(x), ð3Þ

ptz1(x)~
X

u1,:::,uN

P(xDu1,:::,uN): P
i~1::N

pt
X (ui), ð4Þ

where Bel(x)~P(xDe), represents the probability of node

X~x given some evidence e~ez
X |e{

X , and is usually referred

to as the posterior probability or Belief; a represents a

normalization constant; l(x)~P(e{
X Dx) represents the diagnos-

tic or retrospective support that the assertion X~x receives from

X ’s descendant, and is usually referred to as the likelihood

function; p(x)~P(xDez
X), represents the causal or predictive

support that the assertion X~x receives from all non-

descendants of X , via X ’s parents, and is usually referred to

as the prior function;

3. Node X generates outgoing messages lX (u1),::,lX (uN) for its

parent nodes, and messages pC1
(x),::,pCM

(x) for its child

nodes, given by the following equations:

ltz1
X (ui)~b

X
x

ltz1(x):
P

u1,:::,uN \ui

P(xDu1,:::uN): P
k~1::N\i

pt
X (uk)

2
64

3
75, ð5Þ

ptz1
Cj

(x)~a P
k[M\j

lt
Ck

(x):p(x)~a:
Beltz1(x)

lCt
j
(x)

, ð6Þ

Where lX (ui) represents the bottom-up message that node X

receives from node Ui; and pCj
(x) represents the top-down

message that node X sends to node Cj .

Note the lX (ui) message can be sent to node Ui as soon as

messages from all other nodes, except node Ui, have been

received. Analogously pCj
(x) can be sent as soon as all messages,

except that arriving from node Cj , have been received.

Figure 2) illustrates belief propagation by showing how messages

and beliefs evolve in a simple tree-structured network with three

levels. In the first step, evidence propagates from two of the child

nodes in the lower level, leading to the update of the belief in the

intermediate nodes. In the second step, the belief at the top level is

updated, together with the belief of the lower-lever child nodes

that hadn’t been instantiated. The crucial process occurs in step

three when a message is sent downward from the top node. The

top node receives messages from the two intermediate child nodes

(the left and the right branches of the tree), and therefore it must

generate a top-down message for each node conveying the

evidence collected from the other node. In other words the

evidence from the left branch must be propagated to the nodes in

the right branch and vice versa. This is depicted graphically in

steps three and four.

Figure 1. Message passing in belief propagation in a Bayesian
network. Node X receives all bottom-up messages lC1

(x),:::,lCM (x)
from its children, and all top-down messages pX (u1),:::,pX (uN) from its
parents. The belief can then be calculated by combining all bottom-up
evidence e{

X and top-down evidence ez
X . Node X generates outgoing

messages lX (u1),::,lX (uN) for its parent nodes, and messages
pC1

(x),::,pCM
(x) for its child nodes.

doi:10.1371/journal.pone.0048216.g001

Object Perception Using Bayesian Networks

PLOS ONE | www.plosone.org 4 November 2012 | Volume 7 | Issue 11 | e48216

Bayesian Network with HMAX-like Architecture
This section provides a description of how to generate a

Bayesian network with a structure similar to that of HMAX. It also

provides an overview of our proposed model including its

architecture, parameters, input and output.

Our proposed model consists of a Bayesian network that

reproduces the structure of a specific HMAX version with five

layers [37]. Although Bayesian networks (directed acyclic graphs)

can also be formulated as undirected graphical models, such as

factor graphs or Markov random fields, the directionality of

Bayesian networks fits better with the generative modelling

approach proposed to model vision [5]. The specific parameters

of this implementation, which were used to obtain the feedforward

categorization and feedback modulation results in this paper, are

shown in Table 1 and illustrated in Figure 3.

Note that in this implementation of the network we have

omitted the scale bands (i.e. features maps obtained for different

pooling sizes) of layers S1, C1 and S2. Results from a previous

implementation of the Bayesian network, which included all the

scale bands [50], showed that the higher scale bands, with large

pooling size and low resolution, did not provide a significant

improvement during feedforward categorization of the current

dataset (object silhouettes of 1406140 pixels). Additionally, the

feedback effects were more diffuse and the simulation time

increased drastically.

The steps required to define a Bayesian network with an

HMAX-like structure are are as follows:

1. Each node of the Bayesian network represents a specific

location and layer of the HMAX model.

2. The discrete states of each node of the Bayesian network

represent the different features coded at that location and layer

of the HMAX model. For example each Bayesian node at layer

S1 will have KS1(~4) states, representing the four different

Gabor filter orientations of HMAX.

3. The discrete probability distribution over the K states of each

Bayesian node comprises the sum-normalized responses of the

K HMAX units coding the different features at that location

and layer.

4. The conditional probability tables (CPTs) that link each node

of the Bayesian network with its parent nodes in the layer

above, represent the prototype weights used to implement

selectivity in the HMAX model. Additionally, the CPTs are

used to approximate the max-pooling (invariance) operation

between simple and complex layers of the HMAX model.

Learning the appropriate CPT parameters allows the model to

approximate the HMAX functionality using loopy belief

propagation.

Figure 3 shows a schematic representation of the proposed

Bayesian network model. The input image is pre-processed with a

battery of Gabor filters of size NS1 i.e. at 4 different orientations.

Each of the filters is applied at every location of the image. The

filtered responses, normalized over the four orientations at each

location, are used as the output l messages of a set of dummy

nodes that feed onto the S1 nodes. Dummy nodes do not encode a

variable or have a belief, they simply generate l messages for the

parent nodes. The rest of the layers, from S1 to S3 are

implemented following the methodology for simple and complex

layers described in the following section. The top layer employs

supervised learning where the weights (prototypes) for each of the

states corresponds to the output of the C2 layer for each of the

object categories. Thus, layer S3 contains a single node with a

probability distribution over the learned object categories, which

Figure 2. Example of belief propagation in a tree-structured network. The network has three levels organized in a tree structure. In the first
step evidence propagates from two of the child nodes in the lower level, leading to the update of the belief in the intermediate nodes. In the second
step, the belief at the top level is updated, together with the belief at the lower-lever child nodes that hadn’t been instantiated. The crucial process
occurs in step three when a message is sent downward from the top node. The top node receives messages from the two intermediate child nodes
(the left and the right branches of the tree), and therefore it must generate a top-down message for each node conveying the evidence collected
from the other node. In other words the evidence from the left branch must be propagated to the nodes in the right branch and vice versa. This is
shown in steps three and four.
doi:10.1371/journal.pone.0048216.g002

Object Perception Using Bayesian Networks

PLOS ONE | www.plosone.org 5 November 2012 | Volume 7 | Issue 11 | e48216

can be used to to evaluate the categorization performance of the

model.

Notably, every node in the Bayesian network has an identical

internal structure implementing the loopy belief propagation

algorithm. The following section describes, using a toy-example,

how to approximate the invariance and selectivity operations using

this algorithm, whereas the section afterwards describes the

learning methods required to to obtain this functionality. The

last two sections within the Methods detail several approximations

that simplify the algorithm and allow it to run in the large-scale

Bayesian network proposed.

Approximating the Invariance and Selectivity Operations
Using Belief Propagation (a Toy Example)

In this section we provide a comprehesive description of how

our proposed model works, using a toy-example. We start with a

general overview of the toy-model and then include the

particularized equations and a numeric example to illustrate its

functionality.

We start by defining a toy-example scenario composed of a

three layer Bayesian network with an HMAX-like structure, i.e.

alternating simple and complex layers (S1, C1 and S2), as shown

in Figure 4. Our aim is to approximate the HMAX invariance

operation, typically implemented in C1 nodes by max-pooling over a

subset of S1 nodes, and the selectivity operation, typically

implemented in S2 by performing a distance operation (Radial

Basis Function) between a subset of C1 nodes and a learned set of

prototypes.

Figures 4A and 4B represent the same toy-example Bayesian

network with two different inputs. In these figures, each square of

the grid represents a Bayesian node, with 15 nodes in layer S1

(labelled according to their X,Y location), 3 nodes in layer C1 and

1 node in layer S2. The coloured lines represent the connectivity

or, in Bayesian terms, the causal dependencies between the nodes.

For example, the 363 S1 nodes on the left, S11,1,::,S13,3, feed

onto node C11 (red lines), which means that C11 is the parent

node of S11,1,::,S13,3. Similarly, C12 is the parent node of

S12,1,::,S14,3 (green lines) and C13 is the parent node of

S13,1,::,S15,3 (green lines). Analogously, the top node S2 is the

parent node of the three C1 nodes, C11,::,C13 (blue lines).

Several nodes in Figure 4A are circled and have a blue arrow

pointing to the probability distribution over the states of that node.

A small picture of the feature or prototype associated with each

state is shown above it. In this toy-example, the S1 nodes have two

states corresponding to the horizontal and vertical Gabor filters,

which from now on will be denoted as the horizontal and vertical

states, respectively. The probability of each state will depend on

the response of the corresponding Gabor filter to a specific image

patch feeding into that node (not shown in the figure). For

example, in node S11,1 the horizontal state exhibits a high

probability, indicating it receives input from an image patch with

horizontal contours; whereas node S15,2 shows a high probability

for the vertical state indicating it receives input from a region of the

image with vertical contours. S1 nodes, such as S14,3, whose input

corresponds to blank regions of the image will have a flat

probability distribution, indicating all states are equally likely. The

feature, horizontal or vertical Gabor filter, corresponding to the

most probable state of each node is represented symbolically inside

the grid square of that node. Nodes with equiprobable distribu-

tions are left empty.

Each C1 node in this toy-example has six states corresponding

to different combinations of the states of the 363 S1 nodes feeding

into it. These combinations can also be understood as the C1

features or prototypes and are encoded in the weight matrix

(CPTs) between the S1 and C1 nodes. For example, in Figure 4A,

C1 state 1 will exhibit a high probability if the horizontal state of the

top three S1 nodes shows high probability. This is the case of node

C12, so we can state that l(C12~1) is high because

l(S12,1~1), l(S13,1~1) and l(S14,1~1) are high. On the other

hand, the probability of C1 state 6 will be high if the probabilities

of the vertical state of the three rightmost S1 nodes is high. This is

the case of node C13, for which we can say that l(C13~6) is high

because l(S15,1~2), l(S15,2~2) and l(S15,3~2) are all high.

Interestingly, node C13 also exhibits a moderate probability for C1

state 1, given that two out of the three top S1 nodes have high

probabilities in the horizontal state.

Table 1. Model Parameters.

Name Value Description

NS1 969 RF size of dummy nodes (Gabor filters)

KS1 4 Number of states (features) in S1 nodes = Gabor filter orientations, (0u; 45u; 90u; 135u)

NC1 10610 RF size of C1 nodes (number of S1 nodes pooled)

EC1 5 Step between C1 nodes (in number of S1 nodes) - sets the C1 downsampling factor

KC1 40 Number of states in C1 nodes

KC1group 10 Number of states per group in C1 nodes. The number of C1 groups = KS1~4, such that KC1~KC1group
:KS1 .

NS2 464 RF size of S2 nodes (number of C1 nodes pooled)

ES2 1 Step between S2 nodes (in number of C1 nodes) - sets the S2 downsampling factor

KS2 250 Number of states (features) in S2 nodes

NC2 666 RF size of C2 nodes (number of S2 nodes pooled)

EC2 3 Step between C2 nodes (in number of S2 nodes) - sets the C2 downsampling factor

KC2 2500 Number of states in C2 nodes

KC2group 10 Number of states per group in C2 nodes. The number of C2 groups = KS2~250, such that KC2~KC2group
:KS2 .

