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Bacteria naturally alter the redox state of many compounds and perform atom-by-
atom nanomaterial synthesis to create many inorganic materials. Recent advancements
in synthetic biology have spurred interest in using biological systems to manufacture
nanomaterials, implementing biological strategies to specify the nanomaterial
characteristics such as size, shape, and optical properties. Here, we combine the
natural synthetic capabilities of microbes with engineered genetic control circuits toward
biogenically synthesized semiconductor nanomaterials. Using an engineered strain of
Shewanella oneindensis with inducible expression of the cytochrome complex MtrCAB,
we control the reduction of manganese (IV) oxide. Cytochrome expression levels were
regulated using an inducer molecule, which enabled precise modulation of dopant
incorporation into manganese doped zinc sulfide nanoparticles (Mn:ZnS). Thereby,
a synthetic gene circuit controlled the optical properties of biogenic quantum dots.
These biogenically assembled nanomaterials have similar physical and optoelectronic
properties to chemically synthesized particles. Our results demonstrate the promise
of implementing synthetic gene circuits for tunable control of nanomaterials made by
biological systems.

Keywords: Shewanella, nanoparticle (NP), genetic engineering, quantum dot (QD), biogenic

INTRODUCTION

Modern technology increasingly relies on integrating precision nanomaterials. Indeed,
nanomaterials are at the heart of innumerable applications. For applications in catalysis,
electrochemistry, biomedical engineering, ultra-strong magnets, and photonics, nanomaterials are
a central component in contemporary manufacturing and consumer industries (Vance et al., 2015).
To meet the growing demand for nanomaterials in industry and research, fundamentally new
methods of synthesis are needed that are both scalable and efficient while at the same time offering
the ability to precisely control nanomaterial properties. Current nanomaterial synthesis includes
physical, chemical, and biological methods. In biogenic methods, bacteria offer a wide variety
of tools to alter the redox state of many compounds and perform atom-by-atom nanomaterial
synthesis (Wakatsuki, 1995; Nealson et al., 2002; Rodríguez-Carmona and Villaverde, 2010). By
deploying different wild-type bacteria to facilitate nanomaterial growth, researchers may access
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diverse shapes and structures of varying composition, including
both inorganic (Au, Ag) and semiconductive (CdTe, ZnS)
materials (Naik et al., 2002; Akid et al., 2008; Hussain et al., 2016;
Wu and Ng, 2017). Recent advancements in synthetic biology
have developed genetic tools to program cellular activity (Ang
et al., 2013; Smanski et al., 2016; Schuergers et al., 2017; Segall-
Shapiro et al., 2018), including nanomaterial synthesis (Mao et al.,
2003; Chen et al., 2014). By combining the natural ability of
microbes to assemble nanomaterials under ambient temperature,
pressure, and neutral pH with synthetic gene constructs, new
routes of nanomaterial synthesis can be developed.

Previous studies developed biogenic routes of nanomaterial
synthesis (da Costa et al., 2016; Hussain et al., 2016), including
production of chalcogenide nanomaterials such as arsenic sulfide,
zinc sulfide, cadmium sulfide, cadmium selenide, and cadmium
telluride (Kershaw et al., 2013; Jacob et al., 2016). For example,
researchers used a bacteriophage as a template for zinc sulfide
nanomaterial nucleation (Mao et al., 2003). In another study,
purified proteins were used in direct reduction and nucleation
of cadmium sulfide nanomaterials (Dunleavy et al., 2016). Many
of these previous studies took advantage of the natural ability
of microbes to reduce starting materials and assist in the
nucleation and growth of nanomaterials; however, these initial
studies did not attempt to integrate natural bacterial biosynthesis
with engineered genetic control circuits to tune nanomaterial
properties. Recent progress in synthetic biology has developed
powerful tools to regulate gene expression and cellular behavior
(Spoerke and Voigt, 2007; Smanski et al., 2016; Schuergers
et al., 2017). Such gene circuits may enable precise control
over the properties of biogenic nanomaterials by tuning the
expression level of genetic components involved in the synthesis
of inorganic nanomaterials.

