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Abstract

Single nucleotide polymorphisms are widely associated with disease, but the ways in which

they cause altered phenotypes are often unclear, especially when they appear in non-cod-

ing regions. One way in which non-coding polymorphisms could cause disease is by affect-

ing crucial RNA-protein interactions. While it is clear that changing a protein binding motif

will alter protein binding, it has been shown that single nucleotide polymorphisms can affect

RNA secondary structure, and here we show that single nucleotide polymorphisms can

affect RNA-protein interactions from outside binding motifs through altered RNA secondary

structure. By using a modified version of the Vienna Package and PAR-CLIP data for HuR

(ELAVL1) in humans we characterize the genome-wide effect of single nucleotide polymor-

phisms on HuR binding and show that they can have a many-fold effect on the affinity of

HuR binding to RNA transcripts from tens of bases away. We also find some evidence that

the effect of single nucleotide polymorphisms on protein binding might be under selection,

with the non-reference alleles tending to make it harder for a protein to bind.

Author summary

Single nucleotide polymorphisms are single nucleotides in a genome that vary between

subsets of a population. They are known to cause many diseases, but the ways in which

they cause disease are often unknown. We show that one way in which single nucleotide

polymorphisms may cause disease is by altering how RNA molecules fold. The nucleotides

in an RNA molecule can base pair to each other to form complicated structures. This

structure dictates where some proteins can bind, since many proteins can only bind to

single stranded RNA. If the change from one base to another base caused by a single

nucleotide polymorphism causes a protein binding motif to become preferentially base

paired, then it will be harder for a protein to bind there. By modelling the folding of RNAs

in conjunction with protein binding in silico, we show that single nucleotide
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polymorphisms can affect the ability of specific proteins to bind to RNAs, usually making

it harder for proteins to bind.

Introduction

Single Nucleotide Polymorphisms (SNPs) and Single Nucleotide Variations (SNVs) are nucle-

otide changes at single genomic positions that differ between significant subsets of a popula-

tion, or general mutations that often arise due to diseases such as cancer, respectively [1].

While very common and known to cause many diseases, their effects on gene expression, pro-

tein binding, and ways in which they cause disease are not completely understood [2]. Mis-

sense mutations in coding regions are easily linked to disease, since they cause translation of a

defective protein [3], but most SNPs (*93% of disease and trait associated SNPs in genome-

wide association studies) occur in non-coding regions [4]. Non-coding SNPs can appear in

non-coding RNAs, introns, or in 5’ and 3’ untranslated regions (UTRs). Because these non-

coding SNPs do not produce an altered protein, the pathways through which they cause dis-

ease are less well known, but they are still regularly associated with disease [5]. Understanding

the effect of these non-coding or same-sense SNPs has wide-ranging implications for under-

standing disease, as well as evolutionary genetics [6, 7].

A possible explanation of the effect on phenotype of SNPs in 5’ and 3’ UTRs or non-coding

RNAs is that they affect crucial interactions between an RNA and other biomolecules. Indeed,

RNAs naturally interact with RNA-binding proteins (RBPs), RNA-protein complexes like the

ribosome and the spliceosome, as well as with other RNAs [8–10]. These interactions control

every step in an RNA’s life cycle, such as the life time of an RNA molecule, its subcellular local-

ization, and the recruitment of ribosomes to mRNA molecules and ultimately the amount of

protein expressed per transcribed mRNA [11, 12]. Thus, it is not surprising that interrupting

these interactions is known to cause disease [13]. In line with their importance, there are over

1500 RNA binding proteins and thousands of microRNAs annotated in the human genome

alone [14, 15].