KS3 30 Number of states in the S3 node = number of objects or categories

NS3 666 RF size of S3 node (number of C2 nodes pooled)

Parameters of the HMAX-like Bayesian network. Note some of the results may be shown as a function of different values of these parameters.
doi:10.1371/journal.pone.0048216.t001

Object Perception Using Bayesian Networks

PLOS ONE | www.plosone.org 6 November 2012 | Volume 7 | Issue 11 | e48216

We now introduce the concept of groups, which is one of the key

novelties that allows the implementation of the max-pooling

operation in Bayesian networks. Groups are only present in

complex, i.e. layers starting with ‘C’ where nodes represent

complex cells and implementing the invariance operation. A group

is defined simply a subset of the states of a node. This subset of

states will share a common pattern, for example responding

preferentially to three horizontally aligned S1 nodes with high

horizontal state probabilities. This is the case of C1 group 1, which

subsumes states 1, 2 and 3. The corresponding group 1 feature or

prototype can be understood as a spatially invariant horizontal

contour (symbolized as a horizontal Gabor filter). The reason for

being spatially invariant is that it is associated with horizontal

contours at three different positions, those represented by C1 states

1, 2 and 3. Analogously, C1 group 2 comprises states 4, 5 and 6,

and its associated feature can be interpreted as a spatially invariant

vertical contour (symbolized as a vertical Gabor filter). Impor-

tantly, the number of C1 groups (C1 invariant features) is equal to

the number of S1 states (S1 features). The invariant feature

associated with the group with the highest probability (summing the

probabilities of its states) is represented symbolically inside the grid

square of each C1 node. For example, node C12 contains a

horizontal Gabor filter symbol indicating that group 1, associated

with a spatially invariant horizontal contour, has the highest sum

of probabilities.

The top layer S2 node has three states, each corresponding to

different combinations of the states of its afferent C1 nodes. Again,

these combinations can be interpreted as the S2 features or

prototypes and are encoded in the CPTs between C1 and S2

nodes. When learning these CPTs we make a key assumption,

namely, that C1 states belonging to the same group will have the

same weight. This will become clearer below, once the equations

and CPTs of this toy-model are described, but, intuitively, this

means that the S2 states can be defined in terms of the C1 groups of

the three afferent C1 nodes. For this reason, the symbolic

representation of each of the three S2 states is shown as

combinations of three C1 group features. For example, C2 state 3
will show a high probability when the groups 1 (invariant horizontal

contour) of nodes C11 and C12, and group 2 (invariant vertical

contour) of node C13 have high probabilities. The S2 state with

highest probability is represented symbolically inside the rectangle

representing node S2.

A crucial aspect to clarify here is that the concept of groups is

external to the Bayesian network and does not modify in any sense

the definition of nodes or states. As will be described below, groups

simply provide a convenient way of clustering states during the

learning phase, but the underlying Bayesian network remains

conventional in every sense. In fact, once the CPTs are learned,

inference can be performed in the network ignoring the concept of

groups.

After providing a general description of the toy-example we now

provide its mathematical parameters and equations. These follow

the same nomenclature as the parameters and equations that

describe the full large-scale model (see Table 1 and Figure 3). This

will help the reader extrapolate the ideas conveyed by the toy-

example to the real model.

The parameter values for the toy example are:

NS1~363, KS1~2, NC1~3, KC1~9, KS2~3, where N repre-

sents the pooling sizes and K the number of states. Additionally,

the parameter KC1group~3 is defined, meaning that each group is

composed of 3 C1 states. This satisfies the equation

KC1~KS1
:KC1group?6~2:3, i.e. the number of C1 states is equal

to the number of S1 states (the number of groups) times the number

of C1 states per group.

The S1 nodes of this toy-example Bayesian network have

multiple parents, i.e. the receptive fields of C1 nodes overlap,

exemplifying the loops that are present in the full large-scale

Bayesian network. However, for the sake of clarity, here we

provide the equations of a singly-connected network (one parent

per node). The specific equations to deal with multiple parents and

loops will be discussed in a subsequent section. Given that we are

currently focusing on the feedforward operations of the model,

only Equations (5) and (3), which refer to the bottom-up messages

in belief propagation, are particularized for the toy-example:

Figure 3. Schematic representation of the HMAX-like Bayesian
network. The 5-layer Bayesian tries to replicate the structure and
functionality of a simplified version of the HMAX model [37]. The
probability distribution of each Bayesian node (grid square) represents
the sum-normalized response of HMAX units at that location and layer,
where the states of the node represent the different features (e.g. four
Gabor filters). The conditional probability tables linking the nodes of
different layers serve to approximate the HMAX selectivity and
invariance operation (see text for details). The number of nodes per
layer and the number of states per node is indicated beside each layer.
The downward arrows between the layers (square grids) indicate the
causal dependencies in the Bayesian network, e.g. C1 nodes are the
parents of S1 nodes and the children of S2 nodes. The specific
connectivity patterns between nodes are shown in Table 1.
doi:10.1371/journal.pone.0048216.g003

Object Perception Using Bayesian Networks

PLOS ONE | www.plosone.org 7 November 2012 | Volume 7 | Issue 11 | e48216

lS1i
(c1j)~

X
s1i~1::KS1

l(s1i):P(s1i Dc1j), ð7Þ

l(c1j)~ P
i~1::NS1

lS1i
(c1j), ð8Þ

lC1j
(s2)~

X
c1j~1::KC1

l(c1j):P(c1j Ds2), ð9Þ

l(s2)~ P
j~1::NC1

lC1j
(s2), ð10Þ

where low-case letters denote specific states of a node. If one

compares the set of Equations (7) and (8) with (9) and (10), it may

be striking that they have the same form despite implementing

different functionalities at different layers. However, this is not

surprising given that they both correspond to the belief propaga-

tion algorithm, which, by definition, requires that every node

carries out the same operations. This conundrum is resolved by

realizing that it is the CPTs that determine effective connectivity of

the network and, consequently, the functionality of the algorithm

at each layer. In our case, Equations (7) and (8) implement a

necessary pre-processing step required to approximate the max-

pooling operation, Equation (9) approximates the max-pooling

operation and Equations (9) and (10) approximate the selectivity

operation.

The CPTs P(S1i DC1j) and P(S1j DS2) can be derived from

Figures 5 and 6. It is important to note that the prototype weights

for each C1 state are learned as a function of the NS16NS1

afferent S1 nodes and the KS1 S1 states per node (left column of

Figures 5). This yields a weight matrix for each C1 state. However,

the CPTs of a Bayesian network are defined as a function of the

child and the parent states, KS1 and KC1, for each of the child

nodes, S1i. Therefore, once the weight matrices are generated for

each C1 state, they need to be converted to the corresponding

CPTs of each S1 node, P(S1pDC1) (right column of Figure 5). To

conform to probability rules each column of the CPT, the

distribution over the child node states, is sum-normalized to one

(empty columns are converted to flat distributions). The same

applies to P(S1j DS2), shown in Figure 6.

Figure 4. Toy-example of Bayesian network that approximates the selectivity and invariance operations using belief propagation.
Each square of the grid represents a Bayesian node, such that there are 15 S1 nodes, 3 C1 nodes and 1 S2 node. Each C1 node has 363 child nodes in
layer S1 delimited by the red, green and light blue lines; whereas the S2 node has 3 child nodes in layer C1 (purple lines). Several nodes are circled
and have a blue arrow pointing to the probability distribution over the states of that node. A small picture of the feature or prototype associated with
each state is shown above it. The feature (e.g. horizontal Gabor filter) corresponding to the most probable state of each node is represented inside
the node. Nodes with equiprobable distributions are left empty. C1 states are clustered in groups, where each group can be interpreted as a position-
invariant representation of an S1 state/feature. S2 prototypes are learned as a function of C1 groups (CPTs have the same weight for all C1 states
within a group) which allows to achieve certain position invariance. For the Bayesian network in panel B we assume the input image has been moved
slightly downward as compared to the input of panel A. This leads to a set of different S1 and C1 probability distributions in panel B (changes are
highlighted in red). However, because the new C1 winner states belong to the same group as in panel A, the same messages are sent from C1 to S2
and consequently the S2 probability distribution will also be identical, demonstrating selectivity and invariance in the Bayesian network. See text for
details.
doi:10.1371/journal.pone.0048216.g004

Object Perception Using Bayesian Networks

PLOS ONE | www.plosone.org 8 November 2012 | Volume 7 | Issue 11 | e48216

Although learning will be described in more detail in the

following section, we point out here that weight sharing is used in the

model. This means that the prototype weights between C11 and its

afferent S1 nodes, S11,1,::,S13,3, are the same as those between

C12 and its afferent S1 nodes, S12,1,::,S14,3. In turn this means

that, assuming the network was singly-connected, the following

equation holds: P(S11,1DC11) = P(S12,1DC12) = P(S13,1DC13)
and so on. Consequently, it is possible to calculate P(C1i DC1j) for

any i and j, given the generic CPTs P(S1pDC1) (Figure 5), where

p~i{jz1.

We will now describe in more detail each of the steps using a

numerical example for the toy-example. Equation (7) generates the

message sent from each S1 node to its parent C1 node. Each

message, lS1i
(c1j), conveys a probability distribution over the

states of C1 based on the evidence of the S1 node, l(S1i). Let S1

nodes with a horizontal Gabor filter symbol have

l(S1i)~(0:9,0:1); and those in blank have l(S1i)~(0:5,0:5), as

illustrated in Figure 4A. Given the CPTs in Figure 5, the message

sent to C11 from S11,1 is lS11,1
(C11) = 0.9?(1,0.5,0.5,0.5,0.5,0.5)+

0.1?(0,0.5,0.50.5,1,0.5,0.5) = (0.9,0.5,0.5,0.1,0.5,05), indicating

that the most probable state of C11 according to S11,1 is state 1,

which is what one would intuitively expect when looking at the

feature symbols. The same message is conveyed to node C13 by

nodes S12,1 and S13,1. However, the messages sent to C13 from

S11,2, S12,2, S13,2, S13,1, S13,2, S13,3 will have a flat distribution,

indicating all C1 states are equally probable.

The messages from the 363 afferent S1 nodes of C13 are then

multiplied together (Equation (8)), yielding (after normalization)

l(C11)~(0:21,0:16,0:16,0:12,0:16,0:16). This indicates that the

most probable state of C11 given the evidence provided by all of its

child nodes, is state 1 (note that for clarity the distributions in

Figure 4 are not shown to scale). This demonstrates that by

learning the appropriate CPTs it is possible to associate each C1

state with a particular combination of S1 states and nodes. As

previously described, C1 states are divided into groups, where each

group is associated with a particular S1 state. The C1 states within a

group correspond to common patterns, observed during training, of

the afferent S1 nodes with high probabilities for that state. For

example, C1 group 1 captures three typical arrangements of S1

nodes that contain high probabilities for horizontal state: three

adjacent S1 nodes at the top row (C1 state 1), middle row (C1 state

2) and bottom row (C1 state 3).