Here, a biological system is engineered for the synthesis
of zinc sulfide nanomaterials. Zinc sulfur (ZnS) has gathered
particular interest in fields of optoelectronic, photocatalytic, and
photovoltaic applications (Peng et al., 2006; Son et al., 2007;
Stroyuk et al., 2007). Due to a lack of photobleaching, a major
drawback observed in fluorescent molecules, ZnS quantum dots
have been used in bio-imaging (Deng et al., 2011). Additionally,
the lower toxicity levels compared to cadmium sulfide, another
common bio-imaging material, further increases the demand
for ZnS for medical purposes. Furthermore, doping ZnS enable
researchers to engineer a plethora of nanomaterials with different
physical properties, sensitively dependent on the dopant level.
Doping is a process in which a trace amount of an impurity, often
a metal, imparts attractive properties to semiconductor materials
(Smith and Nie, 2010). Doping zinc sulfide nanomaterials with
manganese (Mn:ZnS) imparts a characteristic emission peak
around 590–610 nm, a useful emission wavelength in biological
imaging (Deng et al., 2011). Moreover the optical properties
of Mn:ZnS nanomaterials are sensitive to the level of doping,
and control of the doping level during synthesis is essential.
Physical and chemical methods demand high-temperature, high-
pH, or high-pressure. Herein, we report a biogenic synthesis
route and tunable doping of ZnS:Mn(II) nanomaterials using an
anaerobic, metal reducing bacteria Shewanella oneidensis at room
temperature and pressure.

Using a regulatory genetic circuit, we modulate bacterial
electron transfer involved in metal reduction of manganese
to synthesize manganese doped zinc sulfide nanomaterials.
In an engineered strain of Shewanella oneidensis MR-1, a
Gram-negative, metal reducing bacteria, the expression of the
MtrCAB cytochrome complex was regulated by an external
inducer to control the level of manganese doping in ZnS
nanomaterials. The properties of the biogenic nanomaterials
were similar to nanoparticles used using traditional, chemical
synthesis. These results demonstrate the potential for tunable
control of the properties of biogenic nanomaterials using
synthetic gene circuits.

MATERIALS AND METHODS

Bacteria Culture Conditions
Shewanella oneidensis JG3631 strain was obtained from Jeff
Gralnick’s lab (University of Minnesota, Minneapolis, MN,
United States). The strain has been engineered to express the
multi-heme cytochrome complex MtrCAB under control of
a native promoter PtorF that responds to inducer molecule
trimethylamine N-oxide (TMAO). Additional information about
the strain is available in Supplementary Figure S1. Previously,
strain JG3631 reduced iron oxide in proportion to the
concentration of TMAO inducer added to the culture. The
MtrCAB expression level plateaued at 1,000 µM TMAO
(West et al., 2017). Here, we induce cells with 0, 50, 100,
and 1,000 µM TMAO. Shewanella oneidensis JG1486 was
used for control experiments reported in the Supplementary
Information, containing deletions of mtrB, mtrE, mtrC,
mtrF, mtrA, mtrD, omcA, dmsE, SO4360, cctA, and recA
(Coursolle and Gralnick, 2012).

Cultures of Shewanella oneidensis JG3631 were inoculated
from a bacterial frozen stock into Luria-Bertani medium and
grown overnight (14–16 h) at 30◦C under aerobic conditions.
Cultures were then transferred to Shewanella minimal media
prepared from the recipe from Bretschger et al. (2007) with
15 mM lactate as electron donor, 30 mM fumarate as electron
acceptor, and TMAO (inducer) at 0, 50, 100, or 1,000 µM.
Cultures were grown under anaerobic conditions. After 24 h, the
cells grown in minimal medium were centrifuged, washed with
7 mM HEPES buffer, and suspended in 7 mM HEPES buffer
to a final OD600nm of 0.8–1.0. Control experiments showed that
more dilute cell cultures were also capable of forming ZnS:Mn(II)
particles (Supplementary Figure S2). A stoichiometric excess of
lactate (10 mM) was used as electron donor in the culture, and
the culture was made anaerobic by bubbling sterile nitrogen gas
into the bottle. This culture was then used in the experiments
for nanomaterial synthesis. Nanomaterial synthesis experiments
were performed under anaerobic conditions.

