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Implementations of suitable in vitro cell culture systems of the human intes-
tine have been essential tools in the study of the interaction among organs,
commensal microbiota, pathogens and parasites. Due to the great complex-
ity exhibited by the intestinal tissue, researchers have been developing in
vitro/ex vivo systems to diminish the gap between conventional cell culture
models and the human intestine. These models are able to reproduce differ-
ent structures and functional aspects of the tissue. In the present review,
information is recapitulated on the most used models, such as cell culture,
intestinal organoids, scaffold-based three-dimensional models, and organ-
on-a-chip and their use in studying the interaction between human intestine
and microbes, and their advantages and limitations are also discussed.
1. Introduction
The gastrointestinal (GI) tract, is the principal internal barrier of the body that
separates human tissues from the external environment, including food, anti-
gens, toxic molecules, xenobiotics and microbes. In the GI barrier, cells must
respond to and survive all of these multiple stimuli; they must also ensure
the capacity of the intestinal tissue to allow efficient transport of essential nutri-
ents, these facts indicate that the intestinal ecosystem has significant functional
complexity. Understanding the complex interaction among all of the elements
present in the intestinal environment has been a main objective of research
for the comprehension of homeostasis and diseases, including inflammatory
bowel disease (IBD), cancer and microbial infections (table 1).
1.1. Many different cells build the intestine
The GI tract contains two anatomical divisions: the upper GI and the lower
GI [1]. The upper GI extends from the oral cavity to the small intestine and
includes the oesophagus, stomach, duodenum, jejunum and ileum. The lower
GI includes the colon, rectum and anus [1]. These anatomical divisions of the
GI tract are in addition organized by several layers including the mucosa, the
submucosa, the muscularis propria and the connective tissue [2,3]. The mucosal
level is home to commensal microbiota, interacts with infectious microbes and
comprises subsequent strata: (i) the epithelium facing the intestinal lumen and
secreting mucus, (ii) the lamina propria, composed of an elastic connective
tissue enriched with collagen, homing fibroblasts, and containing blood vessels,
nerves, and immune cells and (iii) the thin muscularis mucosa responsible for
the slow intestinal movements supporting intestinal secretion (figure 1a).
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Figure 1. (a) Schematic of gastric pits, villi and crypts present in stomach (i), small intestine (ii) and colon (iii), respectively. The relative villus height in the small
intestine is shown (millimetres); these structures are absent from the other intestinal compartments. The mucosa layer and its main components, such as the
epithelium (continuous and dashes lines), lamina propria (blank spaces) and muscularis mucosa (black solid lines), are indicated. (b) Schematic of mucus
layers present in the stomach, small intestine and colon. The mucus layer in the stomach (i) and colon (ii) is composed of a firm inner layer (represented in
dark grey) and a loose outer layer (represented in grey). In the small intestine (iii scheme), the mucus is loose and arranged irregularly over the villus. MUC2
is enriched in all structural domains of the intestine, with the exception of the stomach, which is enriched in MUC5A. Relative mucus height (mm) in the stomach,
small intestine and colon is shown. The intestinal lumen carries the microbiome and the eukaryome (non-represented). Some pathogens specific to each compart-
ment are shown; these include bacteria (e.g. Helicobacter, Vibrio, Escherichia and Salmonella) and parasites (e.g. Giardia, Entamoeba and Cryptosporidium).
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The epithelial layer is of great interest because it is the
physico-chemical and immunological barrier against luminal
antigens and enteric pathogens yet allowing the absorption of
nutrients and water. For intestinal absorption functions, the
epithelium folds into multiple invaginations, making the
intestinal surface the largest mucus-covered absorption area
in the body (approx. 400 m2) [4]. The intestinal epithelium
digests and absorbs nutrients by organizing different cells
into multiple structures: gastric pits (stomach) and tubular
invaginations called crypts (in the colon), which combine
with villi (in the small intestine) (figure 1a) [4]. The cellular
building block of this enteric surface is composed of diverse
cells: enterocytes adapted for absorptive metabolic and diges-
tive functions; goblet cells (GC), which secrete mucin, with
the newly described specialized GC denominated the ‘senti-
nel goblet cell’ (senGC) that are localized at the entrances of
the colonic crypt and that play a main role in the protection
against bacterial infection [5]; enteroendocrine cells, which
secrete hormones; Paneth cells, at the bottom of the crypts,
which deliver anti-microbial peptides; microfold cells,
which are transporters of microbes and particles across the
epithelial cell layer, playing a role in mucosal immunity;
cup cells of unknown function [6] and chemosensory epi-
thelial cells (Tuft cells), mainly in the small intestine [7]. All
of these epithelial cells are derived from the differentiation
of the intestinal stem cell (ISC) located at the bottom of the
crypts [8]. The intestinal epithelium is renewed every 4–5
days as a result of the proliferation of ISC. Another essential
element of the epithelium is the extracellular matrix (ECM),
which acts as a scaffold involved in epithelial morphogenesis,
differentiation and homeostasis. The ECM is a complex mix
of proteins, glycoproteins and glycosaminoglycans secreted
by cells, the main functions of which are to provide architec-
tural support to cells. In addition, the ECM is involved in
cellular communication by the diffusion of soluble and inso-
luble molecular components derived from its degradation [9].
In GI tract, the ECM is principally composed of a dense con-
nective network of collagens (collagen type I [70%], type III
[20%] and type V [12%]) [10], fibronectin and laminin [11].

The mucus layer is also of prime interest because it forms
an interface between the environment of the intestinal lumen
and the epithelium, protecting the tissue against microorgan-
isms and toxins (figure 1b), shear stress and chemical damage
while facilitating colonization by commensal bacteria. Mucus
is a two-gel structure (figure 1b), there is a firm inner layer,
impermeable to bacteria, and its integrity is crucial to avoid
direct contact of pathogenic microbes with the epithelium
[12,13], and a loose outer layer that interfaces with the micro-
biota, food products and pathogens [14]. In both layers, a
network of glycoprotein containing several mucins secreted
by GCs builds the gel; among them, mucin-type 2 (MUC2)
is enriched in all structural domains of the intestine, with
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the exception of the stomach, which is enriched in mucin 5A
(MUC5A) (figure 1b) [15–17]. In the small intestine, the
mucus layer is less defined, and the tips of the villi commonly
are not covered by MUC2 (figure 1b). In addition, a specific
proteome modulated according to tissue specialization
along the intestinal tract is present in the mucus [16]. The
intestinal microbial ecosystem uses glycans derived from
mucins as an energy resource [18–20].
 .org/journal/rsob
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1.2. The microbiome as a component of the intestinal
tract