Equation (9) generates the message between each C1 node and

its parent S2 node. Let

l(C11)~l(C12)~(0:75,0:05,0:05,0:05,0:05,0:05) and

l(C13)~(0:25,0:05,0:05,0:05,0:05,0:55) (we choose these more

Figure 5. Prototype weight matrices and CPTs between S1 and C1 nodes in the toy-example. Let P(S1p~aDC1~b) be the CPT between
S1p and C1 for S1 state a and C1 state b. The left column shows the HMAX-like prototype weights where an individual table is learned for each of the
KC1 C1 states (prototype), b, as function of the afferent NS1 x NS1 S1 nodes, p, and the KS1 S1 states, a. However, the CPTs of a Bayesian network are
defined as a function of the KS1 child states, a, and the KC1 parent states, b, for each of the NS1 x NS1 child nodes, p. Therefore, once the weight
matrices are generated for each C1 state, they need to be converted to the corresponding CPTs of each S1 node (right column). To conform to
probability rules each column of the CPT, the distribution over the child node states, is sum-normalized to one (empty columns are converted to
equiprobable distributions). C1 states are clustered in groups to help approximate the invariance operation (see text for details). The feature/
prototype symbols associated with each state are included in the figure.
doi:10.1371/journal.pone.0048216.g005

Object Perception Using Bayesian Networks

PLOS ONE | www.plosone.org 9 November 2012 | Volume 7 | Issue 11 | e48216

extreme and uniform values to make the example clearer). The

message sent from C11 to S2 is lC11
(S2) = 0.75?(1/3,0,1/

3)+0.05?(1/3,0,1/3)+0.05?(1/3,0,1/3)+0.05?(0,1/3,0)+0.05?(0,1/

3,0)+0.05?(0,1/3,0) = (0.46,0.08,0.46), which indicates that accord-

ing to the evidence from node C11 the most probable S2 states are

1 and 3, consistent with the feature symbols. The important point

to highlight here is that the CPT weights of C1 states belonging

the same group are equal (right column of Figure 6). Consequently,

the same message would be sent to S2 from C11 if either state 2 or

state 3, instead of state 1, had a high probability. This is illustrated

in Figure 4B (with changes highlighted in red), where we assume

the input image has changed (moved slightly downward) leading to

a different set of S1 probability distributions. The C1 probability

distributions, l(C1i), have also changed but, because the new

winner states belongs to the same groups as before, the messages

sent to S2 will be the same, leading to the same S2 probability

distribution. This demonstrates position translation invariance in

the Bayesian network.

We have argued that this invariance is achieved by approx-

imating the max-pooling operation using (9). However, how well this

operation is approximated depends on the number of C1 states per

group that have high probabilities, where the ideal case would be to

have a single one per group. To try to minimize the number of

simultaneous highly probable C1 states, the weights of C1 states

within a group are learned using k-means clustering, which, as

described in the following section, tries to minimize the similarities

between the different C1 prototypes. However, this doesn’t

guarantee that several C1 states in a group won’t have high

probabilities. If that is the case, (9) can still be interpreted as

achieving invariance by approximating a more relaxed or

alternative version of max-pooling, such as soft-max or average-pooling,

which have also been employed in HMAX [38] and similar

models such as ConvNets [30]. In all cases, belief propagation can

only be considered to an approximation to any of these pooling

operation because it is not taking into account all the afferent

responses (i.e. all states from all nodes) but only the most common

combinations of these. The validity of this approximation will

Figure 6. Prototype weight matrices and CPTs between C1 and S2 nodes in the toy-example. Let P(C1j~aDS2) be the CPT between C1j

and S2 for C1 state a and S2 state b. The left column shows the HMAX-like prototype weights where an individual table is learned for each of the KS2

S2 states (prototype), b, as function of the afferent NC1 C1 nodes, j, and the KC1 S1 states, a. However, the CPTs of a Bayesian network are defined as
a function of the KC1 child states, a, and the KS2 parent states, b, for each of the NC1 child nodes, p. Therefore, once the weight matrices are
generated for each S2 state, they need to be converted to the corresponding CPTs of each S1 node (right column). To conform to probability rules
each column of the CPT, the distribution over the child node states, is sum-normalized to one (empty columns are converted to equiprobable
distributions). Importantly, S2 prototypes are actually learned as a function of C1 groups, such that the weights of C1 states belonging the same group
are equal, which helps to approximate the invariance operation (see text for details). The feature/prototype symbols associated with each state are
included in the figure.
doi:10.1371/journal.pone.0048216.g006

Object Perception Using Bayesian Networks

PLOS ONE | www.plosone.org 10 November 2012 | Volume 7 | Issue 11 | e48216

depend on the ability of the learning algorithms to extract

combinations that capture well the statistical properties of the

image dataset and allow for generalization.

The last stage is the approximation of selectivity, which basically

consists of finding the distance between the input and a set of

prototypes. We have already described how lC1i
(S2) (Equation

(9)), conveys the probability distribution over the S2 states based

on the evidence from each C1 node. Here, the probability values

can be interpreted as the distance between the input and the set of

prototypes, which represented by the S2 states. Following the

numeric example from the toy-example we have

lC11
(S2)~lC12

(S2)~(0:46,0:08,0:46) and

lC13
(S2)~(0:26,0:26,0:48). In other words, messages from C11

and C12 suggest that S2 states 1 and 3 are the most probable,

whereas the message from C13 suggests that S2 state 3 is the most

probable. To obtain the final feedforward probability distribution

over S2 states, the messages from all child nodes are multiplied

together (Equation (10)), yielding l(S2)~(0:34,0:01,0:65) (not to

scale in Figure 4), indicating the most probable S2 state is 3. This

can be interpreted as the S2 prototype corresponding to state 3
being the one that better captures (has minimum distance to) the

input to the network. The same result is obtained for the network

with slightly different input shown in Figure 4B, given that S2

prototypes are built from a set of C1 position invariant features.

Belief propagation still only constitutes an approximation to

selectivity because the selectivity is usually implemented as a

weighted sum whereas here we employ the product of a set of

weighted sums. However, the latter method has also been used as a

selectivity operation in HMAX-like models such as HTM [13].

Learning
This section describes the algorithms required to learn the CPTs

of the Bayesian network nodes. Two algorithms are described, one

for nodes implementing the invariance operation and the other for

nodes implementing the selectivity operation.

Training in the networks occurs in a bottom-up discriminative

manner, one layer at a time, by freezing the weights of the layer

below and using its activation to learn the next layer. In other

words, learning is layerwise greedy, as in deep learning models

[13,32]. Because the CPTs have not yet been learned it is not

possible to compute the top-down prior component, p(X), of the

belief. A possible solution is to assume a set of initial parameters,

perform inference and refine the parameters in several iterations of

inference and learning (the Expectation-Maximization approach).

However, this method is extremely demanding and infeasible in

relatively large networks. Therefore, to deal with the effect of top-

down p messages during training we assume each node has no

parents when computing its belief and has a single parent during

the generation of the output l message. This eliminates the

feedback component making the belief at each node equivalent to

the bottom-up likelihood function, l(X).

In order to reduce the memory required to store the network

parameters and speed up the belief propagation algorithm, the

weights are shared amongst the nodes of each layer, i.e. the CPT

between each parent node and its child nodes nodes is identical for

all nodes in the same layer. This weight sharing technique, inspired

by developmental-like learning of V1 and V2 neurons [37],

simulates the temporal variation in the input images by moving the

receptive field across all locations and then using the same

selectivity weights for all nodes of the layer.

Importantly, we note that there are no weights between the

Dummy nodes and the S1 nodes given that we are replicating the

HMAX model, whose S1 features are hard-wired to Gabor filters.

Dummy nodes are the nodes that interface the input image with

layer S1, and are called ‘‘dummy’’ because they don’t store a Belief

but simply send a l message to each S1 node. Each ldummy(S1)
message has four values corresponding to the Gabor filter

responses at four orientations applied over the region of the

image associated with the S1 node (see Text S1 for the Gabor filter

equation and parameters). Consequently, given that each S1 node

receives a single message, we can write l(S1~a)~ldummy(S1~a).

We now describe how to learn the weights between the simple

and complex layers (e.g. S1 and C1), which help to approximate

the invariance operation. Note that, unlike in the toy-example, in

the large-scale model there are four S1 states representing Gabor

filters at four different orientations. Learning the CPTs P(S1pDC1)
requires finding for each S1 state, the KC1group most common

patterns of the NS16NS1 S1 nodes feeding into its parent C1 node.

Furthermore, we need to ensure that the different patterns learned

are as dissimilar as possible in order to minimize the number of

active C1 states at a time in each group. To do this we apply k-

means clustering over all the different afferent patches of S1 nodes

obtained from the training dataset. This is done independently for

each S1 state and fixing the number of clusters to KC1group. Given

that k-means is especially sensitive to initial starting conditions, we

implement a procedure for computing a refined starting condition

that leads to improved solutions [51].

Let P(S1p~aDC1~b) be the CPT between S1p and C1 for S1

state a and C1 state b. As described in the previous section,

initially an individual table is learned for each C1 state (prototype)

b as function of the afferent S1 nodes p and S1 states a. However,

these weights need to be converted to the CPTs of the Bayesian

network, which are defined as an individual table for each S1 node

p as a function of the child states a and the parent states b. To

conform to probability rules each column of the CPT, the

distribution over the child node states, must sum to one. This

ensures that, for example, when all afferent S1 nodes have a flat l
distribution, as in blank regions of the image, the parent C1 node

will also show a flat distribution.

Summing up, the steps to learn the weights between simple and

complex layers are, for each S1 state a (i.e. each of the four Gabor

filter orientations):

1. Find all patches of size NC1 x NC1 from the 2D matrix given by

l(S1p~a),Vp, that meet the criterion maxi(l(S1i~a))wVmin,

where i represents the NC16NC1 values of the patch and Vmin

is a threshold value. This ensures that only the patches that

contain values above a minimum threshold are taken into

account. Given that we are conditioning the patch selection to

a specific Gabor filter orientation a, we can consider this step to

include aspects of supervised learning.

2. Apply k-means clustering to the selected patches using

k~KC1group, where k is a fixed parameter representing the

number of clusters.

This yields KC1group cluster centres of size NS16NS1 for each of

the KS1 states, making a total of KS1
:KC1group~KC1 cluster centres

or C1 prototypes. Each subset of KC1group C1 prototypes

constitutes a C1 group, such that there is one C1 group per S1

state. These weights are then converted into the CPTs P(S1pDC1)

as described above and illustrated in Figure 5. The same learning

algorithm is applied between the S2 and C2 layers, but in that case

there are KS2~200 S2 states and C2 groups.

To learn the selectivity weights between layers C1 and S2, the

minimum distance algorithm [13] is employed. First, all potential S2

prototypes Ppot, are extracted by sampling from all the locations of

the l(C1) response generated for each of the training images. The

number of elements for each prototype is

Object Perception Using Bayesian Networks

PLOS ONE | www.plosone.org 11 November 2012 | Volume 7 | Issue 11 | e48216

NS2|NS2|(KC1=KC1group), i.e. the S2 RF size times the number

of C1 states divided by the states per group. As previously stated, to

learn the S2 prototypes a single value is used for each group,

corresponding to the sum over all the C1 states belonging to that

group. For example, if each C1 node is composed of 40 states

divided into 4 groups (or invariant features), only the 4 values

corresponding to the sum of each group of states are used to

compute the S2 prototypes. The steps of the minimum distance

algorithm are the following:

1. The list of selected prototypes, Prot, is initialized to contain no

prototypes. A parameter called the minimum distance, Dmin, is

initialized to a relatively high starting value.

2. Find all patches (Patch), of size NS26NS26KS1 from the 3D

matrix given by
P

b[groupa l(C1p~b),Vp,b, where b represents

the C1 state and a represents the C1 group associated with an S1

state. Thus, when learning the S2 prototypes we only consider

a single value for each C1 group, namely, the sum of its states.

3. Patches are added to the selected prototype list, Prot, if the

Euclidean distance to all previously stored prototypes is above

the minimum distance, i.e. if d(Patchi,Protj)ƒDmin\ j[f1::Ng
then ProtNz1~Patchi, where N is the number of selected

prototypes.

4. Lower Dmin and repeat step 3 until N~KS2. The initial value

of Dmin and the decreasing step size in each iteration dictate the

dissimilarity between the final selection of prototypes.

The algorithm finds a local optimum in a greedy search sense,

aimed at maximizing the Euclidean distance between the

extracted prototypes. This algorithm is also used to extract the

most common spatial patterns in the Hierarchical Temporal

Memory model [13]. In the HMAX model, on the contrary, the

prototypes which serve as centres for the Radial Basis Functions

are extracted at random from the C1 maps generated by the

training images.