Biogenic Synthesis of Mn Doped Zinc
Sulfide Nanomaterials
Solid manganese (IV) oxide was prepared using the protocol
described in an earlier work (Burdige and Nealson, 1985).
Prepared manganese (IV) oxide was mixed with HEPES buffer
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and injected into anaerobic bacterial cultures described
above to a final concentration of 750 µM manganese
with 10 mM lactate was the electron source. After 24 h of
manganese reduction by the bacteria, a filter sterilized stock
solution of 2.5 mM zinc sulfate was added to the culture
followed by 2.5 mM sodium sulfide. Extended manganese
reduction, for 48 h total, did not result in additional
manganese reduction or change the photoluminescence of
the resulting particles (Supplementary Figure S3). Manganese
reduction occurred at 303◦K, and samples were moved
to room temperature (approximately 295◦K) after the
addition zinc and sulfide for the remainder of the synthesis
reaction. Samples were thoroughly mixed via vortex. The
precipitation of nanomaterials started immediately and
proceeded for 16 h. Continued manganese reduction was
not detected after the addition of zinc sulfate and sodium
sulfide, as shown in Supplementary Figure S4. As shown
in Supplementary Figure S5, cell viability was maintained
throughout the manganese reduction step, however, no live
cells were detected 16 h after the addition of zinc sulfate
and sodium sulfide.

Chemical Synthesis of Mn Doped Zinc
Sulfide Nanomaterials
Chemical synthesis of Mn:ZnS nanomaterial was accomplished
by adding precursors to a sterilized, anaerobic serum bottle
containing 25 ml 7 mM HEPES buffer. Sterile nitrogen
gas was bubbled through the buffer solution and precursor
stock solutions to make them anaerobic. To synthesize
Mn:ZnS, first 2.5 mM zinc sulfate was added followed by
different manganese acetate at a concentration of either
0, 0.1, 0.5, 1, or 5 mM. Finally, 2.5 mM sodium sulfide
was added and the bottle was thoroughly mixed using
a vortex. Chemical synthesis was performed at room
temperature. The addition of Shewanella oneidensis MR-1
cells during chemical synthesis did not appear to impact
photoluminescent properties of the chemically synthesized cells,
see Supplementary Figure S6.

Manganese Measurement Using
LBB Assay
The reduction of manganese by Shewanella oneidensis JG3631
was quantified using the leucoberbelin blue (LBB) assay (Francis
et al., 2002). Five hundred microliters was collected directly
from well mixed anoxic serum bottles using a sterile, 20G
syringe. Sample was added to LBB [0.04% (w/v) LBB in
45 mM acetic acid] to react in the dark for 15–20 min,
and then centrifuged to separate the cellular material and
insoluble fractions. A standard curve for concentration of was
made by preparing serial dilutions of KMnO4 and measuring
the absorbance at 620 nm to quantify the concentration
of Mn. To calculate the amount of Mn(II) at a given
time, we subtract the initial amount of Mn(IV) from the
amount of Mn(IV) remaining in solution. A calibration curve
was made using solutions of potassium permanganate, see
Supplementary Figure S7.

Cleaning and Sonication of Nanomaterial
Upon the completion of nanomaterial synthesis, the contents of
the bottle were transferred to a 50 ml conical tube for rinsing and
cleaning. Nanomaterial solutions were centrifuged at 3,800 × g
for 30 min to collect the nanomaterials, the supernatant was
discarded, and the nanomaterial pellet was re-suspended in DI
water. This washing step was repeated four times to remove
salts and cellular materials from the solution of nanomaterials.
In samples where we observed excess aggregation, the final
solution of nanomaterials was sonicated in an ice bath for 20 min
prior to AFM and SEM.

Characterization of Nanomaterials
Synthesized via Biogenic and
Chemical Method
Photoluminescence
Nanomaterials synthesized were tested for photoluminescence
(PL) emission using a Tecan plate reader (Infinite 200 PRO,
excitation wavelength: 325 nm, well mixed condition, 25◦C).

Absorbance
Nanomaterial samples were mixed and added to a cuvette
with 10 mm path length and an absorbance scan was
performed using Nanodrop 2000C. Background from
media/buffer was subtracted.

Scanning Electron Micrograph
Cleaned nanomaterials were deposited on a silicon wafer
for electron microscopy and samples were sputter coated
(Cressington 108C) with gold. JEOL 7000 electron microscopy
was used to image the nanomaterials and EDX was used to
characterize the elemental composition of the nanomaterials.