It is clear that a SNP will affect protein or microRNA binding if it occurs directly on a bind-

ing site [16, 17]. However, as we will show, SNPs are also able to affect protein (or microRNA)

binding “at a distance” through the involvement of RNA secondary structure. RNA secondary

structures form due to the propensity of the nucleotides of an RNA to base pair [18]. For struc-

tural RNAs these base pairings are a significant determinant of the functionally relevant physi-

cal shape of the RNA, but messenger and non-coding RNAs that are not necessarily designed

for specific structures will also form base pairs and thus secondary structure [19]. As micro-

RNAs and a large fraction of RNA binding proteins bind to unpaired bases only, RNA second-

ary structure competes with binding of microRNAs or single-stranded RNA binding proteins

and thus affects the binding affinity of the RNA for these molecules. For example, we have pre-

viously shown the existence of secondary structure mediated cooperativity between RNA bind-

ing proteins: binding of one protein to an RNA changes the ensemble of possible secondary

structures by excluding the bases in its footprint from base-pairing [20, 21]. This change in sec-

ondary structures modifies the accessibility of the footprint for a second protein and thus the

affinity of the RNA for this second protein. Depending on the specific sequence one binding

event can make the other binding event easier or harder.

It has also been shown experimentally that specific SNPs can affect the secondary structures

of mRNAs [22], and that SNPs can cause disease through changes in RNA secondary structure

[23–25]. Here, we show how single nucleotide changes in an RNA molecule can, by making
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different conformations energetically more or less favorable, also change secondary structure

drastically enough to change the affinity of an RNA for an RNA binding protein or a micro-

RNA, and that there is some evidence that this effect might be under selective pressure in the

human transcriptome. For simplicity, in the rest of the paper we will refer to the molecules

binding to RNAs as “proteins”, even though these binding events could equally occur with

mircoRNAs, as shown in [26], or any other molecule that binds single-stranded RNA. Like-

wise, we will be referring to the effect of “SNPs” on RNA-protein binding, but these effects

should occur equally with any point mutation including SNVs. By computationally folding

RNAs using a modified version of the Vienna RNA Package, we are able to quantitatively mea-

sure the effect of SNPs on protein binding. Using known human SNPs and PAR-CLIP data,

we investigate the genome wide effect of SNPs on HuR (ELAVL1) binding. HuR is an exten-

sively studied RNA binding protein with nearly 500 articles on PubMed. It is a member of the

ELAVL family of RNA-binding proteins that selectively bind AU rich sequences, and HuR

binds with a 7 nucleotide footprint mostly in the UTRs of many mRNAs [27]. HuR has diverse

functions, including stabilizing mRNAs against degradation as a means of regulating gene

expression and controlling nuclear export of mRNAs, and has been implicated in several dis-

eases including cancer [28, 29]. We find that SNPs can have a many-fold effect on the binding

affinity of HuR binding to RNA transcripts from tens of bases away, simply through changes

in secondary structure, and propose this as a general mechanism through which SNPs can

affect protein binding.

Results

Sequence alterations affect RNA-protein binding at a distance through

changes in secondary structure

As a first step in the investigation into secondary structure mediated effects of SNPs on RNA-

protein binding, we wanted to find out if effects of sequence alterations outside the binding

site on RNA-protein binding are generically possible and if so, at which distances between the

sequence alteration and the protein binding site. To this end, we selected random sequences

and computationally quantified the effect of a sequence alteration at the central nucleotide on

the affinity of the randomly chosen RNA molecule to a hypothetical protein binding at variable

locations along the molecule. We selected random sequences of lengths 101, 201, and 401

nucleotides, and saw no significant differences between the lengths. Specifically, we used the

Vienna package to calculate ΔΔG, or the difference in the effective free energies of binding for

a protein binding to the altered and unaltered sequences taking into account the entire ensem-

ble of RNA secondary structures (see Methods). A positive ΔΔG means the alteration makes it

easier for a protein to bind, while a negative ΔΔG means it is harder for a protein to bind. We

find that, in an ensemble of random sequences, the average of ΔΔG is near zero unless a

sequence alteration is directly inside a protein binding motif (see Fig 1(A) and 1(C) for 201

nucleotide data and S1(A), S1(C), S2(A) and S2(C) Figs for 101 nucleotide and 401 nucleotide