As with the prototype weights in the previous layer, these also

need to be converted to the CPTs P(C1pDS2) and normalized to

conform to probability rules. This is exemplified in Figure 5, which

also illustrates a key component of the model, whereby all the

weights of C1 states belonging to the same group are equal.

The top S3 layer employs supervised learning where the weights

(prototypes) directly correspond to the output of the C2 layer for

each of the object categories. Accordingly, there is a single S3
node with 30 states associated with each of the 30 object

categories. Given the weight tables for each S3 prototype, it is

possible to calculate the final CPTs P(C2pDS3) for each C2 node

following the conversion method and grouping strategy previously

described. This supervised learning stage can be interpreted as

mapping the high-level causes of the generative model onto the

object category labels, guided by the implicit assumption that

human labels are closely related to high level causes.

Approximations to Simplify the Belief Propagation
Operations

This section covers three approximations implemented in the

model, which simplify the loopy belief propagation algorithm and

allow it to work on a Bayesian network with large dimensions. The

first one samples the incoming l messages to avoid values outside

of the system’s numeric range; the second one approximates the

output p message using the Belief of the node to simplify the

generation of messages; and the third one samples incoming p
messages to reduce the number of operations (computation time)

implemented by each node.

0.0.1 Combining bottom-up messages

multiplicatively. Due to the potential large fan-in in the

network and the large number of states, calculating the l(x)
function (Equation (3)) of a node requires multiplying a high

number of potentially very low probability values. For example, a

node might receive input from 400 (20|20 locations) afferent

nodes, meaning that it is necessary to obtain the product of 400

probability distributions. The result of this computation is often

outside the typical numeric boundaries in simulation environments

(for Matlab these boundaries range from 10{323 to 10z308). A

possible option is to transform the equations to the log domain so

that products can be replaced with sums. However, this requires

making further approximations for the belief propagation opera-

tions that contain weighted sums. For example, [14] describes how

the log-sum needs to be approximated with a sum-of-logs.

Nonetheless, studying whether these approximations can provide

better results than the current ones is an interesting approach for

future versions of the model. In the current version of the model

we decided to make several approximations to avoid the

multiplication problems.

In the first one, the messages (probability distributions) are sum-

normalized to one and then re-weighted so that the minimum

value of the distribution is never below Vmin~1=(10:KX). All

elements of the message that are below Vmin are set to Vmin. The

overall increase in the sum of the elements of the resulting

distribution is then compensated by proportionally decreasing the

remaining elements (those that were not set to Vmin). Consequent-

ly, the resulting distribution will still be sum-normalized to 1, while

having a minimum value equal to Vmin. Given that the difference

between the values that were below Vmin and that Vmin is usually

very small, the overall shape of the distribution will remain

practically identical to the original one. This adjustment of the

message probability distributions ensures all elements are above

Vmin, thus allowing multiplicative combination of a greater

number of input messages.

The second approximation is defined as follows. Given a node

X with child nodes C1, � � � ,CM , the number of input l messages is

reduced such that l(x)~ P
j[fjmaxg

lCj
(x), where fjmaxg51::M,

represents the indices of the MmaxlCj
(X) messages with highest

variance, and MmaxƒM. Here, the variance is calculated over the

numerical probabilities of the states within the message. The

maximum number of input messages, Mmax, is calculated as a

function of the number of states of the messages, KX , the

maximum real value allowed by the system, e.g. Rmax~10z308,

and the minimium value allowed in the probability distributions,

Vmin, as given by the following equation:

Mmax~
log Rmax

KX

� �
log 0:1

Vmin

� � : ð11Þ

Thus, the likelihood function of each node is obtained by

multiplying only the Mmax input l messages with highest variance,

where Mmax is set to ensure that the result of the computation

never reaches the system’s numeric upperbound. The probability

distributions with highest variance are chosen as they are likely to

carry more information. To implement this approximation

Equation (3) is replaced with Equation (12):

ltz1(x) : ~ P
j[Ms

lt
Cj

(x), ð12Þ

Object Perception Using Bayesian Networks

PLOS ONE | www.plosone.org 12 November 2012 | Volume 7 | Issue 11 | e48216

where Ms represents the indices of the Mmax incoming l messages

with the highest variance.

In the majority of cases Mmax§M, so the resulting equation is

identical to that in the original belief propagation formulation.

Results measuring the performance of this approximation are

included in Text S2. Note that these approximations are aimed at

avoiding the numerical range boundaries not at reducing the

computation time.

0.0.2 Replacing p messages with beliefs. As shown in

Equation (6), the outward p message generated at each node can

be obtained as a function of its belief. The only difference is that

the message from node X to Cj , i.e. pCj
(X), includes all incoming

messages to X , except the one arriving from the destination node,

i.e. lCj
(X).

However, for the purpose of simplification and increased

computational performance, and only when the number of

incoming messages is high, the outgoing pCj
(X) message can be

approximated by the belief, Bel(X). This approximation implies

pCj
(X) also includes the evidence contained in lCj

(X). Nonethe-

less, pCj
(X) is calculated by combining messages from a total of

NzM nodes (all parent and children nodes), so the overall effect

of one single incoming message on the final output message is

proportional to 1=(NzM). This justifies the approximation in

models, such as the one proposed in the example of this paper,

where the values of N and M are in the order of hundreds. The

same approximation is employed by other similar belief propaga-

tion models [13,15]. To implement this approximation Equation

(2) is replaced with Equation (13):

ptz1
Cj

(x) : ~Beltz1(x): ð13Þ

0.0.3 Reducing the number of operations required to

calculate the belief. To reduce the excessive number of

operations required to calculate the belief, only the Nmax p
messages, with the highest variance are used in the calculation,

where NmaxƒN. As before, the variance is calculated over the

numerical probabilities of the states within the message. Further-

more, for each of the selected p messages, only the kumax states

with the highest values are employed, where kumaxƒku. The

rationale behind this choice is that the states with the strongest

response of the probability distributions with highest variance are

likely to carry most of the information content of the parent p
messages. To ensure the belief calculations are still valid it is

necessary to select the appropriate columns of the CPTs, i.e. those

that correspond to the sampled states of the p messages. This

reduces the number of operations to kNmax
umax sums and Nmax

:kNmax
umax

product operations. Although in this section we refer only to the

belief calculation, the same method is applied to calculate the l
messages, which also integrate information from the parent nodes.

Thus, equations (4) and (5) are replaced with equations (14) and

(15)

ptz1(x) : ~
X

us

P(xDu1,:::,uN): P
i[Ns

pt
X (ui), ð14Þ

ltz1
X (ui) : ~b

X
x

ltz1(x):
X
us\ui

P(xDu1,:::uN): P
k[Ns\i

pt
X (uk)

2
4

3
5, ð15Þ

where Ns represents the indices of the Nmax incoming p message

with highest variance; us represents the indices of the kmax states

with highest values out of each of the Ns incoming p messages.

Results measuring the performance of this approximation are

included in Text S2. Note that this approximation is used to

generate the Belief (which in turn is used to obtain the output p
message) and the output l message by sampling and fusing the

incoming messages to a node. This recursive process constitutes

the backbone of the belief propagation algorithm, so by

introducing this approximation the computation time significantly

reduced.

Approximation to Reduce the CPT Size of Nodes with
Multiple Parents

This section describes the method employed to approximate the

CPTs of nodes with multiple parents and discusses it in the context

of other related methods.

Bayesian networks that try to model the visual cortex will

inevitably require multiple parent interactions as these arise as a

consequence of overlapping receptive fields. The number of

elements of the CPT P(X DU1, � � � ,UN) grows exponentially with

the number of parents, N, as it includes entries for all possible

combinations of the states in node X and its parent nodes, e.g.

given kX ~kU~4,N~8, the number of parameters in the CPT is

4:48~262,144, where kX and kU represent the number of states

in node X and its parent nodes, respectively.

One common approach to reduce size of the CPTs is based on

the concept of independence of causal influences (ICI) [52,53],

which assumes that individual contributions from different causes

(parent nodes) are independent and the total influence on the

effect (child node) is a combination of the individual contributions.

The most standard ICI model is the Noisy-OR [54,55], which

works for boolean or multi-state ordinal variables, those with states

that can be naturally ordered (e.g. small, medium, big). However,

the Noisy-OR model cannot be applied to categorical variables

(e.g. red, green, blue) [55], as is the case with the variables in our

network. The states of a node in our model correspond to the

different possible features (e.g. four Gabor filters) present at a

specific location.

Therefore, in our model, we implement a different method

based on the concept of compatible parental configurations [33] for

expert models, which is closely related to the concept of ICI. This

method obtains the final CPT using the weighted sum of simple

CPTs. More specifically, it obtains a kX |kU CPT,

CompfP(X DUi)g, between node X and each of its N parent

nodes, and assumes the rest of the parents, Uj , where j=i, are in

compatible states (i.e. assumes ICI). More formally, given a node X
with a set of parents U1,:::,UN , the state Uj~uj is compatible with

the state Ui~ui, if according to the expert’s mental model the

state Uj~uj is most likely to coexist with the state Ui~ui. Let

fComp(Ui~ui)g denote the compatible parental configuration where

Ui is in the state ui and the rest of the parents are in states

compatible with Ui~ui.

The method described here proposes combining (using a

weighted sum) the CPTS of X , given compatible parental configurations,

to calculate the CPTs over X , given incompatible, or less common,

parental configurations. This can be understood as a kind of

interpolation mechanism that exploits the known data points. The

author [33] makes use of information geometry to demonstrate

how these weighted sums capture the experts’ judgemental

strategy. A similar ICI model, known as the average model, is

described in [56].

Although the method was derived for populating CPTs using

human experts, theoretically, it can be extended to domains that

Object Perception Using Bayesian Networks

PLOS ONE | www.plosone.org 13 November 2012 | Volume 7 | Issue 11 | e48216

obtain their information from training data using automatic

learning methods. One such domain is hierarchical object

recognition, where, due to the great overlap between receptive

fields, parent nodes show contextual interdependency and can

therefore exploit this technique.

The final CPT P(X DU1, � � � ,UN) is obtained as a weighted sum

of the N CompfP(X DUi)g CPTs, where we assume

CompfP(X DUi)g : ~P(X DUi). Therefore, the total number of

parameters required to be learned grows linearly with the number

of parents, more precisely, is equal to kX
:kN

:N. Using the values

of the previous example, the number of elements now becomes

4:4:8~128, several orders of magnitude smaller than using

conventional methods.

After including the CPT approximation for multiple parent

nodes, the final equations that replace (14) and (15) are:

ptz1(x) : ~
X

us

X
g

wg
:CompfP(xDug)g: P

i[Ns
pt

X (ui), ð16Þ

ltz1
X (ui) : ~b

X
x

ltz1(x):

P
us\ui

P
g

wg
:CompfP(xDug)g

 !
:

P
k[Ns\i

pt
X (uk)

2
666664

3
777775: ð17Þ

where wg is the weight given to each parent CPT. In our

implementation we set wg~1=N, where N is the number of

parent nodes, but in future versions this parameter could be

learned during training.

Therefore, the final set of equations implemented in each

Bayesian node of the model are: Equations (2) and (6) from the

original loopy belief propagation algorithm; and the modified

Equations (12), (16), (17) which are approximations to the original

algorithm adapted to the proposed large-scale model.

Results

Feedforward Processing
This section provides a comparison between the C1 layer

response of our model and that of HMAX, demonstrating that our

model is capable of approximating the invariance operation. Then

the dataset that is used to train and test the model is

comprehensively described and the feedforward categorization

results are shown for different image distortions (occluded, noisy,

translated and scaled) as a function of relevant model parameters.

Finally, the model categorization performance is compared to that

of two related models, HMAX and HTM, which are tuned using

an equivalent procedure to ensure a fair comparison.