Atomic Force Microscopy
Cleaned nanomaterials were diluted to low concentrations in
DI water and deposited on graphite substrate for atomic force
microscopy (AFM) imaging. Samples were imaged in AC mode in
air using an Asylum Cypher ES instrument and an AC mode tip
(Asylum Research, silicon probe model AC240TS-R3 with 2 N/m
nominal spring constant). The images acquired were analyzed
using Gwyddion software. A minimum of 100 individual
nanomaterials per sample were analyzed for size calculation.

X-Ray Diffraction
Concentrated samples were deposited on a glass slide and used
for XRD analysis. The X-ray diffraction (XRD) scattering profiles
were obtained using a Rigaku Ultima IV Diffractometer using
characteristic Cu Kα radiation = 1.54 Å.

EPMA
Concentrated samples were deposited on a silicon substrate
for a quantitative elemental analysis using JEOL 8200 electron
microprobe (20 kV, focused beam mode). Reference materials
used were zinc sulfide and manganese sulfide (Sigma-Aldrich).
A minimum of 10 spots were analyzed for quantification of
manganese concentration in the zinc sulfide nanoparticles.
“Spots” are usually aggregates of nanomaterials, since the
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sample preparation and deposition resulted in nanomaterials
aggregates, therefore individual spots were composed of
nanomaterial aggregates.

RESULTS AND DISCUSSION

Controlling the Dopant Concentration of
Mn:ZnS Using a Genetic Circuit
By utilizing a genetically engineered bacteria, we designed
a biological system to synthesize semi-conductive ZnS
nanomaterials doped with Mn(II). Moreover, the degree to
which the gene circuit responds to an outside signal modulates
the concentration of available Mn(II) for doping in ZnS, thereby
adjusting the optoelectronic properties of these biogenically
fabricated nanomaterials. Estimated manganese concentrations
using EPMA are presented in Supplementary Table S1. These
nanomaterials of biogenic origin exhibit almost identical
properties to those made by non-biological, chemical methods.
To begin our study we synthesized ZnS nanoparticles via
chemical means. In bulk, these particles exhibited a characteristic
blue emission upon excitation with UV light (Figure 1A). Next,
we introduced variable concentrations of Mn(II) during chemical
synthesis and the soluble Mn(II) was passively integrated into
the ZnS nanoparticles. These doped nanoparticles exhibited
a characteristic orange hue upon excitation with UV light
(Figure 1A) (Beerman, 2005; Cao et al., 2009; Deng et al.,
2011). The photoluminescent intensity of the Mn(II) doped
nanoparticles depended on the level of doping.

To control the optical properties of Mn:ZnS nanoparticles
through biogenic route, we used an engineered strain (JG3631)
of Shewanella oneidensis MR-1 because of its metabolic

versatility, whole genome sequence availability, and a library of
characterized, engineered strains (Bouhenni et al., 2005; Nealson,
2005; Bretschger et al., 2007; Fredrickson et al., 2008). Shewanella
naturally respire insoluble metal oxides of iron and manganese
via extracellular electron transport protein complex MtrCAB, a
multiheme cytochrome complex. This protein complex moves
electrons from the periplasmic space to the exterior of the
cell during respiration (Myers and Myers, 2001; Nealson et al.,
2002; Bretschger et al., 2007). Expressed under anaerobic
conditions, the Mtr pathway is composed of three components:
MtrA, a periplasmic decaheme c-cytochrome; MtrB, an outer
membrane porin; and MtrC, an outer membrane decaheme
c-type cytochrome. Here, we utilize an engineered strain JG3631
in which an inducible promotor PtorF regulates expression of the
mtrCAB operon (Figure 1B) (West et al., 2017). Previously it was
shown that this strain reduced external iron oxide in proportion
to the amount of the inducer (TMAO) added to the culture
(West et al., 2017).

First, we tested the ability of the strain JG3631 to reduce
manganese in the presence of different TMAO concentrations.
As shown in Figure 1C, the amount of Mn(IV) reduced by the
cell culture was proportional to the concentration of inducer
molecule TMAO. However, at 0 mM TMAO, some manganese
reduction was observed, potentially due to a combination
of leaky expression of mtrCAB and additional biochemical
pathways involved in low levels of manganese reduction, such as
MtrDEF cytochrome (Coursolle and Gralnick, 2010). Additional
information on the engineered strain and the experimental
outline is presented in the Supplementary Figure S1.