data, respectively). This means that the average effect of a sequence alteration on RNA-protein

binding is low, unless the sequence alteration directly impacts the protein binding motif. How-

ever, an average of zero does not necessarily imply that the effect of each individual sequence

alteration is low, just that the effect of sequence alterations is symmetric. We thus next calcu-

lated the standard deviation of ΔΔG and found it to be on the order of a kcal/mol even when

the sequence alteration is 30-50 bp away from the protein binding site (see Fig 1(B) and 1(D)

for 201 nucleotide data and S1(B), S1(D), S2(B) and S2(D) Figs for 101 nucleotide and 401

nucleotide data, respectively). This indicates that individual sequence alterations have the

potential for biologically relevant effects of several kcal/mol on the binding of a protein, simply
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through changes in secondary structure, but that this effect is mostly symmetric for random

sequences. Directly comparing standard deviations of ΔΔG for the two different footprint

sizes, averaging over all possible sequence changes and over 10 base pair sliding windows to

reduce the noise, we also see that proteins with larger footprints are affected at slightly farther

Fig 1. Effect of SNPs in random 201 nucleotide sequences on protein binding. (A) and (C) Averages and (B) and (D) standard deviations for the

change in effective RNA-protein binding free energy, ΔΔG, in response to six different single nucleotide sequence alterations averaged over 100

randomly chosen RNA sequences. (A) and (B) show data for a protein with a 7 bp footprint and (C) and (D) for a protein with a 10 bp footprint. The

sequence alteration location (indicated by the dashed vertical red line) is static while the protein binding site start position is variable.

https://doi.org/10.1371/journal.pcbi.1007852.g001
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distances from an associated sequence alteration (see Fig 2 for 201 nucleotide data and S3 and

S4 Figs for 101 nucleotide and 401 nucleotide data, respectively).

Known SNPs in the human genome affect HuR binding

Given our finding that single nucleotide sequence alterations can have an effect on proteins

binding to RNA through changes in secondary structure, we wished to investigate this effect in

an actual genome using known SNPs. Using in vivo PAR-CLIP HuR binding data from three

different studies [30–32], we were able to locate documented SNPs near HuR binding sites in

transcript coordinates (see Methods). By utilizing a previously modified version of the Vienna

Package [33] we are able to quantitatively predict the effective dissociation constant KD for a

single stranded RNA binding protein such as HuR as a function of RNA sequence fully taking

the effects of RNA secondary structure into account. By folding genomic sequences we were

thus able to determine the change in dissociation constant KD for HuR binding to an RNA

transcript, associated with changing the SNP from its reference to its alternate allele. We

emphasize that the approach we use does not attempt to determine the dissociation constants

Fig 2. Effect of protein footprint on standard deviation of ΔΔG in 201 nucleotide sequences. Standard deviations of the change in effective

RNA-protein binding free energy, ΔΔG, from Fig 1B (solid blue line) and Fig 1D (dashed green line) above, averaged both over the six different

single nucleotide sequence alterations and a 10 base pair running average to smooth the curves. Sequence alteration location (indicated by dashed

vertical red line) is static while protein binding site start position is variable.

https://doi.org/10.1371/journal.pcbi.1007852.g002
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of the protein RNA interaction from protein structure as was done in [34], but rather uses

complete sets of experimentally determined protein dissociation constants [35] for unstruc-

tured RNA to predict the effective dissociation constant in the presence of RNA secondary

structures. While this is still computationally challenging, it allows a transcriptome wide analy-

sis, which more first principle based approaches would not.

We again folded sequences of length 101, 201, and 401 nucleotides. Taking the ratio of KD’s

for HuR binding to an RNA transcript with the reference and the alternate allele of the SNP

allows us to measure the effect of SNPs on HuR binding to RNA. Histograms of these affinity

ratios for both data sets are shown in Fig 3. We find that while a majority of ratios are close to

one, for some HuR binding sites near known SNPs in the tail of the distribution the predicted

affinity of HuR to the transcript changes by tenfold or higher (see the minimal and maximal

affinity ratios in Table 1) depending on the allele of the SNP. While this tail of highly impactful

SNPs is a small fraction of the whole, it is still on the order of tens of thousands of SNPs.