The network was trained using 30 object silhouette images,

shown in Figure 7, from which weight matrices were learned. The

rationale behind using a custom dataset and not one of the

available existing datasets is explained in the Discussion section.

The reason for using just one training image per category,

sometimes denoted as one shot learning, is the fact that the model

employs weight sharing. This method simulates the temporal

variation of the input that would naturally occur by using dynamic

input or by including a mechanism to account for eye saccades, so

effectively it is as if the network had been trained with images at all

possible locations.

The resulting S1-C1 weight matrix, learned from the training

dataset of 30 object silhouettes following the k-means clustering

procedure described, represent KC1group common activation

patterns of S1 nodes for each C1 group. These are shown in

Figure 8 for a value of KC1group~10. The weights obtained here

show very clear and selective patterns where the arrangement of

the S1 nodes tends to match the S1 feature orienation, which

speaks for a coherence between the local and more global patterns.

Note that these weight matrices are the large-scale model

analogous of the toy-example weights shown in the left panel of

Figure 5, and still need to be transformed into normalized CPTs in

order to be used by the model.

Figure 9 compares the feedforward response of the C1 nodes in

the Bayesian network, l(C1), with the response of the C1 units in

the original HMAX model. For the Bayesian network, each value

represents the sum of the states in each C1 group (orientation) at

each location, as this is the effective value that will be used to learn

the S2 prototypes. The HMAX C1 response is calculated as the

max over the S1 afferent units, for the same parameter set. The

similarity between the HMAX and Bayesian network responses

demonstrates that our model is able to successfully approximate

the invariance operation. The grey background of the Bayesian

network response indicates that features are being coded in a

probabilistic manner such that empty regions exhibit equiprobable

values for each feature.

In order to test the performance of the model, an image is

considered to be correctly categorized when the state with highest

probability of the S3 Belief coincides with the input image.

Feedforward recognition is performed by assuming initial flat

distributions for all the nodes and running belief propagation on

the trained network, updating one layer at a time in a bottom-up

fashion.

The model was tested using different distortions of the training

images including occluded, noisy, translated and scaled versions,

making a total of 1050 testing images (30 categories 65 variations

6 7 distortions). An example of the seven different distortions for

four arbitrary categories is shown in Figure 10. Below is a

description of how the variations and distortions are generated

from the original 30-image training dataset:

N Occluded. This distortion involves removing approximately

20% of the object’s pixels using a rectangular white patch. To

generate the five different variations, the rectangle is placed at

five different positions in order to occlude different parts of the

object.

N 5 and 10 Noise. For these distortions either 5% or 10% of

the image pixels change their value to a random number from

a uniform distribution. The five different variations are

generated by randomly selecting the pixels to change.

N 10 px and 20 px Translated. These distortions involve

moving the the object 10 or 20 pixels away from its original

centre position. The five different variations are generated by

moving the object up, down, right, left and diagonally (bottom-

right) the corresponding number of pixels. Note, in some cases

for the 20 pixel translation, a small part of the object fell

outside the image dimensions leading to an additional small

occlusion.

N 10% and 20% Scaled. For these distortions the object is

reduced in size either 10% or 20% of their original size. To

obtain five different variations, the position of the scaled object

with respect to the original object was adjusted to either the

top-right corner, top-left corner, bottom-right corner, bottom-

left corner or centre.

We now define a set of simple functions to facilitate the

understanding of the different model performance measures used

in the result figures. Let correct(c,v,d) be a boolean function

Object Perception Using Bayesian Networks

PLOS ONE | www.plosone.org 14 November 2012 | Volume 7 | Issue 11 | e48216

indicating whether the image corresponding to category c (with

range f1::30g), variation v (with range f1::5g) and distortion d
(with range f1::7g) has been correctly categorized (1) or not (0).

Let meanC(v,d)~
P

c~1::30 (correct(c,v,d)=30 � 100) be the cor-

rect categorization percentage for variation v and distortion d . Let

meanV (d)~
P

v~1::5 (meanC(v,d)=5) be the mean correct cate-

gorization percentage over all variations of distortion d . Let

stdV (d)~(1=5:
P

v~1::5 (meanC(v,d){meanV (d))2)1=2 be the

standard deviation of the correct categorization percentage over

all variations of distortion d . Let meanD~
P

d~1::7 (meanV (d)=7

be the mean correct categorization percentage over all variations

and distortions. Let stdD~(1=7:
P

v~1::7 (stdV (d))2)1=2 be the

average standard deviation, over all distortions, of the correct

categorization percentage over all variations. Figures 11, 12 and

13 report the feedforward results using meanV (d) and stdV (d) to

characterize the performance of the model for each distortion

dataset d; and meanD and stdD to characterize the performance

of the model averaged over all distortion datasets. The specific

contents of each figure are described below.

Figure 11 shows the categorization performance of the model

for each distorted dataset as a function of the S2 receptive field size

(NS2), the S2 receptive field overlap (eS2) and the C2 receptive

field size (NC2). The general trend shows improved performance

for smaller S2 and C2 receptive field sizes and for higher C2

receptive field overlap.

Figure 12 shows the categorization performance of the model

for each distorted dataset as a function of the number of states in

the S2 layer (KS2) and the number states per group in the C2 layers

(KC2group). In general the model performance is highly robust to

variations of KS2 and KC2group, except for the Noisy dataset where

a decreased performance is observed when the number of S2

states, KS2, is equal to 50 (lowest value).

Figure 13 compares the categorization performance of 1) an

HMAX-like model, 2) a Hierarchical Temporal Memory network

and 3) the Bayesian network and belief propagation proposed

model. The three models were trained and tested using the same

dataset and their structure parameters were tuned over the same

parameter space. Additionally, several parameters specific to each

model were tuned to maximize the categorization performance.

The reason that we cannot compare our results with those of

original HMAX and HTM publications, even if we had used the

same datasets, is that the structure parameters of the networks

would have been different. This is especially significant for

published HMAX models, which have several scale bands in each

layer, whereas our simplified version has a single scale band per

layer.

The HMAX-like model was implemented using Matlab and

replicates the model described in [37], the 3-level HMAX

implementation, but using the simplified set of parameters shown

in Table 1, i.e. with no scale bands. Following the original HMAX

implementation, the S2 prototypes are selected at random from

the training set, as opposed to employing the minimum-distance

algorithm implemented in the Bayesian network model. The

categorization performance was optimized for the parameter space

depicted in Figures 11 and 12, yielding the following optimum

values: NS2~9, NC2~8 (with 50% overlap) and KS2~350. Three

other parameters, specific to HMAX, were optimized (the range of

parameter values is shown in brackets): the optimum S2 b
coefficient was 0:1 (range = f0:001,0:01,0:1,1g); the optimum

normalization method for the C2 response was datasphering [40]

(range = fnone, sum{normalization, dataspheringg); and the

optimum SVM kernel was RBF with C~10 (range~flinear,

polynomial, sigmoid, RBF with C~0:1, RBF with C~1, RBF
with C~10, RBF with C~50g).

With respect to the HTM model [13], the network was

implemented using the Python-based Numenta Vision Framework

and following the structure described in Table 1. Accordingly,

layer S1 nodes were set to the GaborNode type, layers C1 and C2

nodes to TemporalPoolerNode type, layer S2 nodes to

SpatialPoolerNode type, and the layer S3 node to

PMClassifierNode. As before, the model performance was

optimized for the parameter space illustrated in Figures 11 and

12, obtaining the following parameter values: NS2~9, NC2~8

Figure 7. Object dataset. Shows the 30 object silhouette images of 1406140 pixels used to train the model. Transformations of these original
images are then used to test the model.
doi:10.1371/journal.pone.0048216.g007

Figure 8. Weight matrices between a C1 node and its afferent
S1 nodes. These are learned from the training dataset of 30 object
silhouettes following the clustering procedure described, and represent
KC1group~10 common activation patterns of S1 nodes for each C1
group.
doi:10.1371/journal.pone.0048216.g008

Object Perception Using Bayesian Networks

PLOS ONE | www.plosone.org 15 November 2012 | Volume 7 | Issue 11 | e48216

(with 50% overlap) and KS2~250. The Vision Framework allows

the modification of a large number of HTM-specific parameters,

which were set to the standard values used by HTM networks that

have been tested on other similar visual datasets, such as the

NORB or Fruits dataset. We also note that the model includes

auto-tuning function for the top classifier layer, aimed at

optimizing the parameters from this layer. Nonetheless, a subset

of the HTM-specific parameters, most of them related to the

training methods, were tuned to maximize the model performance

yielding the following values (range is indicated in brackets): the

number of recursions for auto-tuning showed no effect over the

performance (range = f5,20,40g); the optimum number of

samples per recursion for auto-tuning was 40 or above (range =

f20,40,100g); the optimum training method for Layer 2 was

Figure 9. Response of the C1 node in the proposed Bayesian model and the original HMAX model. left) Belief response of the C1 nodes,
Bel(C1). Responses are shown as a 2D map over the locations of the nodes for each group of states. The probability for each C1 group is calculated as
the sum over the probabilities of its constituent states. right) Response of the C1 units in the original HMAX model. The response is calculated as the
max over the S1 afferent units.
doi:10.1371/journal.pone.0048216.g009

Figure 10. Examples of object transformations. The trained network is tested on different transformations of the training images including
occluded, noisy, translated and scaled versions. Examples of these transformations are shown here for four objects.
doi:10.1371/journal.pone.0048216.g010

Object Perception Using Bayesian Networks

PLOS ONE | www.plosone.org 16 November 2012 | Volume 7 | Issue 11 | e48216

Figure 11. Categorization performance of the model as a function of the S2 receptive field size, NS2 and overlap, and the C2
receptive field size, NC2. Results show the correct categorization percentage for each distorted dataset, averaged over the five image variations for
each distortion. Error bars represent the standard deviation of the correct categorization percentage over the five variations of each distortion.
Results are also shown for the average over all distortions. The general trend shows improved performance for smaller S2 and C2 receptive field sizes
and for higher C2 receptive field overlap.
doi:10.1371/journal.pone.0048216.g011

Object Perception Using Bayesian Networks

PLOS ONE | www.plosone.org 17 November 2012 | Volume 7 | Issue 11 | e48216

Figure 12. Categorization performance of the model as a function of number of states in the S2 layer, KS2 and the number states
per group in the C2 layer, KC2group. Results show the correct categorization percentage for each distorted dataset, averaged over the five image
variations for each distortion. Error bars represent the standard deviation of the correct categorization percentage over the five variations of each
distortion. Results are also shown for the average over all distortions. In general the model performance is highly robust to variations of KS2 and
KC2group, except for the Noisy dataset where a decreased performance is observed when the number of S2 states, KS2 , is equal to 50 (lowest value).
doi:10.1371/journal.pone.0048216.g012

Object Perception Using Bayesian Networks

PLOS ONE | www.plosone.org 18 November 2012 | Volume 7 | Issue 11 | e48216

MultiSweep, for Layer 3 was RandomFlash, for Layer 4 was

MultiSweep, and for Layer 5 was Flash

(range = fFlash,RandomFlash,RandomSweep,MultiSweepg).
The comparison between models shown in Figure 13 cannot be

used to decide which model deals better with which distortion

because some of the structure parameters (NS2, NC2 and KS2),

common to all models, have been tuned independently. This

means that the models will perform better for some distortions (e.g.

higher C2 RF sizes are associated with better performance for the

translated distortion) and worse for others, depending on the value

of these parameters. However, when the same parameters (e.g.

those that give best performance for our Bayesian model) were

used for all the models, the average performance of the HTM and

HMAX models decreased significantly. The same happened to the

average performance of our Bayesian model if the optimum

parameters for HTM and HMAX were used instead. Therefore,

we decided that the fairest comparison would be provided by

showing the categorization performance of each model after

maximizing their parameters independently. Overall, the results in

Figure 13 suggest that our model can achieve a feedforward

categorization performance similar to that of the HTM and

HMAX models.