After confirming that we could control manganese reduction,
and therefore the available concentration of Mn(II) via the
concentration of TMAO inducer molecule, we investigated

FIGURE 1 | Controlling manganese doping of zinc sulfide nanomaterials by engineered Shewanella oneidensis JG3631. (A) Chemical synthesis of Mn doped zinc
sulfide nanoparticles, demonstrating that increased Mn doping alters the optical properties of the nanoparticles. (B) In engineered Shewanella MR-1, the TMAO
inducer molecule regulates expression of the metal reducing cytochrome complex MtrCAB. MtrCAB performs extracellular reduction of metals. (C) Cultures of the
engineered Shewanella produced Mn(II) concentrations proportional to the concentration of the TMAO inducer. Samples were collected from well mixed cell solutions
following 24 h of manganese reduction, and Mn(II) concentrations were measured using the LBB assay. (D) Mn doped zinc sulfide nanoparticles synthesized by cells
show a change in optical properties as a function of added inducer.
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the biogenic synthesis of Mn:ZnS. Because Shewanella prefer
to express metal reduction protein complexes in the absence
of oxygen, all biogenic reactions took place under anaerobic
conditions, as outlined in the “Materials and Methods” section.
The nanoparticles produced without Mn(IV) added to the culture
appear blue under UV excitation (Figure 1D, left). By adding
TMAO, however, the MtrCAB pathway is modulated in a manner
reflecting the concentration of inducer molecule (Figure 1C), i.e.,
more TMAO results in more insoluble Mn(IV) being reduced
to soluble Mn(II). As expected, nanoparticles produced in the
presence of both Mn(IV) and TMAO exhibit a characteristic
red-shifted emission upon UV excitation, similar to chemical
synthesis. The buffer solutions and the precursor solutions did
not exhibit any UV associated luminescence (Supplementary
Figure S8). Altogether, by connecting a naturally occurring metal
reduction route in an engineered strain of Shewanella with an
inducible promotor, we made possible the controllable synthesis
of nanoparticles with tunable optoelectronic properties.

Optoelectronic Properties of ZnS and
Mn:ZnS Nanomaterials
Following chemical and biogenic synthesis, we assessed
the optoelectronic properties (e.g., photoluminescence and

absorbance) of the Mn:ZnS. Both methods yielded nanomaterials
with the characteristic 600 nm photoluminescence (PL) peak
associated with the presence of dopant metal Mn(II) in a ZnS
lattice. The shift in PL emission due to Mn(II) doping into the
ZnS nanomaterial is caused by an additional electronic transition
between excited electrons and the energy levels of the Mn dopant
(Bhargava et al., 1994; Karar et al., 2004). Chemically synthesized
nanomaterials produced PL peaks in the 602–604 nm range and
the biogenic nanomaterials produced peaks in the 604–608 nm
range (Figures 2A,B). The difference in the PL peak emission
between the two methods may be a result of biogenic moieties
altering the emission spectrum. Earlier work showed that PL
emission wavelength of ZnS nanoparticles varied according to
the capping agent used during the reaction (Warad et al., 2005;
Wanjari et al., 2015).

Buffers, and precursor solutions did not produce any
absorbance or PL emission peaks (Supplementary Figure S8).
Manganese may react with sulfide to produce manganese sulfide
(MnS) precipitate. Some groups have observed PL emission on
MnS films near 640 nm, which could explain the slight red shift
in the PL peak with increasing Mn(II) concentration (Goede
et al., 1986). We do not observe any PL optical signature of
MnS nanoparticles in this region (Supplementary Figure S8).
This finding leaves Mn:ZnS as the only candidate emitter at