Next, we wanted to know how distance between the SNP and the HuR binding site affects

the binding affinity ratio associated with the SNP. Fig 4 shows histograms of SNP positions rel-

ative to the nearest HuR binding site for different ranges of KD ratios. The most obvious obser-

vation from these histograms is that in all data sets SNPs occur less frequently than expected

on the HuR binding motifs themselves, with the first nucleotide in the motif occurring slightly

more often than the others, and the first nucleotide upstream of the motif enriched in SNPs.

Fig 3. KD ratios of HuR binding to 201 nucleotide sequences with and without SNPs. Histograms for the affinity ratios using (A) Kishore [30] HuR

binding sites, (B) Lebedeva [31] HuR binding sites, and (C) Mukherjee [32] HuR binding sites. Affinity ratios are defined to be the dissociation constant

KD for HuR binding to the alternate allele of the SNP over the dissociation constant KD for HuR binding to the reference sequence. Ratios larger than

threefold are shown in red, ratios between two- and threefold are shown in green, and ratios less than twofold are shown in blue.

https://doi.org/10.1371/journal.pcbi.1007852.g003
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This is unsurprising, since we would expect such an important binding motif to be evolution-

arily conserved. In addition to this general trend, we find that although the distributions for

SNPs with different affinity fold-changes become narrower with higher strength (standard

deviations for the blue, green, and red curves of Fig 4(A) being 33.25±.06, 28.23±.26, and 25.28

Table 1. Effects of SNPs on HuR binding affinity in 201 nucleotide sequences.

Data Set Ratio Count >1 Ratio Count <1 Ratio Min Ratio Max

Kishore 88443 82921 0.0268 162.6

Lebedeva 119408 114117 0.0384 44.60

Mukherjee 208486 198778 0.0375 44.60

Binomial p-value Ratios >1 Mean Ratios <1 Mean All Ratios Mean

Kishore 6.944 � 10−41 1.277 0.8551 1.072

Lebedeva 3.423 � 10−28 1.267 0.8530 1.064

Mukherjee 1.487 � 10−52 1.259 0.8572 1.062

Data features for KD ratios of SNPs near HuR binding sites from the Kishore [30], Lebedeva [31], and Mukherjee [32] HuR PAR-CLIP data sets.

https://doi.org/10.1371/journal.pcbi.1007852.t001

Fig 4. Effect of distance from motif on change of binding affinity due to SNPs in 201 nucleotide sequences. Histograms of distances of SNP

locations from the center of the nearest HuR binding motif for (A) the Kishore data set, (B) the Lebedeva data set, and (C) Mukherjee data set for

different strengths of their effects on HuR binding. Distances where the SNP is upstream of the motif are negative. The top (blue) histograms are of

SNPs with an absolute fold change (positive or negative) in binding affinity less than 2, the middle (green) histograms are of SNPs with a fold change

between 2 and 3, and the bottom (red) histograms are of SNPs with a fold change of 3 or greater.

https://doi.org/10.1371/journal.pcbi.1007852.g004
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±.36, of Fig 4(B) being 34.43±.05, 29.76±.23, and 27.94±.35, and of Fig 4(C) being 34.19±.04,

29.50±.18, and 27.89±.28, respectively) even for the highly impactful SNPs (with a fold change

of three-fold or larger) a majority fall outside of the HuR binding motifs. This further supports

the idea that a SNP does not need to be directly on a protein binding motif to impact RNA-

protein binding, and can affect RNA-protein binding at a distance through changes in second-

ary structure.