According to data obtained from MetaHit and the Human
Microbiome Project, the bacterial gut microbiota presents
2172 species classified into 12 different phyla, of which
93.5% belonged to Proteobacteria, Firmicutes, Actinobacteria
and Bacteroidetes [21–23]. The specific distribution of these
bacteria along the GI tract or, from the lumen to the mucus
layer, is determined by specific factors such as pH, oxygen,
gradients of antimicrobial peptides (AMP), bile acids and
the transit speed [24]. In the case of pH, it is basic in the oeso-
phagus and acidic in the stomach. Then, it gradually returns
to basic until the jejunum where it becomes acidic again.
From the ileum to the colon, the pH gradually returns to
basic (6–7.5 in the small intestine) and is close to 7 in the
colon. The drop in pH at the ileocecal junction is attributed
to the production of short-chain fatty acids by bacterial fer-
mentation. There is also an oxygen gradient toward the GI
with high levels in the upper GI and lower levels of oxygen
in the distal GI [25]. Breathing air at sea level has an
oxygen pressure (PO2) of approximately 145 mmHg
(approx. 21% O2). By contrast, in the lumen of a healthy
colon, there is a PO2 of less than 10 mmHg. PO2 levels
decrease along the radial axis of the intestinal submucosa to
the lumen. The amounts of mucus are another element that
determines the composition of the microbiome (figure 1b)
[26]. These physiological parameters regulate the total
number of microbes per gram of faeces (from the stomach
with 102 to the distal colon with 1012 microbes) [25] and influ-
ence the variability of the microbiome. In the upper GI, there
are mainly aerobes or facultative anaerobic microorganisms
that are able to live in an acidic and oxygenated environment
(e.g. Helicobacter, Vibrio, Giardia, Lactobacillus, Streptococcus
etc.) and in the lower GI, the microbe population is made
up of facultative anaerobes and strict anaerobes organisms
that grown in basic–neutral pH media little or no oxygen
flow (e.g. Escherichia, Shigella, Salmonella, Listeria, Cryptospori-
dium, Blastocystis, Entamoeba etc.) (figure 1b).

All these commensal organisms play important roles in
intestinal homeostasis such as protection against pathogens
[27], helping to maintain the integrity of the mucosal barrier
[28], providing nutritional elements such as vitamins [29] and
aiding the mucosal intestinal immune response [27,28,30]. In
addition, the bacterial microbiota is essential for ensuring
important metabolic functions that cannot be performed by
the host. For instance, some obligate anaerobic bacteria are
able to degrade complex non-digestible carbohydrates (fib-
bres) to produce short-chain fatty acids such as acetate,
butyrate and propionate [31]. These lipids, rather than glu-
cose, are the preferred energy substrate for colon epithelial
cells. In addition, the increase of plant-derived fatty acids in
diets leads to changes in intestinal morphology characterized
by elongated villus structures with an increased number of
epithelial cells and a reduced rate of epithelial proliferation
[32]. In turn, the fat-rich diet changes the composition of
the bacterial microbiota [32], suggesting the need to maintain
a balance among tissue renewal, bacteria and the immune
system in order to ensure intestine homeostasis [28]. Dysbio-
sis, originating from a disorder of the gut microbiota caused
by excessively fatty diets or antimicrobial drugs, is involved
in intestinal diseases (e.g. IBD, and metabolic diseases such
as obesity and diabetes).

The impact of other microbes on intestinal homeostasis is
poorly studied, despite the fact that several eukaryotic
microbes (the eukaryome) are common residents of the
healthy human intestine. For example, the influence of intes-
tinal colonization by a protozoan on the composition of the
bacterial microbiota has been demonstrated by the presence
of Blastocystis [33,34], a component of the eukaryome
detected with high prevalence as a commensal in healthy
people. In addition, Blastocystis has also been found in associ-
ation with other protozoa such as non-pathogenic Entamoeba
species [35]. Co-colonization by Entamoeba spp. and Blastocys-
tis hominis exists in healthy human populations [36]. Some
recent data indicate that the protozoan Tritrichomonas muscu-
lis is a commensal of the intestine [37] and protects mice from
bacterial infections. Over 140 fungal genera have been discov-
ered as permanent or transient biota in the intestinal tract;
many are either beneficial or commensal (e.g. Saccharomyces),
and are considered probiotics with a role in the treatment of
diarrhoea [38]. Finally, the virome comprises all the virus-like
particles associated with the GI tract; it is mainly composed
of two groups, eukaryotic viruses and prokaryotic virus
also known as bacteriophages [39]. Eukaryotic viruses are
able to interact with human body as pathogens, agents caus-
ing acute or persistent infections, or as benign agents, or even
symbiotic agents without affecting the human body [40].
Bacteriophages are the principal component of the GI tract
virome by their ability to infect bacteria and archaea
[41,42]. Their distribution across the GI tract is varied but
average is 109 particles per gram [39]. Bacteriophages from
the human gut principally belong to the virus families Myo-
viridae, Podoviridae and Siphoviridae [43] and in general,
opposed to bacterial population, the bacteriophage commu-
nity in the human gut is highly personalized [44].

All these findings suggest a specific role that can be
expected from each intestinal microbiome constituent to
govern the balance of the intestinal ecosystem, a hypothesis
constituting the subject of emerging research.
1.3. Microbiota and intestine changes during intestinal
infection

Microbial pathogens such as parasites, bacteria and viruses,
that are normally only present transiently in the intestine,
can colonize or invade intestinal tissue under abnormal con-
ditions [45]. In humans, the most common intestinal parasitic
infections are caused by helminths and protozoans. Intestinal
helminths are worms, of which the most common cases are
nematodes, cestodes and trematodes [46,47], represented by
the worldwide disseminated species: Ascaris lumbricoides,
Trichuris trichiuria, Ancylostoma duodenale and Necator ameri-
canicus [46]. These parasites infect 1 billion people
worldwide, causing significant ill health [48]. Likewise, the
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most common intestinal protozoan parasites in humans are
Giardia intestinalis, Entamoeba spp., Cyclospora and Cryptospor-
idium spp. [47]. The presence of intestinal protists such as
Entamoeba, G. intestinalis and B. hominus, induces significant
changes in the bacterial diversity of the microbiome, and con-
sequently in intestinal homeostasis [49]. Among the
pathogenic bacteria invading the human intestine, the most
common groups are Helicobacter pylori, Vibrio cholerae, Campy-
lobacter, Salmonella spp., Listeria monocytogenes, Shigella spp.
and virulent strains of Escherichia coli [50], while the main
target of invasive bacteria are the cells lining the epithelium.
In the case of virus, rotaviruses are the major cause of gastro-
enteritis in infants and young children [51]. Likewise,
Norwalk and Norwalk-like viruses, are the major cause
of gastroenteritis in adults and older children [52]. Noro-
viruses are also the other principal aetiological agents of
viral gastroenteritis [53].