FIGURE 2 | Optical characterization of Mn doped ZnS nanomaterials synthesized via chemical route and biogenic route using engineered Shewanella oneidensis
MR-1. (A,B) PL emission spectrum of nanomaterials excited at 325 nm made using chemical (A) and biogenic (B) methods. (C,D) The maximum PL emission
intensity of nanomaterials made using chemical (C) and biogenic (D) methods. (E,F) Absorbance spectrum of nanomaterials made using chemical (E) and biogenic
(F) methods.
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600 nm during PL characterization. Next, we examined the
effect of biologically regulated Mn(II) concentration on the PL
emission of the nanoparticles. In the chemical method, the
PL intensity increased up to 2 mM Mn(II) and subsequently
decreased. In the biogenic method, the PL intensity increased up
to 100 µM TMAO induction and then decreased with increasing
concentrations of TMAO. Recall that TMAO concentrations
dictates the concentrations of soluble Mn(II). This observed
effect of dopant concentrations on PL emission peak intensity —
an increase followed by a decrease upon reaching a critical
concentration (Figures 2C,D) — is consistent with previous
results (Son et al., 2007; Cao et al., 2009). This effect, known as
luminesce quenching, is a common feature among doped semi-
conductors, of which Mn(II) doped ZnS is a classic example
(Hurd and King, 1979; Sasakura et al., 1981; Katiyar and
Kitai, 1992). Briefly, the probability of an electron indirectly
transitioning through a Mn(II) site to the ground state increases
with Mn concentration up to 1–4 wt%. As the Mn concentration
increases beyond a few percent by weight, however, unfavorable
interactions between adjacent Mn(II) sites, interruptions in
the ZnS crystallinity, an increase in non-radiative transition
processes, and a decrease the in the excitation efficiency from
the ZnS lattice diminish the effect of doping. Finally, it is
worth noting that where the Mn(II) ions subsume with the
nanomaterial dramatically affects its optoelectronic properties.
It is known that incorporating Mn(II) on the surface of ZnS
quantum dots instead of the bulk results in an ultraviolet PL
emission. That our nanomaterial emits in the visible region near
600 nm suggests that the majority of Mn(II) is embedded within
the ZnS structure rather than the surface (Xiao and Xiao, 2008).
The PL emission intensity was generally higher in chemically
synthesized particles, and it is currently unclear if synthesis in
the presence of cellular compounds impacts the intensity of the
PL emission. Overall, the PL properties of the chemically and
biogenically synthesized Mn:ZnS nanomaterials are similar to
each other and with literature precedent.

Next, we measured the absorption spectrum for biogenically
and chemically synthesized nanomaterials in the 300–700 nm
wavelength windows. Figures 2E,F show the absorption
spectrum for the nanoparticles is in the UV wavelength regions
of 310–320 nm, which agrees with earlier work (Kole and
Kumbhakar, 2012). Chemically synthesized nanoparticles had an
absorption peak of 310 nm and the biogenic nanoparticles had
an absorption peak of 315 nm. From the absorbance, one may
find the band gap of the nanomaterials. The band gap energies
of nanomaterials made by chemical and biogenic methods are
4.0 eV and 3.9 eV respectively. These values are higher than
for bulk ZnS material, which is 3.7 eV. An inverse relationship
exists between the size of the nanoparticle and its bandgap due
to quantum mechanical confinement, i.e., the system resembles
a particle-in-a-box. The bandgap is the energetic difference
between the ground state and excited state (the bands) of the
electron in an atom or bulk material. A single atom possesses a
large bandgap because the allowed electron states are precisely
defined. That is, the band is extremely narrow and the gap
between bands (the bandgap) is large. A continuous, bulk
material, however, is composed of many, overlapping electron

orbitals. The effect of overlapping increases the band width with
a concomitant decrease between the ground and excited state
of electrons in the material. As a result, the band is wider and
the gap between bands decreases (Son et al., 2007; Begum and
Chattopadhyay, 2014; Marusak et al., 2016).

Crystalline Structure Analysis of ZnS and
Mn:ZnS Nanomaterials
Next, we characterized the crystalline structure of Mn:ZnS
synthesized by the chemical and biogenic methods via XRD, an
X-ray scattering technique which measures coherent diffraction
from crystalline domains within nanomaterials across an entire
sample. The XRD pattern indicated there were three distinct
diffraction peaks (28.7◦, 47.9◦, and 56.7◦) with 2θ values
corresponding to three planes (111), (220), and (311). These
peaks confirm that the synthesized nanomaterial has a cubic
phase of zinc blende consistent with previous reports and zinc
sulfide standard (Supplementary Figure S9). By analyzing the
XRD data using the Scherrer model (Supplementary Equation
S1), one may extract the size of the crystalline domains within
the nanomaterials. Briefly, the width of the diffraction peak is
inversely proportional to the size of the crystalline domain. For
both the chemically and biogenically synthesized nanomaterials,
the crystalline domain is between 5 and 8 nm in diameter
(Supplementary Table S2), slightly smaller than the particle
size derived from optical methods. This is not unexpected,
as the geometry and crystallinity of nanoparticles may differ
due to the presence of amorphous, X-ray diffusive regions,
which XRD cannot detect. Finally, as further evidence that ZnS
and Mn:ZnS made the bulk of the nanomaterial, no peaks
associated with MnS crystals appear in the XRD pattern of our
purified nanomaterials (Figure 3 and Supplementary Figure
S9). To determine if the presence of Mn(IV) during synthesis
influenced nanoparticle properties, Mn(IV) oxide was added
during chemical synthesis. The addition of Mn(IV) oxide did
not inhibit the formation of ZnS and ZnS:Mn(II) nanoparticles,
see Supplementary Figure S9B. Also, Mn(IV) oxide alone was
not sufficient for manganese doping during chemical synthesis,
see Supplementary Figure S10. These results are in line with
earlier work and show good agreement between the chemical and
biogenic route (Son et al., 2007).