The effect of SNPs on protein binding appears to be under selection in vivo
In the previous two sections we demonstrated that SNPs have the ability to affect the interac-

tions between RNA and regulatory proteins. This leaves the question of whether or not the

effect of SNP alleles on RNA protein interactions has any functional relevance in vivo. In order

to address this question, we asked if there is any evidence for selection for or against protein

binding. We reasoned that if the effects of sequence on protein RNA interactions do not play a

functional role, protein RNA affinity should increase as often as decrease when changing the

sequence from the reference to the alternate allele of a SNP. In contrast to this expectation

under the null assumption of no functional relevance, we in fact find a significant asymmetry

in the direction of SNPs’ effect on protein binding, which we thus take as an indication of

functional relevance. It is clear from the cumulative distributions in Fig 5 (where ratios below

1 are reciprocated) that SNPs with affinity ratios above 1 are more prevalent, and that ratios

above 1 have a larger maximum effect for sequences of this length. Since we take affinity ratios

to be the KD for binding with the alternate allele over the KD for binding with the reference

allele, this indicates that changing the SNP from its reference to its alternate allele is more likely

to make it harder for a protein to bind. This effect is quantified in Table 1, which notes that if

Fig 5. Cumulative histogram of KD ratios in 201 nucleotide sequences. Cumulative histograms for the affinity ratios

using (A) Kishore [30] HuR binding sites, (B) Lebedeva [31] HuR binding sites, and (C) Mukherjee [32] HuR binding

sites. Ratios less than 1 are reciprocated to be larger than 1, and shown in dark (green), while ratios naturally larger

than 1 are shown in lighter color (blue).

https://doi.org/10.1371/journal.pcbi.1007852.g005
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we assume a binomial distribution for SNPs with affinity ratios above and below 1, we can

reject the null hypothesis of a 50/50 split with p-values of 6.9 � 10−41, 3.4 � 10−28, and 1.5 � 10−52

for the Kishore, Lebedeva, and Mukherjee data set, respectively.

Discussion

SNPs have long been associated with disease, but the role of non-coding and synonymous

SNPs in altering phenotypes is still unclear. Using a modified version of the Vienna Package

we have verified that SNPs can affect RNA protein binding affinity by modifying RNA struc-

tures from tens of nucleotides away, and performed a genome wide analysis of the effect of

SNPs on the binding affinity of the RNA binding protein HuR. Our analysis shows that SNPs

can affect the affinity of a protein binding to RNA by many fold and that a significant number

of HuR binding sites in the human genome, mostly in UTRs and introns, are strongly affected

in their binding affinity by nearby SNPs. We also identify an asymmetry in the effect of SNPs

on HuR binding, implying that the effect of SNPs on RNA structure might be under selective

pressure in the human genome, at least in the case of HuR binding sites.

SNPs have been known to affect the structure of RNAs, in particular many RiboSNitches,

or SNPs with a large impact on RNA secondary structure, have been identified [23], but char-

acterizing the effect of these SNPs and revealing the ways in which they cause disease remains

a challenge. Several studies and web servers use various minimum free energy (MFE) or parti-

tion function distance measures to characterize which SNPs have a high impact on global or

local RNA structure [36–38], but our analysis is to our knowledge the first to identify the

genome-wide effects of the structural change caused by a SNP on a given RNA binding protein

and give the change in binding affinity associated with the different alleles of a SNP. To

encourage individual experimental validation of our findings, the full data for the Lebedeva

data set, including sequences of length 201 and calculated binding affinities, is provided (see

S1 Table).

Interference with RNA protein binding is a clear link between SNPs and causes of disease.

The disruptive nature of SNPs on the human genome is evident both from SNPs occurring less

frequently on HuR binding sites and from the asymmetry in the effect of SNPs on HuR bind-

ing affinities, which suggests that a SNP is more likely to disrupt protein binding than enhance

it. This trend is similar to a trend observed in previous studies of the effect of SNPs on the

MFE of RNA secondary structures, which found that the effects of SNPs skew RNAs towards

higher free energy structures [39]. This trend suggests that existing RNA secondary structure

is optimized to leave important single stranded RNA binding protein motifs unpaired, and

SNPs have the ability to disrupt these naturally optimized configurations.