The features above indicate the great cellular complexity
present in the intestine. To be able to understand human GI
physiology under healthy and pathological conditions, it is
necessary to determine the role of cellular activities, as well
as the biochemical and mechanical signals involved therein.
For this reason, for many years, researchers have been devel-
oping in vitro/ex vivo systems that could mimic the cellular
diversity present in the human intestine, the flow of metab-
olites and peristaltic movements. In this review, we
summarized data obtained with simple and complex systems
used to assess the interaction between human intestine and
commensal or pathogenic microbes; their advantages and
limitations are also discussed.
2. Experimental models established for the
study of intestinal infections and beyond

2.1. Monolayers of epithelial cells
The use of animals as a model to understand human diseases
is a common approach [54]. However, the applicability and
validity of animals to study interactions between intestine
and microbes is permanently questioned mainly because in
the case of obligated pathogens, animals do not reflect the
tissue and immune responses observed in humans. To over-
come these weaknesses, there is growing interest in the
development of in vitro models capable of reproducing
human intestinal function. Among the systems developed
are included the culture of cells, which uses cells removed
from tissues and placed in multiwell microplates or Petri
dishes as culture vessels. In the correct environment, those
cells grown in a monolayer (two-dimensional (2D) con-
ditions) and are used to evaluate cellular responses to a
specific stimulus. These in vitro cultures of epithelial cells
have for many years been the most used system to study
the interaction of pathogenic microbes and the intestine and
important discoveries and advances in our understanding
of infectious disease. Their principal advantages are the
cells’ ability to polarize and form cell–cell tight junctions,
promoting the integrity of the epithelial barrier, they are
reproducible, and many molecular and biochemical tools
can be implemented in them [55]. As major disadvantages,
cells grow in 2D in vitro conditions, limiting the expression
of tissue-specific factors, such as mucus, and in general,
they are used to study the interaction between a single
microbe and a single or a few types of host cell. The mono-
layers are derived from the primary cell or from intestinal
tumours. Primary cells in culture are able to proliferate in
vitro without, or with very few, subculture steps, retaining
some in vivo functionality [56]. Interesting data have been
obtained with primary gastric cells interacting with Helicobac-
ter pylori, thereby confirming that this bacterium attaches to
cell–cell interfaces [57]. Two non-tumour intestinal cell lines
with epithelial phenotypes (FHC CRL-1831 and CCD 841
CoN) have been, respectively, used to evaluate the effective
antimicrobial activity of nanocomposites against Escherichia
coli and Staphylococcus aureus [58], or to demonstrate the posi-
tive effect of several probiotics to decrease the adhesion of
several Clostridium difficile strains [59]. Likewise, the low cyto-
toxicity effect of 19 new fluoro-benzimidazole derivatives
was demonstrated in cell line CCD 841 CoN, in contrast to
the high inhibitory activity of those molecules against Escher-
ichia coli O157:H7, Escherichia coli ATCC 8739 Escherichia coli
ATCC 35218 and Salmonella typhimurium ATCC 1331 [60].

The culture of tumour cells is a much more popular
system to study cellular physiology during infection. As an
advantage, these cell cultures are relatively inexpensive, the
cells survive after several subculture steps, and there are
many options for applying technologies of genetic manipu-
lation. However, the use of cancer cell lines is limited in
terms of establishing the functional character of human intes-
tine, in that they derive from a sole cell linage [61]. The most
popular human colon tumorigenic cell lines employed in vitro
are Caco-2 and HT-29, derived from a colon tumour and able
to differentiate, respectively, into enterocyte-like and mucus-
producing GC. These cells have been widely used under
monoculture or co-culture conditions [19,62–64]. Extensive
research has been performed using these cells to investigate
the cellular and molecular mechanisms by which pathogenic
microbes (parasites, bacteria or virus) create structural lesions
on human tissues [65–67]. These will not be further discussed
in this review and have been well summarized previously
[3,68–70].

In the following sections are described three-dimensional
(3D) models considered as devices that reconstruct the 3D
architecture of human intestine, are able to recapitulate the
most basic functional units present in the original tissue,
express the functions of differentiate intestinal epithelium
(e.g. mucus production, villi) and respond to chemical,
biological and physical interventions.

2.2. Human intestinal explants
Experimentation with intestinal explants has rendered poss-
ible the study of tissue interactions with microbiota,
bacteria or parasites in a 3D context. This is a technology
devoted to maintaining a whole organ, or portions of an
organ, in culture by the use of specialized media, substrates
and atmospheres (figure 2a) [71]. Although their major disad-
vantages are the difficulty of obtaining tissue samples and
the short explant viability, these models are very attractive
for studying the interaction among human tissues and micro-
biota. For instance, this technology has been employed in
several studies: to analyse the interaction of the intestinal
microbiome; to detect the presence and effect of different
microorganism populations [30,72,73]; to determine that bac-
terial outer membrane vesicles are internalized by polarized
cells and it is an effective strategy to communicate signals
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Figure 2. Schematic of major fate of the diverse intestinal models discussed in this review. (a) Tissue explants. (b) Organoids: the villus-like domains, crypt-like domains
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phages. (v) 3D-trans-well model made with collagen as the scaffold. Over the collagen were added Caco-2 and HT29-MTX cells. On the opposite side of the membrane,
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and HT29-MTX cells were added in the hollow channel of the scaffold as the epithelial layer. (d ) Organ-on-a-chip models. (i) Intestinal chip made with PDMS. This
device has two independent channels separated by a membrane. Caco-2 cells were inoculated on the upper side of the membrane previously coated with collagen.
(ii) Chip made with two PDMS sheets, separated by a collagen-coated permeable membrane. Two vertical microchannels connect the upper (apical side) and lower side
(basal side) of the membrane. Caco-2 cells were cultured on the apical side. (iii) ‘Gut-on-a-chip’ model. It has two microfluidic channels separated by a porous flexible
membrane coated with extracellular matrix proteins. Microfluidic flux is represented with dotted arrows.
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among beneficial gut bacteria and to modulate host responses
[74]; and to observe in ileum explants that alterations in the
transportome system in Crohn’s disease are partially restored
by commensal bacteria [75]. The human colon explant model
reproduced early pathogenic events following Shigella flexneri
infection and the mechanisms involved [76]. Furthermore,
loading Entamoeba histolytica on human colon explants
demonstrated that amoebic cysteine proteinase A5 promotes
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the activation of human matrix metalloproteinase-3, which in
turn activates human matrix metalloproteinase-1, leading to
remodelling of the fibrillar collagen and mucosa invasion
[77]. Likewise, transcriptome profiling of amoebic gene
expression shows the potential role of carbohydrate metab-
olism in colon invasion by E. histolytica [78], and it was
determined that the rapid changes in gene expression pro-
files, rather than genetic derivation, account for the invasive
phenotype of a single virulent amoebic isolate [79]. The infec-
tion of ileum explants with Cryptosporidium parvum or
Cryptosporidium hominis causes, in the early stages, the over-
expression of osteoprotegerin, which prevents the early
apoptosis of human cells. The system also allows the parasite
to achieve its complete life cycle, a feature not obtained with
cell cultures [80]. Human intestinal explants have also been
used to study immunological response. For example, the
administration of the Cholera toxin B subunit reduces
mucosal Th1 cell signalling [81]. Although impressive
data have been obtained with human explants, as was
mentioned, the major disadvantages of this model lie in
the difficulty of obtaining human tissue and the short dur-
ation of viability of the explant.