Morphology, Elemental Analysis, and
Size Distribution of ZnS and Mn:ZnS
Next, we leveraged energy-dispersive X-ray spectroscopy (EDX)
measurements to confirm the elemental composition of the
nanomaterial. In an EDX experiment, X-ray excitation induces
emission spectra unique to specific atomic nuclei in the
material, thereby furnishing information about the specific
elemental make-up of the sample. The peaks of zinc and sulfur
indicate the material formed was zinc sulfide (Supplementary
Figures S11, S12) in agreement with the XRD data. The
primary peaks in these data correspond to Si and O and
likely arise from the sample substrate, a Si2 wafer. The
secondary peaks, however, correspond to Zn, S, and Mn
(in doped samples). It is worth noting that the peaks
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FIGURE 3 | XRD spectrum of Mn doped ZnS nanomaterials synthesized via (A) the chemical route and (B) the biogenic route using engineered Shewanella
oneidensis JG3631. XRD spectrum confirms the material synthesized is crystalline and has zincblende crystalline orientation, shown as reference.

FIGURE 4 | Electron microscopy and atomic force microscopy characterization of biogenic Mn doped zinc sulfide nanomaterials. (A) SEM image of Mn doped zinc
sulfide nanomaterials (chemical synthesis 1% Mn). (B) AFM image of biogenic Mn doped zinc sulfide nanomaterials. (C) Sizes of nanomaterials synthesized via
chemical method and biogenic method using AFM. A minumum of 150 nanoparticles were analyzed (n > 150); particle clusters were omitted. The box indicates the
interquartile range, which captures all the data between the first and third quartile. The horizontal line within the box represents the mean or expected value. The bars
extending above and below indicate the min and max of the data, excluding outliers. The dots outside the min and max lines represent outliers, which are values 1.5
inner quartile range distance from the inner quartile. The box plot represents data from one replicate of each sample. Comparison of particle sizes using an unpaired
Student’s t-test revealed that all pairs of measurements were significantly different (p < 0.01) except for biogenic particles at 0 and 1 mM TMAO which
had a p > 0.05.

are unlikely from left over substrates as the samples were
thoroughly washed to remove the initial reactants used for
nanomaterial synthesis.

Next, we used scanning electron microscopy (SEM) and
AFM to identify the size and shape of the synthesized ZnS
and Mn:ZnS nanomaterials. SEM images showed that particles
were quasi-spherical (Figure 4A) in good agreement with
earlier work (Warad et al., 2005; Chandrakar et al., 2015).
SEM analysis was used for identifying the morphology of the
nanoparticles, while AFM was used to quantify the size of
the nanoparticles.

We measured the size of the ZnS and Mn:ZnS nanomaterials
using AFM. AFM size analysis (Figures 4B,C) reveals that

the size of Mn:ZnS nanomaterials synthesized via chemical
method was slightly larger and polydisperse compared to
nanomaterials synthesized via biogenic method. Researchers
have measured the size of chemically synthesized Mn:ZnS
nanomaterials in the range of 2–70 nm (Warad et al., 2005;
Cao et al., 2009; Kole and Kumbhakar, 2012; Komada et al.,
2012). The mean value for the chemically synthesized particles
is 8.7 nm [0 mM Mn(II)], 11.5 nm [1 mM Mn(II)] and
the mean value for the biogenically synthesized particles
is 4.0 nm (0 TMAO, no induction) and 5.0 nm (1 mM
TMAO, full induction). The difference in size and polydisperity
may result from different reaction kinetics between the
chemical and biogenic methods, an advantage in nanomaterial
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sysnthesis that merits further investigating. Altogether, EDX,
SEM, and AFM reveal that the nanomaterials synthesized
via chemical and biogenic routes were pure, spherical, and
approximately 2–20 nm.