While we interpret this asymmetry to be the result of evolutionary selection preferring

uninhibited HuR binding sites, biased HuR binding data could provide another possible expla-

nation for the observed asymmetry. If an experimental binding site is higher affinity in the

presence of the reference allele, it has a higher chance of appearing in PAR-CLIP data, and it

will appear as impeded in the presence of the SNP. In the opposite case, if a binding site is

lower affinity in the presence of the reference allele, it is less likely to appear in the PAR-CLIP

data, which could contribute to the asymmetry. To disprove this alternate explanation, an anal-

ysis of only the heterozygous and homozygous alternate SNPs in HEK 293 cells (which should

be immune to this selection bias or be biased in the opposite direction, respectively) was per-

formed, but the number of these SNPs near HuR sites was not high enough to draw statistically

significant conclusions. We also find that with increasing length of the sequence fragment

studied there is a reduction in effect asymmetry and the number of highly impactful SNPs (see

S2 Table), which we attribute to non-specific binding. Indeed, when we perform a hard
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constraint analysis (as we did on random sequences above) which only measures the effect of a

SNP on the central binding site, we find no reduction of asymmetry or number of impactful

SNPs with increased sequence length.

We have shown that individual SNPs can disrupt specific RNA protein binding sites, but

many SNPs in a genome could all contribute to lower RNA protein binding efficiency and

cause disease on a genome-wide or many gene scale. SNPs are typically not independent of

each other but appear together in haplotypes. The combined effect of SNPs in a haplotype is

not considered in this analysis, but it is reasonable to expect in general that sequence changes

at multiple positions lead to even larger structural changes and thus stronger effects on protein

binding. While this is the general expectation, it is also possible that multiple SNPs could have

compensatory effects, but a systematic search for compensatory effects on protein binding is

beyond the scope of this work. It is also clear from our analysis that SNPs need not be directly

on a protein binding motif, or even within 50 nucleotides of a motif, to disrupt binding. This

wide range of effect suggests that future studies on the structural effect of SNPs examine SNPs

in a wide radius of their target feature.

While we have focused here on changes of individual nucleotides, other genomic variations,

i.e., short insertions or deletions, might have even stronger effects on protein affinity of

mRNAs and will be the subject of future investigations. Post-transcriptional modifications to

mRNAs could also cause structural changes analogously to an allele change in a SNP, and once

energy parameters for post-transcriptional modifications are available the analysis performed

here for SNPs could be applied to them as well. Similarly, it will be interesting to investigate if

similar effects apply to proteins with preferences for double stranded RNAs.

Materials and methods

RNA secondary structure prediction and RNA-protein binding

Although RNA is synthesized as a single stranded molecule, its constituent bases can pair with

each other, ultimately leading to formation of complicated 3D structures. To perform our anal-

ysis of the effect of SNPs on RNA-protein binding we must model these structures in silico. In

principle, a complete 3D model, or tertiary structure, is required to fully describe an RNA.

However, many properties of RNA structure can already be understood at the level of second-

ary structure, i.e., the list of base pairs in the molecule [40]. The secondary structure is modeled

by the Vienna Package [41], state-of-the-art software which takes into account base pairing

and nearest-neighbor stacking energies when modeling secondary structure. We take a simi-

larly simplified approach to RNA-protein binding, modelling a bound protein by simply forc-

ing any bound bases to remain unpaired and adding a protein binding energy for those bound

configurations [42]. The Vienna RNA Package uses recursion relations to efficiently fold

RNAs in O(N3) time for RNAs of length N and allows the exclusion of individual bases from

the folding through its constraint folding capabilities. We also make use of a previously pub-

lished altered version of the Vienna Package that takes single stranded RNA binding proteins

and their experimentally determined sequence-dependent binding energies [35] into account

in the recursion relations themselves, and calculates the dissociation constant KD of a known

protein to an RNA of a given sequence fully taking into account RNA secondary structures