Feedback Modulation
This section describes results illustrating two feedback effects

captured by our model, namely, illusory contour completion and

top-down attentional modulation.

To study illusory contour completion in the model, we use a

Kanizsa square as input image and allow the internal represen-

tation to propagate along the layers, from S1 to S3. Once the input

image is categorized as a square in the top layer, the stored square

representation is fed back downwards and combined with the

bottom layers representations. Figure 14 shows the S1 and C1

internal representations, i.e. the probability of each of the four

states (orientations) at every location, before and after top-down

feedback. Layers are updated in a sequential up-down fashion in

the following order: S1-C1-S2-C2-S3-C2-S2-C1-S1. The repre-

sentations after top-down feedback are understood as the model

responses once the top layer has been updated. Additionally, in

order to study the internal representation of a square stored in the

S3 layer and to understand how feedback interacts with the

existing lower level beliefs, we also show the model response to a

blank input image, after top-down feedback, with the S3 node

clamped to the ‘square’ state. For each of the three scenarios, an

image reconstruction obtained by combining the oriented Gabor

filters of the S1 representation is also included. The model

parameters for these simulations are the same as those used to

obtain the feedforward results and shown in Table 1.

To simulate object attention in the model, the S3 node is

clamped to a specific state, the object that will be attended to, and

the layers are updated in a top-down fashion in the order S3-C2-

S2-C1-S1. When the abstract object representation reaches the S1

layer it is be combined with the bottom-up sensory information

from the input image, and enhances the regions and features of the

image that correspond to the attended object. This process is

illustrated in Figure 15 for an input image with two superimposed

objects, a lamp and a guitar, and two different scenarios simulating

top-down object attention on each of the objects.

Discussion

Comparison with Previous Models
The recently published CDBN model [32], which extends Deep

Belief Networks to a multi-stage Hubel-Wiesel architecture, shares

many aspects with our model. They both propose a probabilistic

max-pooling operation to implement invariance using generative

models, learning happens in a bottom-up greedy layerwise fashion,

weights are shared amongst nodes in the same layer and results

show both feedforward categorization and feedback completion.

However, inference in CDBNs is implemented using Gibbs

sampling whereas we employ loopy belief propagation together

Figure 13. Comparison of categorization performance of the model proposed (Bayesian Network), an HMAX-like model and an
HTM network. Results are shown for all the different object distortions averaged over the five image variations within each distortion. Error bars
indicate the standard deviation of the correct categorization percentage over the five variations. All models share the same structure parameters
including RF sizes, RF overlaps and number of features per layer, except for NS2, NC2 and KS2 , which were tuned independently for each model.
Additionally, several model-specific parameters were also optimized to maximize the categorization results. This comparison is only intended to
demonstrate that our model can achieve a feedforward categorization performance similar to that of other models. See the text for further details.
doi:10.1371/journal.pone.0048216.g013

Object Perception Using Bayesian Networks

PLOS ONE | www.plosone.org 19 November 2012 | Volume 7 | Issue 11 | e48216

with a number of approximations to simplify the computations.

Additionally, CDBNs are based on Restricted Boltzmann

Machines, a type of undirected graphical model with binary

states, whereas our model is based on Bayesian networks. As a

consequence each CDBN node represents a binary variable

encoding a specific feature and location while our Bayesian

network nodes represent multiple-state variables encoding the

probability distribution over features for a given location. The

invariance operation in CDBNs is implemented by dividing the

selectivity simple nodes into disjoint blocks that feed into each max-

pooling complex node and constraining to one the maximum

number of active simple nodes. In our model each complex node

learns the most common activation patterns of afferent nodes for

each simple feature and groups them during the generation of the

output message to the layer above, thus approximating the max-

pooling operation. Our method is not limited to disjoint blocks of

afferent nodes, such that a simple node may have multiple parents

(overlapping receptive fields). Learning in CDBNs happens

through the contrastive divergence approximation as opposed to

the non-probabilistic discriminative methods (minimum distance

and k-means algorithms) employed by our model, which require

the subsequent conversion to normalized conditional probability

tables.

HTM networks [13] also constitute an example of a probabi-

listic model with a multi-stage Hubel-Wiesel architecture.

Furtheremore, the way in which complex features are constructed

is similar to our model in the sense that they represent groups of

simple features. However, there are significant differences with our

model, starting with the fact that HTMs combine simple and

complex features into a single node and so they cannot be

understood as a conventional Bayesian network. Consequently,

HTMs require a significantly modified belief propagation algo-

rithm adapted to this special type of node. Our proposed model

retains the conventional definition of a Bayesian node which

Figure 14. Simulation results reproducing the illusory contour completion and mental imagery phenomena. Image reconstruction and
S1 and C1 internal representations for a Kanizsa square input image before (left) and after (middle) top-down feedback; and to a blank input image,
after top-down feedback, with the S3 layer clamped to a square (right). Layers are updated in a sequential up-down fashion in the following order: S1-
C1-S2-C2-S3-C2-S2-C1-S1. The representations after top-down feedback are understood as the model responses once the top layer has been
updated. The model response to a Kanizsa square input image shows contour completion due to top-down feedback. The model response to a blank
input image with square feedback from S3, illustrates the invariant object representation that is being fed back from the top layer in the absence of
bottom-up input. This can be understood as reproducing the mental imagery phenomenon. The grey scale indicates the probability of each node
being in one of the four states or orientations, signalled by a small oriented Gabor filter at the top of each 2D spatial representation. For the image
reconstructions, the grey scale representes the normalized value of the pixel.
doi:10.1371/journal.pone.0048216.g014

Object Perception Using Bayesian Networks

PLOS ONE | www.plosone.org 20 November 2012 | Volume 7 | Issue 11 | e48216

allows us to model simple and complex units of HMAX-like

models using individual Bayesian nodes in separate layers.

Additionally, the solution proposed by [13] to deal with multiple

parents, the Noisy-OR gate, is not valid for the type of variables in

most HTMs (categorical variables). Finally, the authors suggest

using loopy belief propagation but do not show any examples or

results, thus omitting the critical problem of implementing

networks with loops.

The model proposed by Ullman [57] implements exact

inference using belief propagation. However, it employs over-

simplified tree-structured networks with no loops and is qualita-

tively different from the proposed model in that the nodes

correspond to features and their states to locations. Furthermore,

the model requires one independent network for each object

category. Similarly, the model described in [58] also implements

exact inference on a singly-connected Bayesian network but

models exclusively high-level attention, where the lower half of the

network that performs recognition is non-Bayesian and strictly

feedforward.

Other related models remain purely theoretical [47] or employ

different methods to perform approximate inference, such as

variational approximations [6,19]. The variational approximation

method tries to minimize the free-energy of the system, by

minimizing the difference between the approximate or recognition

distribution and the true posterior distribution. In the model

proposed by Friston [6], this is achieved by implementing a

message-passing algorithm that solves the equations of a hierar-

chical dynamic network. This local and recursive message-passing

scheme is reminiscent of belief propagation but individual

messages do not correspond to probability distributions and are

more difficult to interpret.

Similarities with the Visual Cortex
As has been extensively argued in the literature, the parallel,

distributed and hierarchical architecture of the cortex has

Figure 15. Simulation results reproducing object attention. Image reconstruction and S1 and C1 internal representations for an input image
containing a superimposed lamp and guitar, before (left) and after top-down feedback with the S3 node clamped to the lamp object (middle) and to
the guitar object (right). Object attention is simulated by clamping the S3 node to a specific state, the object that will receive top-down attention, and
updating the layers in the order S3-C2-S2-C1-S1. The S1 layer will then combine the top-down feedback originated in S3 with the bottom-up sensory
data from the input image. The grey scale indicates the probability of each node being in one of the four states or orientations, signalled by a small
oriented Gabor filter at the top of each 2D spatial representation. For the image reconstructions, the grey scale representes the normalized value of
the pixel.
doi:10.1371/journal.pone.0048216.g015

Object Perception Using Bayesian Networks

PLOS ONE | www.plosone.org 21 November 2012 | Volume 7 | Issue 11 | e48216

significant similarities with the structure of Bayesian networks

[5,13,54]. Furthermore, the homogeneous internal structure of

cortical columns (the canonical microcircuit) is comparable to the

homogeneous internal operations (belief propagation) of each

Bayesian node. This has lead to the proposal of possible cortical

mappings and biologically plausible implementations of belief

propagation [6,13,15,16,59]. Additionally, the Bayesian network

proposed here has an architecture similar to that of the HMAX

model, which has been shown to capture widely accepted

principles of object recognition in the ventral path of the visual

system [31,41].

Although the approximations of the model were mainly

intended to make the model work on a real dataset and with

HMAX-like parameters, some of them can be justified from the

neurobiological perspective. For example, the use of loopy belief

propagation is consistent with the known recurrent connectivity of

neuronal networks in the visual cortex; and the sampling of

incoming messages is consistent with the subthreshold activity of

many neurons and the consequent high degree of sparseness

observed in spiking patterns [60].

There is always a trade-off between the biological realism of a

model and its large-scale functionality. In this study we focus on

the latter, in contrast to a number of papers have already provided

detailed biological implementations [15,16,59] but limited to

small-scale toy examples.

Feedforward Processing
First of all, it is important to highlight the importance of the

HMAX multi-stage Hubel-Wiesel architecture that has been

reproduced by the Bayesian network proposed. Recent feedfor-

ward ConvNet models, which employ this type of architecture,

have achieved the best published results on well-known bench-

marks for object classification (NORB, CIFAR10, Caltech101)

[61–63] and handwritten digit recognition (MNIST) [61].

Although here we have focused on the HMAX model, our

methodology can be potentially applied to build Bayesian

networks with belief propagation capable of reproducing the

structure and functionality of other HMAX-like models, such as

ConvNets.

For the feedforward results in this study we wanted to use a

dataset with the following characteristics: 1) it allowed the model to

be tested on a specific and differentiated set of distortions

(occlusion, noise, translation and rescaling); 2) it had a moderate

number of images, allowing us to tune the model parameters

despite being a computationally demanding model; 3) the size of

the images was large enough to ensure that the task was not trivial

and that the model could be potentially extended to larger natural

images; and 4) the images were simple enough that they allowed us

to clearly test feedback effects such as illusory contour completion.

Initially we considered using one of the existing datasets, but

none of them satisfied all of these criteria. The available datasets

either didn’t contain distorted versions of the images but had many

examples of each category (Caltech [64], USPS [65] and MNIST

[66]); the distortions were beyond the scope of our model

(rotations in SDIGIT [67] and 3D transformations in NORB

[68]); or the image size was very small (16616 px for SDIGIT and

USPS, 28628 px for MNIST and 32632 px for Pictures [69]). For

these reasons we decided to generate our own dataset, matching

the described criteria, with a strong focus on clearly illustrating

feedback effects. Other authors have previously raised concerns

with many of these datasets, arguing they didn’t appropriately

capture their problem of interest, and have also chosen to generate

an independent dataset [63].

The categorization results in Figure 11 show some clear

patterns: performance improves for smaller S2 and C2 receptive

fields and higher S2 receptive field overlap, at least within the

limited range of the values tested. Smaller receptive fields provide

higher selectivity, but presumably, lower values would at some

point decrease the performance as the invariance capability of the

model deteriorates. An exception occurs for the 20 px translated

dataset where the performance increases proportionally with the

C2 receptive field size. This suggests small C2 pooling regions are

able to cope with all other distortions and therefore benefit from

the improved selectivity, but fail to account for the 20 px

translation. The overall robustness of the model as a function of

the S2 and C2 receptive field sizes is relatively high (maximum

average difference of approximately 30%), but can vary signifi-

cantly for different distortions (e.g. high robustness for the Scaled

dataset but relatively low for the Noise dataset).