2.3. Organoid models
Although at present the term intestinal organoids continues
to be used in a broad and unspecific manner, herein referred
to as a 3D miniaturized intestine able to grow in vitro and that
is characterized by its ability to generate villus-like structures
and crypt-like proliferative zones (figure 2b) [82,83]. Orga-
noids derive from the proliferation of ISC, which are
isolated from embryonic or mature crypts. Under specific
cell-culture conditions, ISC proliferate and form spheres
(from 100 µm to 700 µm) and, promoting their differentiation
into intestinal epithelium, mesenchyme and lumen-like struc-
tures [84]. The most widely used method to develop
organoids was described in 2009. This methodology isolates
intestinal crypts further cultured in collagen matrix leading
to the subsequent development of villus-like and crypt-like
structures [85]. Later works have improved the method to
allow the differentiation of intestinal organoids into entero-
cyte, goblet cell, Paneth cell and enteroendocrine lineages
(figure 2b) [86]. Likewise, according to the ISC sources, orga-
noids could be referred to as ‘enteroid’ when the cells come
from the small intestine, and ‘colonoid’ when cells derive
from colon [87]. The advantage of organoids includes the
presence of 3D structures with villus-like domains able to
maintain cellular polarization toward the tissue. They also
possess crypt-like domains with proliferative regions that
contain cells expressing ISC markers and that are able to
differentiate into all of the epithelial cell lineages (figure 2b)
[69]. Furthermore, intestinal organoids can be genetically
manipulated and, if they were obtained from embryonic
stem cells, they can be expanded indefinitely and cryopre-
served, permitting long-term storage [88]. However, as
these models represent only the general aspects of the epi-
thelial layer, their use presents some limitations, including
the lack of immune, nerve or vascular cells. Another impor-
tant point to consider is organoid morphology as a closed
system. As they have a spherical shape, the intestinal lumen
occurs inside the device. To overcome this limitation, the
uses of organoids require modification of certain technical
approaches, such as mechanical shearing to promote the
solubilization of the semi-solid spherical structure and
further, to generate a polarized epithelial layer in trans-well
chambers, or the microinjection of compounds to avoid the
barrier effect [89,90]. For instance, a high-throughput orga-
noid microinjection system was recently developed that
allowed for the correct delivery of samples into the orga-
noid’s lumen [91]. In organoids deriving from duodenal
biopsies from gluten-intolerant patients, the barrier function
was improved after the microinjection of butyrate, lactate
and polysaccharide A [92]. All of these aspects unquestion-
ably situate organoids as excellent models for studying the
interaction between the intestinal epithelium and microbes.
For example, the co-culture of mouse intestinal organoids
and human lamina propria lymphocytes in the presence of
Lactobacillus reuteri D8, was able to repair the epithelial
damage caused by TNF-α treatment, improving intestinal
barrier function and epithelial layer proliferation [93]. In
organoids derived from human pluripotent ISC localized
near the immature epithelium, the interaction between cells
and the non-pathogenic strain of Escherichia coli results in
stable host–microbe symbiosis, permitting the maturation of
both the mucus layer and the epithelial barrier [94]. Human
colonoids were used to generate a differentiated monolayer
in trans-wells inserts. In them, infection with enterohaemor-
rhagic Escherichia coli (EHEC) showed efficient bacterial
attachment to the apical surface of mucus-producing cell
monolayers, affecting brush border integrity [95]. Further-
more, with organoids, it has been possible to overcome the
obstacle that the anaerobic requirements represent of many
organisms. For instance, deposition by microinjection of
the obligate anaerobe bacterium Clostridium difficile into the
lumen of organoids, reveals disruption of organoid’s
epithelium, loss of paracellular barrier function, loss of
polarity, and finally, reduction of mucus production [96,97].
Another study demonstrated that the pathological mechanism
of Clostridium difficile depends on the expression of the Frizzled
receptor [98]. Similarly, microinjection of the non-pathogenic
commensal strain of Escherichia coli SGUC183 or of the clinical
isolate E. coli (PT29S) O157:H7 into the organoid’s lumen exhi-
bits bacterial viability after 20 h. The commensal bacterial
strain does not cause damage in the lumen; by contrast, a
clinical virulent isolate producing the Shiga toxin gives rise
to cellular damage, activation of the SOS stress response by
production of reactive oxygen species and the upregulation
of inflammatory response genes, including interleukin 8 [99].
Microinjection of Salmonella enterica serovar Typhimurium
promotes large-scale transcriptional changes in organoids,
including in genes linked to the proinflammatory response
[100]. Microinjection of Helicobacter pylori into the lumen of
the organoids demonstrates bacterial adhesion to the epi-
thelium leading to the disruption of apical cell–cell junctions,
supporting the idea that organoids reflect the pathology in
the original tissue [101–103]. The infection with Shigella flexneri
of epithelial layer derived from enteroids shows basolateral
invasion and disruption of tight junctions. In this system
were observed bacterial replication, actin tails and increase in
proinflammatory signals [104]. Likewise, the infection process
of S. flexneri was evaluated in disaggregated organoids from
human enteroids [105]. In this system was observed how the
apical invasion by S. flexneri was increased (10-fold) when
the enteroids were differentiated to M cells. Also, invasion
increased when the parasite infection was via the basolateral
surface. Finally, the secretion of interleukin-8 and MUC2
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were also increased after S. flexneri infection [105]. Similarly,
the study of Escherichia coli infection process was studied in
polarized organoids. Those 3D models were disaggregated
and grown on trans-well inserts and infected with pathogenic
strains showing novel adherence phenotypes [106]. Impressive
data showed that microinjection of Cryptosporidium spp.
[107,108] were able (as with tissue explants) to infect human
enteroids with completion of the parasite’s life cycle following
dynamic regulation of transcripts related to the life cycle [107].
These findings have opened great avenues for further
experimentations with Cryptosporidium, which is unable to
proliferate in vitro. Recently a new model was developed,
derived from stem-cell-derived spheroids seeded and culti-
vated on trans-well insert by an ‘air–liquid interface’ [109].
These culture conditions allow the infection with C. parvum,
and the completion of the parasite life cycle and parasite
expansion to generate viable oocysts.

Viral gastroenteritis is a major cause of morbidity and
mortality worldwide. Our understanding of the pathogenesis
of human intestinal viral infection is limited and comes pri-
marily from clinical investigation of the infection. The use
of human organoids has provided new data on this impor-
tant health problem [110]. For example, organoids derived
from patient samples have been developed as a model for
understanding the process of rotavirus infection [111–113].
The experimental setting recapitulates the essential character-
istics of the in vivo tissue architecture allowing viral infection
and water influx to the intestinal lumen [113]. The system
demonstrated the great importance of the PI3 K-Akt-mTOR
signalling pathway and the exchange of GDP/GTP in the
small GTPase protein Rac1 on rotavirus infection [114,115].
As mentioned earlier, noroviruses are another major cause
of gastroenteritis in humans. Recently, there has been success-
ful adaptation of the use of a human intestinal epithelial
monolayer derived from organoids as a norovirus culture
system [116–118]. In addition, although infection with
SARS-CoV-2 virus typically presents respiratory disease,
emerging clinical reports indicate possible viral replication
in the intestinal epithelium. In this case, through the use of
intestinal organoids, viral infection of human enteric cells
has been determined associated with infection of respiratory
cells [119,120].

In conclusion, organoids reiterate anatomical aspects of
the human intestine such as villus-like crypt structures. This
tissue model is generalized to explore the interaction of
human intestine and commensal, pathogenic bacteria or
virus. Although their use as models to study the interaction
between the parasite and intestinal tissue will certainly
require overcoming various technical problems, it is undoubt-
edly a powerful tool for understanding the process and
signalling pathways evoked during intestinal infections.