[33, 43]. We note that while the quality of computational secondary structure prediction via

determination of the minimum free energy structure can be questionable, all our calculations

evaluate partition functions over the entire Boltzmann ensemble of all RNA secondary struc-

tures, which are much more reliable [44]. Also, it is important to note that while we do not

explicitly allow non-canonical base pairs in our secondary structure predictions, their effect on
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the secondary structure is at least partially taken into account by the Vienna package in the

measured free energy parameters for short interior loops exhibiting such base pairs.

Genomic data sets and tools

To investigate the role of SNPs on protein binding we used all human (GRCh38.p7) SNPs

from dbSNP (build 151) downloaded in VCF format [45]. SNPs were formatted using vcftools

[46] and transcript coordinates were obtained using Variant Effect Predictor (VEP) [47]. We

analyzed the effect of SNPs on three different HuR PAR-CLIP data sets, one from Kishore

et al. [30], one from Lebedeva et al. [31], and one from Mukherjee et al. [32], which were all

downloaded from the doRiNA database [48]. HuR binding sites were matched to transcripts

using the ensembldb bioconductor package [49]. HuR binding affinities to different 7-mers

were obtained from RNAcompete data [35]. All reference transcript sequences were obtained

from Ensembl BioMart [50].

Quantification of the effect of sequence changes on protein binding

To investigate the effect of single nucleotide sequence changes on proteins binding in the pres-

ence of RNA secondary structure we computed the changes in ensemble Gibbs free energy for

proteins binding to random sequences at different positions using the Vienna Package. We

selected 100 random sequences each for varying lengths (101, 201, and 401 nucleotides) with

equal probabilities for all four nucleotides. Results for sequences of length 201 nucleotides are

shown in the text while results for sequences of length 101 and 401 are shown in the supple-

mentary material (see S1, S2, S3 and S4 Figs). Results for the 201 nucleotide sequence length

were also replicated using RNAstructure, and we found very close agreement between the two

software packages (see S5 and S6 Figs) [51]. For each of these “wild type” sequences we consid-

ered “mutated” sequences that differ from wild type only in the identity of the central nucleo-

tide. Then we used the constrained folding feature of the Vienna Package as described above

to calculate free energies for four different configurations: the wild type sequence without a

protein, the wild type sequence with a protein bound, the mutant sequence without a protein,

and the mutant sequence with a protein bound. We used protein footprints of 7 nucleotides

(the same as HuR) and 10 nucleotides to interrogate how the effect depends on footprint size.

We then calculated the difference in free energy to bind a protein, ΔGWT and ΔGMut for the

wild type and mutant sequence, respectively (see Fig 6). This difference between the free

Fig 6. Possible configurations of a SNP and protein on RNA. The four different configurations of an RNA subject to sequence variation interacting

with a protein: wild type sequence not bound by a protein, wild type sequence bound by a protein, mutant sequence not bound by a protein, or mutant

sequence bound by a protein. Lines represent RNA backbones, and black dots represent bases. Transparent and opaque boxes represent unbound and

bound protein binding sites, and red squares represent a change in nucleotide identity between the wild type and mutant sequences. Bases bound by a

protein cannot base pair, but the base that differs between wild type and mutant can.

https://doi.org/10.1371/journal.pcbi.1007852.g006
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energy of the unconstrained ensemble of all RNA secondary structures and the ensemble of all

RNA secondary structures in which the binding site of the protein remains unpaired can also

be interpreted as ΔGWT = −kB T log(pWT), where pWT is the probability that the entire binding

site of the protein is unpaired. As a quantitative measure of the effect of the sequence alteration

on protein binding, we then calculated the difference ΔΔG = ΔGMut—ΔGWT. For each

sequence we computed this quantity for each of the six possible combinations of wild type and

mutant nucleotide at the central position and for every possible position of the protein binding

site along the molecule. Finally, we calculated the average and standard deviation of ΔΔG over

the 100 random sequences considered.