Similarly, the categorization results in Figure 12 suggest that,

within the parameter range tested, the model is highly robust to

the number of states in the S2 layer and the number of states per

group in the C2 layer. The performance only slightly decreases for

the case when the number of S2 states is 50 (minimum value), but

otherwise stays around an average value of approximately 90%.

Finally, Figures 11 and 12 also indicate that the robustness of the

model to quantitative increases of each distortion (e.g. noise level

between 5% and 10%) is relatively good for the noise dataset but

not for the scaled and translated one.

The standard deviation over the five variations of each

distortion (see Results section for details), shown as error bars in

Figures 11, 12 and 13, is relatively low for all distortions except for

the Translated 20 px and Scaled 20%. This is because the five

variations for each image involved moving the translated or scaled

image to a different position and the model seems to be sensitive to

the direction of displacement, e.g. scaled objects that are moved to

the top-right corner are more difficult to categorize than those at

the bottom-right corner. Consequently, the statistical significance

of the results obtained for these two distortions is low. Similar high

standard deviations are observed in both the HTM and HMAX

categorization results (Figure 13).

The comparison of results in Figure 13 demonstrates that the

proposed Bayesian network can achieve competitive feedforward

categorization results, comparable with those of similar models,

such as HMAX and HTM. The structure parameters, including

pooling and step sizes and number of features for each layer, were

identical for the three models, except for three parameters: NS2,

NC2 and KS2. These parameters were optimized independently for

each model, over the same parameter space used for our model

(shown in Figures 11 and 12). Additionally, a significant number of

model-specific parameters were tuned to maximize the categori-

zation performance of both HMAX and HTM. We also note that

it is very likely that further parameter tuning could have improved

their categorization results, but the same applies for our model.

Similarly, using extended versions of HTM [67] or HMAX [40]

could also yield better performance, but this study we decided to

focus on their original published versions. Ultimately, we would

like to strongly emphasize that this comparison is only intended to

illustrate that the feedforward capabilities of our model are similar

to those of related models, but not to demonstrate superiority in

terms of object recognition for artificial vision systems. The focus

of this paper is to show a Bayesian-based feedback extension of the

HMAX model consistent with evidence from the visual cortex.

Feedback Processing
The proposed network naturally extends hierarchical feedfor-

ward models, such as HMAX, to include dynamic and recursive

Object Perception Using Bayesian Networks

PLOS ONE | www.plosone.org 22 November 2012 | Volume 7 | Issue 11 | e48216

feedback, which has been pinpointed as the main limitation of

these models by their authors [37]. This is made possible through

the approximation to the selectivity and invariance operations

using belief propagation which also serves to feed back and

integrate top-down information. Furthermore, the methods

proposed facilitate the implementation of belief propagation in

large-scale Bayesian networks where nodes have multiple parents.

First of all, to reduce the size of the connectivity matrices we

particularize the weighted sum method proposed by [33] to the

visual domain. This method has a strong advantage over the

Noisy-OR gate [54], a widely used method that is limited to

ordinal variables. The proposed method can be applied to

categoric variables with no given order, such as the visual features

encoded at each location.

Additionally, to reduce the exponential growth of the number of

operations we propose sampling the probability distributions of the

incoming messages. We demonstrate empirically that this method

provides a good fit to the exact distributions given a moderate

number of samples (see Text S2). Nonetheless, it would be

interesting to quantify the loss of information due to the sampling

methods and investigate how this affects both feedforward and

feedback processing. This loss of information may affect the

temporal evolution of the response, which, in many cases

converges during the first time steps, i.e. the Belief either does

not vary significantly over time or oscillates between two fixed

points. This may prevent the model from exhibiting further

interactions between bottom-up and top-down information.

One key aspect that could help to minimize the loss of

information due to sampling in the model is the sparseness of the

node activations. The average sparseness at each layer, measured as

the percentage of elements in each node with a probability above 1/

K (where K = number of states), is 11:3% for S1, 5:4% for C1,

5:6% for S2, 0:058% for C2 and 3:3% for S3. We hypothesize

sparseness arises in the model naturally as a consequence of the

multiplicative combination of the large number of incoming l
messages at each node. However, further enforcing sparse

representations, which have been identified as an essential element

for similar biologically-inspired models [13,19,30,32], may improve

the accurary of the model approximations.

The results in Figure 14 illustrate an emergent property of the

model by which bottom-up evidence from the input image is

recursively combined with top-down information leading to image

reconstruction or illusory contour completion. There are several

important aspects to highlight here. First of all, the phenomenon

occurs without any external artifact related to the feedback

generation. In other words, the square feedback arises naturally

from the S3 layer after the Kanizsa figure is recognized as a square.

This means the information that is fed back corresponds to that of

the abstract invariant representation of a square stored in the upper

layers. This high-level representation can be clearly observed by

clamping the S3 layer to the ‘square’ state and leaving blank the

input and the rest of the layers (third scenario in Figure 14). By

comparing this to the case where a Kanizsa square is used as input

image, the interactions between top-down feedback and bottom-up

input become apparent: the high-level square representation is

refined by the lower-level local information.

These simulation results are consistent with the qualitative

response pattern observed across the ventral system, where the

Kanizsa figure is represented as a complete figure in the higher

levels [70,71] and, as time progresses, an activation, weaker than

that of real contours, can be observed in lower levels [72–76]. The

model is also consistent with the mechanisms proposed to be

responsible for contour completion [77], namely, figural feedback

and lateral interactions. Although there are no explicit lateral

connections in the model, these are implemented implicitly by the

bottom-up messages and top-down messages, both of which take

into account evidence from nodes adjacent to the target. Finally,

the results in Figure 14 (right) are also in agreement with evidence

suggesting that the same visual pathways are shared for visual

perception and mental imagery, resulting in similar cortical

activations [78], and that mental imagery can lead to retinotopic

activations in lower level visual regions [79].

The example shown in Figure 15 serves to illustrate the capacity

of the model to simulate top-down feedback modulation of the lower

layers, by modifying the S3 node to reflect the appropriate bias

towards certain objects or locations. These biases can be understood

as attentional, priming or expectation effects, which can arise from

areas outside the ventral pathway such as the dorsal pathway [80],

prefrontal cortex, fusiform gyrus, posterior parietal cortex or the

amygdala [81,82]. Simulation results are consistent with studies

showing the modulation of lower-level regions due to feedback from

object-related regions, such as the inferotemporal cortex [2] and the

lateral occipital complex [3]. Importantly, these effects are

accommodated as part of the Bayesian network mathematical

framework, without the need to include any external artifacts. For

larger input images containing several objects, the model could

potentially implement spatial attention in a similar fashion by

defining a prior distribution that favours certain locations.

Future Work
The model could benefit from a more detailed analysis of how

different learning schemes, including online adaptation, as well as

different message-passing scheduling methods, affect the catego-

rization and feedback processing. Unsupervised learning methods

could also be used for the lower layer, replacing the current

HMAX-like hard-wired Gabor filters, which could provide more

precision in the feedback reconstruction. Additionally, an inter-

esting extension could come from adding a backpropagation fine-

tuning stage, similar to that of deep belief networks [17], to

improve the categorization performance.

Another important aspect is the scalability of the model, which

is limited by the high computation time required to train the

network making it infeasible to run on large datasets. However, the

model is still in its infancy and as new learning methods, belief

propagation optimizations and more computational power

become available this limitation will disappear and the advantages

of probabilistic generative models over conventional feedforward

models will only increase. In this line, it is important to highlight

that the proposed model is well-suited for real-time, parallel and

distributed hardware implementations [24].

Finally, an interesting future line of research will be to adapt the

proposed framework to other scenarios with similar hierarchical

perceptual properties, such as cortical auditory processing.

Supporting Information

Text S1 Layer by layer description of the HMAX model.
Describes the operations, including the equations, performed at

each of the five layers of the original HMAX model.

(PDF)

Text S2 Empirical results for the proposed approxima-
tions. Provides results supporting the validity of the approxima-

tions used to calculate the l and p messages. These approxima-

tions involve sampling the incoming messages to a node. The

results are obtained by calculating the Kullback-Leibler diver-

gence between the true and approximate distributions for a

generic node as a function of several parameters.

(PDF)

Object Perception Using Bayesian Networks

PLOS ONE | www.plosone.org 23 November 2012 | Volume 7 | Issue 11 | e48216

Acknowledgments

We would like to thank the anonymous reviewers for their thorough and

insightful comments, which have significantly improved the paper.

Author Contributions

Conceived and designed the experiments: SD-B TW SLD. Performed the

experiments: SD-B. Analyzed the data: SD-B. Wrote the paper: SD-B TW

SLD.

References

1. Murray SO, Schrater P, Kersten D (2004) Perceptual grouping and the

interactions between visual cortical areas. Neural Networks 17: 695–705.

2. Huang JY, Wang C, Dreher B (2007) The effects of reversible inactivation of
postero-temporal visual cortex on neuronal activities in cat’s area 17. Brain

Research 1138: 111–128.

3. Williams MA, Baker CI, Op de Beeck HP, Mok Shim W, Dang S, et al. (2008)
Feedback of visual object information to foveal retinotopic cortex. Nature

Neuroscience 11: 1439–1445.

4. Bullier J (2001) Integrated model of visual processing. Brain Research Reviews

36: 96–107.

5. Lee TS, Mumford D (2003) Hierarchical Bayesian inference in the visual cortex.
Journal of the Optical Society of America A: Optics, Image Science and Vision

20: 1434–1448.

6. Friston K, Kiebel S (2009) Cortical circuits for perceptual inference. Neural

Networks 22: 1093–1104.

7. Kording KP, Wolpert DM (2004) Bayesian integration in sensorimotor learning.
Nature 427: 244–247.

8. Lengyel M, Dayan P (2007) Uncertainty, phase and oscillatory hippocampal
recall. In: Schölkopf B, Platt J, Hoffman T, editors, Advances in Neural

Information Processing Systems 19, Cambridge, MA: MIT Press. 833–840.

9. Fox C, Prescott T (2010) Learning in a unitary coherent hippocampus. In:
Proceedings of the 20th international Conference on Artificial Neural Networks:

Part I. Berlin, Heidelberg: Springer-Verlag, ICANN’10, 388–394.

10. Knill DC, Richards W, editors (1996) Perception as Bayesian inference.

Cambridge University Press.

11. Yuille A, Kersten D (2006) Vision as Bayesian inference: analysis by synthesis?
Trends in Cognitive Sciences 10: 301–308.

12. Deneve S (2008) Bayesian spiking neurons I: Inference. Neural Computation 20:

91–117.

13. George D, Hawkins J (2009) Towards a mathematical theory of cortical micro-

circuits. PLoS Comput Biol 5: e1000532.

14. Rao RPN (2006) Neural models of bayesian belief propagation. In: Doya K,
editor, Bayesian brain: Probabilistic approaches to neural coding, MIT Press.

239–268.

15. Litvak S, Ullman S (2009) Cortical circuitry implementing graphical models.

Neural Computation 21: 3010–3056.

16. Steimer A, Maass W, Douglas R (2009) Belief propagation in networks of spiking
neurons. Neural Computation 21: 2502–2523.

17. Hinton GE, Osindero S, Teh Y (2006) A fast learning algorithm for deep belief

nets. Neural Computation 18: 1527–54.

18. Lewicki MS, Sejnowski TJ (1997) Bayesian unsupervised learning of higher

order structure. In: Mozer MC, Jordan MI, Petsche T, editors, Advances in
Neural Information Processing Systems. The MIT Press, volume 9, p. 529.