2.4. Scaffold-based three-dimensional models
Another revolutionary type of 3D intestinal model are scaf-
fold-based 3D models. Tissue engineering has provided
specialized biomaterials as substrates for the deposition of
the ECM and cells to mimic the architecture of tissue. These
biomaterials require biocompatibility in order to allow for
cell adhesion, porosity to ensure adequate diffusion of nutri-
ents, and the capability to act as guides for the organization
of cells, leading to the reproduction of their general layout
in the human gut. Two types of materials are regularly
used: synthetic materials (e.g. polydimethylsiloxane
(PDMS), polyglycolic acid (PGA) and poly-lactic-co-glycolic
acid (PLGA)) and natural extracellular materials (e.g. collagen
or matrigel) [121]. PDMS is the most popular of these
materials due to its low cost and relatively easy handling,
as well as its high permeability to gases such as oxygen
[122]. Although cell scaffolds reproduce, in many structural
and functional aspects, the original tissue, they entail
some limitations, such as incomplete 3D tissue architecture,
reduced multicellular complexity, and the absence of physical
forces demonstrated by natural tissues [70]. Nevertheless,
scaffold-based 3D models have generated important results.

Scaffold-based 3D models build with synthetic materials
such as PLGAwith Caco-2 and/or HT29-MTX cells recapitu-
late cell differentiation along the villus axis and mucus
(figure 2c(i)) [123,124]. Following the interaction of intestinal
cells with the microbiota, it was successfully proven that two
probiotics (Lactobacillus gasseri and E. coli Nissle 1917) were
able to prevent adhesion and invasion of the pathogens
Salmonella typhimurium 14038 and Pseudomonas aeruginosa
15692 [125]. Employing the sacrificial mould procedure
(PDMS villi mould–alginate reverse mould–3D hydrogel
mould), a 3D villi scaffold was built with collagen as the sub-
strate and Caco-2 cells (figure 2c(ii)) [126]. This procedure
permits the easier separation of the hydrogel structure and
creates a scaffold with better-conserved detail. The gene
expression profile of differentiated cells significantly changed
in comparison to cells in 2D culture; mainly, there is a signifi-
cant increase in mucin-gene family expression. Salmonella
typhimurium was able to invade the crypt part of the 3D scaf-
fold, while no invasion was observed in cells on villi tips [126].
Recently, by means of the cell-printing process, a blood capil-
lary structure was incorporated into the villi (figure 2c(iii))
[127]. This system revealed a higher rate of cell growth, over-
expression of MUC17, and enhancement of barrier function.
Another interesting scaffold was constructed by means of the
combination of PDMS and silk fibroin as substratum, hosting
human intestinal myofibroblasts, Caco-2 and HT29-MTX
cells (figure 2c(vii)) [128]. Mucus accumulates on the epithelial
surface, low oxygen tension was observed in the lumen and
bacteria colonize the scaffold (e.g. Yersinia or probiotic Lactoba-
cillus rhamnosus GG) [128]. The same system reproduced a
long-term infection by Cryptosporidium parvum. The parasite
developed asexual and sexual stages or was able to form
new oocytes. Also, ablation, blunting, microvilli distortion in
infected epithelial cells were observed [129]. Recently, the use
of this device, was extended with the co-culture of human
intestinal myofibroblasts and cells from human intestinal
enteroids and the infection with C. parvum [130].

Scaffold-based 3D models built with natural extracellular
matrices open emerging alternatives for the study of intesti-
nal infections, for example, the very recent approach that
the use of Caco-2 cells reseeded over decellularized porcine
jejunal segments used as supporting material [131]. The
hybrid human–porcine 3D model revealed intestinal features
such as epithelial polarization and recapitulated the patho-
logical process of Campylobacter jejuni previously observed
in animal models; it particularly confirmed the role in the
infection of the small regulatory RNA pair CJnc180/190
[132]. There are complex 3D scaffolds that employ purified
collagen as support; in these, different types of cell lines,
including immune cells, have been embedded, resulting in
enhancement of physiological relevance. For example, for
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the evaluation of drug absorption, the 3D scaffold was built
with Caco-2 and HT29-MTX cells seeded over a collagen
matrix, primary mouse embryonic fibroblasts were found
within the collagen, and human monocytes THP-1 differen-
tiated into macrophages were seeded into the base of the
well (figure 2c(iv)) [133]. In this cells–collagen + cell–filter–cell
scaffold the following was observed: mucus production,
overexpression of the efflux transporter BCRP gene, and sig-
nificant values of absorption for specific drugs. Other
scaffolds employed the compartmentalization properties of
trans-well chambers: the mix of Caco-2 and HT29-MTX
cells was seeded on the apical side of the filter and on the
opposite side, a drop of collagen-containing THP-1 macro-
phages was deposited (figure 2c(v)). This cell–filter-
collagen + cells scaffold reproduced the features of the small
intestine microbiome after the addition of a set of eight com-
mensal bacterial strains (Enterococcus faecalis, LMG-7937;
Escherichia coli, DSM-18039; Streptococcus salivarius, LMG-
11489; Streptococcus mitis, LMG-14557; Lactobacillus plantarum,
LMG 1284; Veillonella parvula, DSM-2008; Veillonella atypica,
DSM-20739 and Prevotella intermedia, DSM-20706) [134].
Another complex scaffold composed of decellularized por-
cine small intestinal submucosal collagen, Caco-2 cells, and
primary human microvascular endothelial cells sup-
plemented with peripheral blood leucocytes providing the
vascular immune system was infected with Salmonella; it
showed the communication of epithelial, endothelial, mono-
cytes and natural killer cells among each other and with the
pathogen [135]. A recently built 3D scaffold contains Caco-
2/TC7 and HT29-MTX cells seeded on top of a collagen
layer containing CCD-18Co human fibroblasts and THP-1
differentiated macrophages to mimic the basal lamina propria
(figure 2c(vi)). This cells–collagen + cells scaffold presents
intestinal features such as mucus production, epithelial cell
polarization, fibroblast networking and cytokine production.
The combination of imaging, omics and the evaluation of
immune responses led to the analysis of the earlier steps of
infection evoked by Entamoeba histolytica [136]. The data high-
lighted several virulence markers previously reported in the
explants model or in patients with intestinal amoebiasis; in
addition, new regulatory factors in the amoebic invasive pro-
cess, including non-coding RNAs, ion transporters and
nuclear receptors, were identified. For the first time, it was
also observed that Entamoeba histolytica swallowed pieces of
mucus after detaching them from the epithelium, and that
immune and anti-microbial human defences are inhibited
when the parasite interacts with the cells [136].

In conclusion, scaffold-based 3D models recapitulate diverse
cell types presents in the intestinal epithelium. The advantages
are the following: (i) versatility, in that all of its components
can be varied independently, given the opportunity of adding
or removing elements according to the study objectives within
a 3D context, and (ii) the possibility of combining 3D scaffolds
and cells derived from human intestinal explants or organoids.
Tissue scaffold models reproduce architecture of living tissues,
promoting the correct intestinal cell differentiation and facilitat-
ing the study of the earlier steps of pathogenic processes in
conditions similar to the original tissue.