Identifying SNPs near HuR binding sites

We identified SNPs near HuR binding sites by first matching the genomic coordinates of

SNPs to transcript coordinates. Given a list of SNPs in VCF format, VEP provides each SNP’s

associated Ensemble transcript ID (ENST) and cDNA position (if the SNP is transcribed), as

well as its allele. The resulting list of SNPs with transcript coordinates was further filtered for

only transcripts annotated by Ensembl as canonical, which are generally chosen as the tran-

script with the longest coding sequence when given a choice between isoforms. HuR binding

sites were also mapped to ENSTs and the list of SNP transcript coordinates and HuR transcript

coordinates was compared. If a SNP was found to be within 40 bases on either side of the mid-

dle of an HuR binding site it was considered a candidate for RNA secondary structure folding

analysis. From this data we were also able to examine the positional distribution of SNPs

around HuR binding sites.

Determining the effect of SNPs on binding affinity

To determine the effect of SNPs on binding affinity as mediated by RNA secondary structure

we used a modified version of the Vienna Package that incorporates the effect of single

stranded protein binding on RNA secondary structure calculations [33]. We first determined

the 7 bp motif within the PAR-CLIP binding site (usually *40 bp) that HuR has the highest

affinity for using RNAcompete data [35], and then folded a stretch of the RNA transcript cen-

tered on this motif for the reference sequence and the SNP-altered sequence. We fold

sequences of length 101, 201, and 401 nucleotides for each motif, and results for sequences of

length 201 are again shown in the main text while results for sequences of length 101 and 401

are shown in the supplementary material (see S7, S8, S9, S10, S11 and S12 Figs). Although fold-

ing longer sequences could improve the accuracy of our calculated structures, longer

sequences quickly become computationally intractable. Our modified version of the Vienna

Package is able to determine the dissociation constant KD for HuR binding to any sequence

(taking into account altered secondary structure), and by taking a ratio of these dissociation

constants we are able to quantify the effect of SNPs on HuR binding due to changes in second-

ary structure. We take the ratio of dissociation constants to be the dissociation constant of the

alternate allele over the dissociation constant of the reference allele.

Supporting information

S1 Table. The full data for the Lebedeva data set, including sequences of length 201 and

binding affinities.

(XLSX)
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S2 Table. Effects of SNPs on HuR binding affinity in 101, 201, and 401 nucleotide

sequences.

(XLSX)

S1 Fig. Effect of SNPs in random 101 nucleotide sequences on protein binding.

(TIF)

S2 Fig. Effect of SNPs in random 401 nucleotide sequences on protein binding.

(TIF)

S3 Fig. Effect of protein footprint on standard deviation of ΔΔG in 101 nucleotide

sequences.

(TIF)

S4 Fig. Effect of protein footprint on standard deviation of ΔΔG in 401 nucleotide

sequences.

(TIF)

S5 Fig. Effect of SNPs in random 201 nucleotide sequences on protein binding calculated

using RNAstructure.

(TIF)

S6 Fig. Effect of protein footprint on standard deviation of ΔΔG in 201 nucleotide

sequences calculated using RNAstructure.

(TIF)

S7 Fig. KD ratios of HuR binding to 101 nucleotide sequences with and without SNPs.

(TIF)

S8 Fig. KD ratios of HuR binding to 401 nucleotide sequences with and without SNPs.

(TIF)

S9 Fig. Effect of distance from motif on change of binding affinity due to SNPs in 101

nucleotide sequences.

(TIF)

S10 Fig. Effect of distance from motif on change of binding affinity due to SNPs in 401

nucleotide sequences.

(TIF)

S11 Fig. Cumulative histogram of KD ratios in 101 nucleotide sequences.

(TIF)

S12 Fig. Cumulative histogram of KD ratios in 401 nucleotide sequences.

(TIF)
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