19. Murray J, Kreutz-Delgado K (2007) Visual recognition and inference using

dynamic overcomplete sparse learning. Neural Computation 19: 2301–2352.

20. Rao RPN, Ballard DH (1997) Dynamic model of visual recognition predicts

neural response properties in the visual cortex. Neural Computation 9: 721–763.

21. Murphy K, Weiss Y, Jordan M (1999) Loopy belief propagation for approximate
inference: An empirical study. In: Proceedings of the 15th Annual Conference

on Uncertainty in Artificial Intelligence (UAI-99), San Francisco, CA: Morgan

Kaufmann. 467–47.

22. DiMaio F, Shavlik J (2006) Improving the e_ciency of belief propagation in large
highly connected graphs. Group working paper 06–1, Department of Computer

Sciences, University of Wisconsin, Machine Learning Research.

23. Felzenszwalb PF, Huttenlocher DP (2006) Efficient belief propagation for early

vision. Int J Comput Vision 70: 41–54.

24. Liang CK, Cheng CC, Lai YC, Chen HH, Chen LG (2011) Hardware-efficient
belief propagation. IEEE Transactions on Circuits and Systems for Video

Technology 21: 525–537.

25. Chen SY, Tong H, Wang Z, Liu S, Li M, et al. (2011) Improved generalized

belief propagation for vision processing. Mathematical Problems in Engineering
: 12.

26. Singla P, Nath A, Domingos P (2010) Approximate lifted belief propagation. In:

AAAI Workshop on Statistical Relation AI. Atlanta, GA., 92–97.

27. Elidan G (2006) Residual belief propagation: Informed scheduling for
asynchronous message passing. In: in Proceedings of the Twenty-second

Conference on Uncertainty in AI.

28. Sutton C, McCallum A (2007) Improved dynamic schedules for belief

propagation. In: Conference on Uncertainty in Artificial Intelligence (UAI).

29. Fukushima K (2005) Restoring partly occluded patterns: a neural network
model. Neural Networks 18: 33–43.

30. LeCun Y, Kavukcuoglu K, Farabet C (2010) Convolutional networks and
applications in vision. In: Proceedings of 2010 IEEE International Symposium

on Circuits and Systems (ISCAS),. 253–256. doi:10.1109/ISCAS.2010.5537907.
URL http://dx.doi.org/10.1109/ISCAS.2010.5537907.

31. Riesenhuber M, Poggio T (1999) Hierarchical models of object recognition in

cortex. Nature Neuroscience 2: 1019–25.

32. Lee H, Grosse R, Ranganath R, Ng AY (2011) Unsupervised learning of

hierarchical representations with convolutional deep belief networks. Commun

ACM 54: 95–103.

33. Das B (2004) Generating conditional probabilities for Bayesian networks: Easing

the knowledge acquisition problem. CoRR cs.AI/0411034.

34. Hubel DH, Wiesel TN (1965) Receptive fields and functional architecture in two

nonstriate visual areas (18 and 19) of the cat. Journal of Neurophysiology 28:

229–289.

35. Fukushima K (1988) Neocognitron: A hierarchical neural network capable of

visual pattern recognition. Neural Networks 1: 119–130.

36. LeCun Y, Bengio Y (1995) Convolutional networks for images, speech and time-

series. The Handbook of Brain Theory and Neural Networks, MIT

Press, M Arbib (editor) : 255–258.

37. Serre T, Wolf L, Bileschi S, Riesenhuber M, Poggio T (2007) Robust object

recognition with cortexlike mechanisms. IEEE Transactions on Pattern Analysis

and Machine Intelligence 29: 411–426.

38. Serre T, Riesenhuber M (2004) Realistic modeling of simple and complex cell

tuning in the hmax model, and implications for invariant object recognition in

cortex. Massachusetts Institute of Technology, Cambridge, MA CBCL Paper

239/AI Memo 2004–017.

39. Serre T, Oliva A, Poggio T (2007) A feedforward architecture accounts for rapid

categorization. Proceedings of the National Academy of Sciences 104: 6424–

6429.

40. Mutch J, Lowe DG (2008) Object class recognition and localization using sparse

features with limited receptive fields. Int J Comput Vision 80: 45–57.

41. Cadieu C, Kouh M, Pasupathy A, Connor CE, Riesenhuber M, et al. (2007) A

model of V4 shape selectivity and invariance. Journal of Neurophysiology 98:

1733–1750.

42. Walther DB, Koch C (2007) Attention in hierarchical models of object

recognition. Progress in Brain Research 165: 57–78.

43. Giese MA, Poggio T (2003) Neural mechanisms for the recognition of biological

movements. Nature Reviews Neuroscience 4: 179–192.

44. Masquelier T, Thorpe S (2010) Learning to recognize objects using waves of

spikes and spike timingdependent plasticity. In: IEEE IJCNN.

45. Bishop C (1995) Neural networks for pattern recognition. Oxford University

Press.

46. Hochstein S, Ahissar M (2002) View from the top: Hierarchies and reverse

hierarchies in the visual system. Neuron 36: 791–804.

47. Lee TS (2003) Computations in the early visual cortex. Journal of Physiology-

Paris 97: 121–139.

48. Weiss Y (2000) Correctness of local probability propagation in graphical models

with loops. Neural Computation 12: 1–41.

49. Yedidia J, Freeman W, Weiss Y (2003) Understanding belief propagation and its

generalizations. In: Exploring artificial intelligence in the new millennium, San

Francisco, CA: Morgan Kaufmann Publishers Inc. 239–269.

50. Dura-Bernal S, Wennekers T, Denham SL (2011) Modelling object perception

in cortex: Hierarchical bayesian networks and belief propagation. In: 45th

International Conference on Information Sciences and Systems, Johns Hopkins

University, USA. 1–6.

51. Bradley PS, Fayyad UM (1998) Refining initial points for k-means clustering.

Morgan Kaufmann, 91–99.

52. Zhang NL, Poole D (1996) Exploiting causal independence in Bayesian network

inference. Journal of Artificial Intelligence Research 5: 301–328.

53. Heckerman D, Breese JS (1996) Causal independence for probability assessment

and inference using Bayesian networks. Trans Sys Man Cyber Part A 26: 826–

831.

54. Pearl J (1988) Probabilistic reasoning in intelligent systems: networks of plausible

inference. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

55. Diez FJ (1993) Parameter adjustment in ‘‘bayes’’ networks. the generalized noisy

‘‘or’’-gate. In: In proceedings of the 9th Conference on Uncertainty in Artificial

Intelligence. Morgan Kaufmann, 99–105.

56. Zagorecki A, Druzdzel MJ (2006) Probabilistic independence of causal inuences.

In: Studený M, Vomlel J, editors, Third European Workshop on Probabilistic

Graphical Models, 12–15 September 2006, Prague, Czech Republic. Electronic

Proceedings. 325–332.

57. Epshtein B, Lifshitz I, Ullman S (2008) Image interpretation by a single bottom-

up top-down cycle. Proceedings of the National Academy of Sciences 105:

14298–14303.

58. Chikkerur S, Serre T, Tan C, Poggio T (2009) An integrated model of visual

attention using shapebased features. Massachusetts Institute of Technology,

Cambridge, MA CBCL paper 278/MITCSAIL-TR 2009–029.

Object Perception Using Bayesian Networks

PLOS ONE | www.plosone.org 24 November 2012 | Volume 7 | Issue 11 | e48216

59. Pecevski D, B using L, Maass W (2011) Probabilistic inference in general

graphical models through sampling in stochastic networks of spiking neurons.

PLoS Computational Biology 7: e1002294.

60. Olshausen B, Field D (2005) How close are we to understanding v1? Neural

Computation 17: 1665–1699.

61. Ciresan DC, Meier U, Gambardella LM, Schmidhuber J (2010) Deep, big,

simple neural nets for handwritten digit recognition. Neural Computation 22:

3207–3220.

62. Pinto N, Cox DD, DiCarlo JJ (2008) Why is real-world visual object recognition

hard? PLoS Comput Biol 4: e27.

63. Pinto N, Doukhan D, DiCarlo JJ, Cox DD (2009) A high-throughput screening

approach to discovering good forms of biologically inspired visual representa-

tion. PLoS Comput Biol 5: e1000579.

64. Fei-Fei L, Fergus R, Perona P (2007) Learning generative visual models from few

training examples: An incremental bayesian approach tested on 101 object

categories. Comput Vis Image Underst 106: 59–70.

65. Hastie T, Tibshirani R, Friedman J (2003) The Elements of Statistical Learning:

Data Mining, Inference, and Prediction. Springer, corrected edition.

66. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning

applied to document recognition. Proceedings of the IEEE 86: 2278–2324.

67. Maltoni D (2011) Pattern recognition by hierarchical temporal memory.

Technical report, DEIS Technical Report.

68. LeCun Y, Huang FJ, Bottou L (2004) Learning methods for generic object

recognition with invariance to pose and lighting. In: Proceedings of CVPR’04.

IEEE Press.

69. George D, Hawkins J (2005) A hierarchical bayesian model of invariant pattern

recognition in the visual cortex. In: IEEE International Joint Conference on

Neural Networks. volume 3, 1812–1817.

70. Stanley DA, Rubin N (2003) fMRI activation in response to illusory contours

and salient regions in the human lateral occipital complex. Neuron 37: 323–331.

71. Sary G, Koteles K, Kaposvari P, Lenti L, Csifcsak G, et al. (2008) The

representation of Kanizsa illusory contours in the monkey inferior temporal
cortex. European Journal of Neuroscience 28: 2137–2146.

72. Halgren E, Mendola J, Chong CDR, Dale AM (2003) Cortical activation to

illusory shapes as measured with magnetoencephalography. NeuroImage 18:
1001–1009.

73. Maertens M, Pollmann S, Hanke M, Mildner T, Möller HE (2008) Retinotopic
activation in response to subjective contours in primary visual cortex. Frontiers

in Human Neuroscience 2: doi:10.3389/neuro.09.002.2008.

74. Murray MM, Wylie GR, Higgins BA, Javitt DC, Schroeder CE, et al. (2002)
The spatiotemporal dynamics of illusory contour processing: Combined high-

density electrical mapping, source analysis, and functional magnetic resonance
imaging. Journal of Neuroscience 22: 5055–5073.

75. Yoshino A, Kawamoto M, Yoshida T, Kobayashi N, Shigemura J, et al. (2006)
Activation time course of responses to illusory contours and salient region: A

high-density electrical mapping comparison. Brain Research : 137–144.

76. Lee T, Nguyen M (2001) Dynamics of subjective contour formation in the early
visual cortex. Proceedings of the National Academy of Sciences 98: 1907–1911.

77. Halko MA, Mingolla E, Somers DC (2008) Multiple mechanisms of illusory
contour perception. Journal of Vision 8: 1–17.

78. Reddy L, Tsuchiya N, Serre T (2010) Reading the mind’s eye: Decoding

category information during mental imagery. NeuroImage 50: 818–825.
79. Slotnick SD, Thompson WL, Kosslyn SM (2005) Visual mental imagery induces

retinotopically organized activation of early visual areas. Cerebral Cortex 15:
1570–1583.

80. Grossberg S, Cisek P, Drew T, Kalaska JF (2007) Towards a unified theory of
neocortex: laminar cortical circuits for vision and cognition. In: Progress in Brain

Research, Elsevier, volume 165. 79–104.

81. Summerfield C, Egner T (2009) Expectation (and attention) in visual cognition.
Trends in Cognitive Sciences 13: 403–409.

82. Gilbert CD, Sigman M (2007) Brain states: Top-down inuences in sensory
processing. Neuron 54: 677–696.

Object Perception Using Bayesian Networks

PLOS ONE | www.plosone.org 25 November 2012 | Volume 7 | Issue 11 | e48216