2.5. Organ-on-a-chip models
Microengineering approaches (e.g. soft lithography, mould-
ing and micromachining) have developed 3D devices
known as ‘organs-on-a-chip’ [137]. These chips are models
that control the environment around cells thanks to their
micropatterned surfaces, which support the correct spatial
arrangement of the cells and help to control the gradients
of the biomolecules by microfluidic applications. Organ-
on-a-chip systems demonstrate many advantages, including
a 3D environment that emulates tissue structure with the
presence of cell lines or stem cells, and microenvironmental
cues with microfluidic systems that permit the mimicking
of the cellular microenvironment [138]. Their principal weak-
ness lies in the implementation of highly complex structures
requiring qualified personnel for their design, and PDMS, the
material most commonly used for chip construction, which
absorbs small hydrophobic molecules that could interfere
with some drug-screening studies [70]. One of the first intes-
tinal chips was developed in 2008 (figure 2d(i)) [139]. This
device made with PDMS is divided into two independent
microfabricated hollow channels separated by a polyester
semipermeable membrane. To support the inoculation and
culture of Caco-2 cells, the upper side of the membrane was
coated with collagen. The cells showed polarization and
were successfully maintained for 30 days. An additional
system was developed to evaluate intestinal absorption
(figure 2d(ii)) [140]; this system was composed of two
PDMS sheets, separated by a collagen-coated permeable
membrane. Two vertical microchannels connect the upper
(apical side) and lower side (basal side) of the membrane.
Caco-2 cells were cultured on the apical side. Those con-
ditions were able to support the precise control of the fluid,
mimicking vascular flow. Although these models were an
important step in emulating general intestinal functions,
they were not able to reproduce physiological characteristics
such as villi structure, the presence of multiple specialized
cells and peristaltic movements, all necessary to simulate
the symbiotic relationship between intestinal cells and resi-
dent bacteria [141]. To overcome these limitations, in 2012,
the same microengineering principles employed in the
‘lung-on-a-chip’, were used to build the ‘gut-on-a-chip’
(figure 2d(iii)) [142]. This chip incorporates two microfluidic
channels separately by means of a porous flexible membrane
coated with ECM proteins. In the upper side, containing
Caco-2 cells, the cell polarizes and forms villi-like structure
by their exposition to micro-flow and cyclic strain to mimic
peristaltic motion. The chip showed successful interaction,
for one week, between human cells and the commensal bac-
terium Lactobacillus rhamnosus GG. The intestinal villi-like
structure differentiates, produces mucus, and increases in
the activity of the drug-metabolizing cytochrome P450 3A4
(CYP3A4) enzyme, both important during the morpho-
genesis of villi-like structures [143]. In this model, it was
also demonstrated that the infection of Shigella flexneri is
significantly increased by the villi-like structure [144]. To
engineer the intestinal tissue–tissue interface, on the lower
side of the membrane were added microvascular endothelial
cells [145]. Under these conditions, the interaction was
studied between cell and commensal microbes (Lactobacillus
acidophilus, Lactobacillus plantarum, Lactobacillus paracasei,
Bifidobacterium breve, Bifidobacterium longum and Bifidobacter-
ium infantis). Bacterial contact modified the gene expression
of Caco-2 cells, rendering it similar to the gene expression
of normal human ileum. It was also demonstrated that
peristaltic motion and the administration of therapeutic pro-
biotic formulation avoided the damage in the intestinal
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barrier promoted by pathogenic strains of Escherichia coli and
protected against bacterial overgrowth [145]. Another step
forward taken to improve the gut-on-a-chip models was
their combination with enteroids cultured from duodenal
biopsies [146], or lines from induced pluripotent stem cells
(iPSC), which were fragmented and seeded on the apical
side of the ECM-coated membrane with fluid-flow and peri-
stalsis-like deformations to the basal side [147]. Likewise,
enteroid cells were able to produce villus-like structures
with multilineage differentiation and, as expected, transcrip-
tomic analysis revealed a host-defence response to infection
of the human duodenum [146]. Recently, also was demon-
strated that EHEC led to greater epithelial injury when
exposed to metabolites derived from the human gut micro-
biome (4-methyl benzoic acid, 3,4-dimethylbenzoic acid,
hexanoic acid and heptanoic acid). The authors suggest that
these metabolites could be the reason why some human
populations are more susceptible to EHEC infection [148].
To study the interaction of aerobic and anaerobic human
gut microbiota and intestinal cells, a microscale oxygen
sensor was incorporated to measure the amount of oxygen
in situ [149]. Intestinal epithelium and microvascular endo-
thelium were grown in parallel chambers, separated by an
ECM-coated porous membrane. Then, the device was
placed within an anaerobic chamber to establish oxygen gra-
dients between the upper and lower chamber, establishing
differential amounts of oxygen between the epithelial cells
and endothelial cells. The set-up permits the stable co-culture
of highly complex communities of anaerobic and aerobic
commensal bacteria and the intestinal epithelium in the
same channel [149].

The HuMiX microfluidic device was developed to study
the GI human—microbe interface [150,151]. This is a
human–microbial crosstalk system composed of three micro-
fluidic chambers separated by semipermeable membranes.
The lower chamber is a perfusion chamber, the middle
chamber is the cell-culture chamber and the upper chamber
is the microbial-culture chamber [151]. The system can be
used to grow human cell or bacterial strains under oxygen
and biomolecule gradients [150]. In this system, a successful
co-culture either with a facultative anaerobe bacterial strain,
Lactobacillus rhamnosusGG, or in combination with the obligate
anaerobe bacterial strains, Bacteroides caccae, was obtained
[150]. Organ-on-a-chip technology has been employed also
to develop an in vitro model of the human colon [152]. Colo-
noids were obtained from re-sections or endoscopic tissue
biopsies; these were disaggregated, and the cells were seeded
in the chip above described. Colon cells were able to produce
a polarized epithelium containing GC carrying mucus gran-
ules and importantly, a bilayer structure of mucus over the
epithelium. All of these properties render this colon chip a
new tool for the analysis of the role of mucus during commen-
sal or pathogenic infections. Finally, it is important to highlight
that, in all of these organ-on-a-chip models, the continuous
fluid flow removes secreted molecules that might suppress
villi formation, emphasizing the importance of this aspect in
the design of the chip models [153–155].

The complexity of microfluidic chips has gained popular-
ity. A recent study combines a microfluidic chip and a 3D
villi scaffold to culture Caco-2 cells [156]. This system
allows the formation of an epithelial barrier across the mem-
brane or villi surface and high activity of the cytochrome
P450 3A4. Another example combines a micrometre
resolution membrane that is synthesized from rat-tail type-I
collagen in a microfluidic device with apical and basolateral
chambers [157]. However, to date, neither of these two sys-
tems has been employed to explore intestinal interaction
with commensal bacteria, virus, pathogens or parasites.

In conclusion, despite the fact that organ-on-a-chip tech-
nologies will undoubtedly be required to overcome
methodological limitations, their use will aid in understand-
ing the role of important factors (e.g. tissue mechanics,
microbiota, daily diet) on microbial infectious processes.
The combination of organoids with microfluidics has
opened alternatives for studying the interaction between
human gut and microbes, taking into account oxygen rates
and peristaltic movements.
3. Conclusion
Fundamental research on infectious diseases affecting humans
has been limited in the past by the lack of robust experimental
models that reproduce pathogen–host interactions in an
environment relevant to the disease. This fact motivated the
development of diverse 3D intestinal models, their application
offers an excellent opportunity to experiment with devices
closer to the native intestine. The establishment of organoids
partly solves the technological limitations that the tissue
explants present (e.g. scarce disposition of human tissues
and their short life span). Organoids summarize many archi-
tectural aspects of the intestine and have been mainly used
to explore organ interaction with commensal or pathogenic
bacteria and viruses, while few cases have used organoids to
study the pathological stages triggered by intestinal parasites.
Thismodel could rapidly spread in parasitology studies due to
the validation of organoid disaggregation to form epithelial
layers. Parasite–intestine interaction tests, in the early stages
of infection, can be clearly enriched by the implementation
of scaffold-based 3D models due to their nature of open
systems. In addition, organ-on-a-chip technologies are able
to combine cells or organoids with microfluidics, opening
opportunities for complexes environments to examine
intestinal invasion by for parasites (table 1).