CONCLUSION

We synthesized manganese doped zinc sulfide (Mn:ZnS)
nanoparticles using chemical and biogenic methods. Mn:ZnS
nanoparticles have applications as field emission materials,
field effect transistors (FETs), p-type conductors, biosensors,
chemical sensors, and catalysts, and nanogenerator (Fang et al.,
2011). Previous studies have shown that biogenic Mn:ZnS
nanoparticles exhibit biocompatibility and lesser toxicity in
biomedical imaging applications as compared to chemically
synthesized nanoparticles (Hazra et al., 2013). Here, both
methods yielded nanoparticles with a characteristic PL emission
peak at 600 nm, although in general the PL emission spectrum of
Mn:ZnS nanomaterials is known to vary with synthesis method
(Cao et al., 2009; Deng et al., 2011; Komada et al., 2012;
Ali et al., 2016).

To optimize the biogenic synthesis process, experimental
design should consider the location of nanoparticle synthesis.
For example, nanomaterials produced by bacteria may be
nucleated and grown in the cytoplasmic, periplasmic, or
extracellular space. These three regions, especially the
cytoplasm and periplasm, contain a variety of biomolecular
moieties, each of which influence synthesis. Moreover,
harvesting nanomaterials from the interior of the cell may
require lysing cells, which can introduce additional post-
production modifications to the nanomaterials, like capping.
Designing biogenetic nanomaterial synthesis routes with
optimal or minimal biomolecular blends should therefore
consider focusing nanomaterials synthesis on/outside the
cell. Following this line of reasoning Marusak et al. (2016)
explored the relationship between stages of bacterial cell
growth of E. coli on the synthesis of the CdS nanoparticles. By
adding CdCl2 to E. coli cultures after an initial 10-h growth
period, CdS nanomaterial formation was largely extracellular,
which reduced doping by non-specific agents. Likewise, in
our system, because the MtrCAB protein complex extends
from the periplasmic to extracellular space, we suspect that
ZnS and Mn:ZnS nanomaterials originate outside the cell.
Subsequent work will explore the origin and control of
nanomaterial nucleation/growth.

Although this work focuses on Mn(II) as a dopant, the
feasibility of incorporating additional dopant(s) through
biogenic routes should be investigated. Other groups have
reported chemically synthesizing ZnS with dopants as varied
as nickel, cadmium, and copper (Biswas et al., 2006; Fang
et al., 2011). Although the cell culture itself is reducing,
additional control experiments shown in Supplementary
Figure S13 show that mtr expression and activity were
needed for manganese doping. Removal of the carbon source
during the manganese reduction step was not sufficient to
completely eliminate the reducing activity of cells expressing

mtr. Future work should look at the wide variety of available
cytochromes and their capability to reduce many transition
metals, lanthanides, and actinides (Lloyd, 2003). These
starting materials could also be incorporated into biogenically
derived nanomaterials.

As a complement to doping, tuning the size of the
nanomaterial offers a parallel and complementary level of
control over the optoelectronic properties. Particle size of
the manganese doped nanoparticles zinc sulfide slightly varies
according to the synthesis method, which is not unexpected
since each method will have specific nucleating factors and
reaction kinetics which influence the size and growth of the
nanomaterials. Capping agents from various sources such as
plants, fungi, and bacteria cells have been used to control
the size and nucleation of nanomaterials (Singh et al., 2011;
Wanjari et al., 2015; Hussain et al., 2016). In our work, cellular
biomolecules in the exo-, peri-, or cytoplasm may have played
a role in determining the size and geometry of nanomaterials.
For example, biofilm surfactins of many microbes are known to
alter nanoparticle size (Singh et al., 2011, 2014; Rodrigues, 2015).
As in controlled Mn doping, synthetic gene circuits regulating
genes involved in production and secretion of biological
capping agents could control nanomaterial morphology. Such
biological control over multiple facets of nanoparticle synthesis
may produce nanomaterials unavailable via chemical methods.
Realizing the potential of biogenic nanomaterial synthesis will
benefit from future developments in both synthetic gene circuits
and an increased understanding of how microbes influence
nanomaterial formation.
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