The field of tissue engineering has also enriched multidis-
ciplinary research in order to resolve the limitations that these
3D models present, in addition the teams, composed of biol-
ogists, engineers, physicists, mathematicians and clinicians,
have been working together to design and develop more
realistic 3D intestinal models. Behind their complex engineer-
ing, experimentation with these models actually poses great
technological challenges. For example, in cell biology, the
acquisition of microscope images (in particular, live imaging)
requires instruments with greater penetration depth and
multiple wavelengths, faster acquisition, and reduced photo-
toxicity. All of these parameters are only found combined
in a few microscopes [158]. Another important challenge
comprises the analysis of microscope images requiring math-
ematical tools and computing that produce large sets of
volumetric data; indeed, reducing the computational load is
an important task that will complement image analysis
with all-omics approaches.

In that a unique model cannot afford the entire picture of
humans, we think that, only when employed in conjunction,
the data obtained with each of the different 3D models will
increase our knowledge concerning the processes activated
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iza
tio
n
an
d
cry
pt
-li
ke
do
m
ain
s
w
ith

pr
ol
ife
rat
ive

re
gi
on
s

th
es
e
m
od
els

ar
e
cu
rre
nt
ly
us
ed

as
a
pl
at
fo
rm

in
ph
ar
m
ac
ol
og
y
stu
di
es

an
d
als
o
as
ho
st–

ba
cte
ria

an
d
ho
st–

vir
us
in
te
rac
tio
n
m
od
els

pr
in
cip
all
y,
in
ca
se
s
th
at
lac
k
a
su
ita
bl
e
an
im
al
m
od
el

ad
va
nt
ag
es
:t
he
ir
m
ajo
r,
str
en
gt
hs
ar
e
th
e
pr
es
en
ce
of
3D

str
uc
tu
re
s,

ce
llu
lar

po
lar
iza
tio
n
an
d
pr
es
en
ce
s
of
se
ve
ra
le
pi
th
eli
al-
ce
ll
lin
ea
ge
s

or
ga
no
id
s
ca
n
be

de
ve
lo
pe
d
fro
m
bi
op
sy
de
riv
at
e
fro
m
he
alt
hy

sa
m
pl
es
or

fro
m
pa
tie
nt
sa
m
pl
es
in
tw
o
we
ek
s

di
sa
dv
an
ta
ge
s:
th
e
bi
gg
es
td
isa
dv
an
ta
ge

is
th
e
ne
ed

to
m
an
ip
ul
at
e
th
e

str
uc
tu
re
to
es
ta
bl
ish

th
e
in
te
rac
tio
n
be
tw
ee
n
th
e
or
ga
no
id
an
d

pa
th
og
en
s.
At
th
e
m
om
en
t,
th
er
e
ar
e
th
re
e
m
ajo
rm

et
ho
ds
to
sta
bl
ish

ho
st–

m
icr
ob
e
in
te
rac
tio
n
stu
di
es
:

—
ev
alu
at
ion

of
m
icr
ob
iot
a-
de
riv
ed

m
ol
ec
ul
es
.I
n
or
ga
no
id
s
de
riv
in
g

fro
m
du
od
en
al
bi
op
sie
s
fro
m
gl
ut
en
-in
to
ler
an
tp
at
ien
ts,

th
e
ba
rri
er

fu
nc
tio
n
wa
s
im
pr
ov
ed

aft
er
th
e
m
icr
oin
jec
tio
n
of
m
icr
ob
iot
a-
de
riv
ed

m
ol
ec
ul
es
[9
2]

—
stu
dy

of
re
gu
lat
or
y
ef
fe
cts

of
La
cto
ba
cil
lu
s
re
ut
er
ii
n
da
m
ag
ed

m
uc
os
al
ba
rri
er
.B
y
co
-c
ul
tu
re
of
m
ou
se
in
te
sti
na
lo
rg
an
oid
s
an
d

lam
in
a
pr
op
ria

lym
ph
oc
yt
es
,i
tw

as
de
m
on
str
at
ed

th
at
th
e
pr
es
en
ce

of
L.
re
ut
er
iD
8
wa
s
ef
fe
cti
ve
to
re
pa
ir
th
e
da
m
ag
ed

ep
ith
eli
um

ca
us
ed

by
TN
F-
α
tre
at
m
en
t
[9
3]

—
ev
alu
at
ion

of
no
n-
pa
th
og
en
ic
str
ain

of
E.
co
li
in
im
m
at
ur
e
hu
m
an

ep
ith
eli
um

.I
n
hu
m
an

or
ga
no
id
s,
it
wa
s
sh
ow
n
th
at
m
icr
oin
jec
tio
n
of

no
n-
pa
th
og
en
ic
E.
co
li
ge
ne
ra
te
d
a
clo
se
ho
st–

m
icr
ob
e
in
te
rac
tio
n
in

na
ive

ep
ith
eli
um

.T
hi
s
in
te
rac
tio
n
in
cre
as
es
an
tim

icr
ob
ial

pe
pt
id
e

pr
od
uc
tio
n,
m
at
ur
at
ion

of
m
uc
us
lay
er
,a
nd

im
pr
ov
e
of
ba
rri
er

fu
nc
tio
n
[9
4]

—
stu
dy

of
ea
rli
es
ts
ta
ge
s
of
in
fe
cti
on

of
en
te
ro
ha
em
or
rh
ag
ic
E.
co
li.

Hu
m
an

co
lo
no
id
s,
we
re
us
ed

to
ge
ne
rat
e
a
di
ffe
re
nt
iat
ed

m
on
ol
ay
er
in

tra
ns
-w
ell
s
in
se
rts
.T
he
ir
in
fe
cti
on

w
ith

en
te
ro
ha
em
or
rh
ag
ic
E.
co
li

sh
ow
ed

hi
gh

lev
els

of
th
e
se
rin
e
pr
ot
ea
se
Es
pP
.T
hi
s
pr
ot
ein

se
qu
en
tia
lly

ta
rg
et
s
th
e
M
uc
in
-2
an
d
pr
ot
oc
ad
he
rin
-2
4
to
all
ow

th
e
ba
cte
ria
l

at
ta
ch
m
en
t
to
th
e
ep
ith
eli
um

[9
5]

—
in
fe
cti
on

by
Clo
str
idi
um

dif
fi
cil
e.
M
icr
oin
jec
tio
n
of
C.
dif
fi
cil
e
sh
ow
ed

re
du
cti
on

of
M
UC
2
pr
od
uc
tio
n,
bu
tn
o
ch
an
ge
s
in
m
uc
us
ol
ig
os
ac
ch
ar
id
e

co
m
po
sit
ion

[9
6]
.L
ike
w
ise
,a

m
ar
ke
d
ep
ith
eli
al
di
sru
pt
ion

an
d
lo
ss
of

pa
rac
ell
ul
ar
ba
rri
er
pr
om
ot
ed

by
th
e
to
xin

A
we
re
ob
se
rv
ed

[9
7]
.

Co
lo
no
id
s
de
riv
ed

fro
m
W
nt
re
ce
pt
or
Fr
izz
led

7
(F
ZD
7)
KO

m
ice
,s
ho
w

th
at
th
e
to
xin

B
is
ta
rg
et
ed

by
FZ
Ds

re
ce
pt
or
s
in
th
e
co
lo
ni
c

ep
ith
eli
um

[9
8]

—
in
fe
cti
on

w
ith

Sa
lm
on
ell
a
en
te
ric
a
se
ro
va
rT
yp
hi
m
ur
iu
m
.M

icr
oin
jec
tio
n
of

S.
Ty
ph
im
ur
iu
m
in
du
ce
d
ch
an
ge
s
in
th
e
hu
m
an

tra
ns
cri
pt
ion
al
pa
tte
rn

an
d
su
sta
in
ed

ba
cte
ria
li
nv
as
ion

[1
00
]

—
stu
dy

of
th
e
lif
e
cy
cle

of
Cr
yp
to
sp
or
idi
um

sp
p.
Or
ga
no
id
s
de
riv
ed

fro
m

hu
m
an

sm
all

in
te
sti
ne

we
re
m
icr
oin
jec
te
d
w
ith

Cr
yp
to
sp
or
idi
um
.T
hi
s

m
od
el
sh
ow
ed

su
bs
ta
nt
ial

ph
ys
iol
og
ica
lr
ele
va
nc
e
by

its
ab
ilit
y
to

co
m
pl
et
e
th
e
co
m
pl
ex
lif
e
cy
cle

of
pa
ra
sit
e
[1
07
,1
08
]

(C
on
tin
ue
d.
)

royalsocietypublishing.org/journal/rsob
Open

Biol.10:200199

10



Ta
bl
e
1.
(C
on
tin
ue
d.
)

m
od
el

co
m
m
en
sa
lb
ac
te
ria

pa
th
og
en
ic
ba
ct
er
ia

pa
ra
sit
e

m
icr
oin
jec
tio
n,
m
ec
ha
ni
ca
ls
he
ar
in
g
an
d
pl
at
in
g,
an
d
by

m
ak
in
g

m
on
ol
ay
er
s

—
ev
alu
at
ion

of
no
n-
pa
th
og
en
ic
str
ain

an
d
pa
th
og
en
ic
str
ain

of
E.
co
li.

M
icr
oin
jec
tio
n
of
co
m
m
en
sa
ls
tra
in
s
an
d
pa
th
og
en
ic
str
ain

O1
57
:H
7
of

E.
co
li
sh
ow
ed

ra
pi
d
gr
ow
th
.T
he

co
m
m
en
sa
ls
tra
in
di
d
no
tc
au
se

da
m
ag
e
su
gg
es
tin
g
th
e
po
sit
ive

ef
fe
ct
of
m
uc
us
pr
od
uc
tio
n.

Co
nv
er
se
ly,

a
lo
ss
of
ac
tin

an
d
ep
ith
eli
al
in
te
gr
ity

wa
s
ob
se
rv
ed

w
ith

O1
57
:H
7
[9
9]

—
in
fe
cti
on

w
ith

He
lic
ob
ac
te
r
py
lor
i.
M
icr
oin
jec
tio
n
of
H.
py
lor
iw

as
us
ed

in

a
m
od
el
to
stu
dy

ba
cte
ria
li
nf
ec
tio
n
[1
02
].
Al
so
,b
ac
te
ria
li
nf
ec
tio
n

re
su
lte
d
in
ra
pi
d
as
so
cia
tio
n
of
Ca
gA

w
ith

th
e
c-
M
et
re
ce
pt
or
an
d
th
e

in
du
cti
on

of
ep
ith
eli
al
pr
ol
ife
rat
ion

[1
01
].
In
fe
cti
on

in
du
ce
s
ep
ith
eli
al

pr
ol
ife
rat
ion

an
d
c-
M
et
ph
os
ph
or
yla
tio
n
[1
03
]

—
in
fe
cti
on

w
ith

Sh
ige
lla

fl
ex
ne
ri.
Hu
m
an

en
te
ro
id
s
we
re
us
ed

to
ge
ne
ra
te

ep
ith
eli
al
lay
er
in
tra
ns
-w
ell

in
se
rts
.T
he
ir
in
fe
cti
on

sh
ow
ed

ba
so
lat
er
al

in
va
sio
n
an
d
di
sru
pt
ion

of
tig
ht
ju
nc
tio
ns
.F
in
all
y,
ba
cte
ria
lr
ep
lic
at
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at
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]
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on

w
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E.
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d
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re
di
sa
gg
re
ga
te
d

an
d
gr
ow
n
on

tra
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at
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th
og
en
ic
E.
co
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[1
06
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aff
ol
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ba
se
d
3D

m
od
els
.M

at
ric
es
m
ad
e
w
ith
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nt
he
tic
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tu
ra
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at
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sit
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ce
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pr
om
ot
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th
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qu
isi
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su
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te
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od
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co
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ce
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d
ba
cte
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pa
ra
sit
e
in
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cip
all
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at
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pa
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og
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va
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ag
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ir
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th
s
ar
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e
pr
es
en
ce
of
3D

str
uc
tu
re
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ce
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po
lar
iza
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n
an
d
pr
es
en
ce
of
se
ve
ra
lc
ell

lin
ea
ge
s
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so
m
e
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od
els
,t
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m
ajo
ra
dv
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ge
s
ar
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th
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.C
om
po
ne
nt
s

ca
n
be

va
rie
d
in
de
pe
nd
en
tly

ac
co
rd
in
g
to
th
e
stu
dy

ob
jec
tiv
es
.T
he
re

is
th
e
po
ss
ib
ilit
y
of
co
m
bi
ni
ng

3D
sc
aff
ol
ds
an
d
ce
lls
de
riv
ed

fro
m

hu
m
an

in
te
sti
na
le
xp
lan
ts
or
or
ga
no
id
s

di
sa
dv
an
ta
ge
s:
th
e
bi
gg
es
td
isa
dv
an
ta
ge

is
th
eir

lac
k
of
ph
ys
ica
lf
or
ce
s

pr
es
en
ts
in
tis
su
es

—
stu
dy

of
La
cto
ba
cil
lu
s
ga
ss
er
ia
nd

E.
co
li
Ni
ss
le
19
17

as
pr
ot
ec
tiv
e

ag
en
ts
of
th
e
in
te
sti
na
lt
rac
t.
Th
e
th
er
ap
eu
tic

po
te
nt
ial

of
L.
ga
ss
er
i

an
d
E.
co
li
Ni
ss
le
19
17

ag
ain
st
Sa
lm
on
ell
a
ty
ph
im
ur
iu
m
an
d

Ps
eu
do
m
on
as
ae
ru
gin
os
a
wa
s
de
m
on
str
at
ed

[1
25
]

—
cu
ltu
re
of
pr
ob
iot
ic,
La
cto
ba
cil
lu
s
rh
am
no
su
s
GG
.D
ev
elo
pm

en
t
of

bi
oe
ng
in
ee
re
d
hu
m
an

in
te
sti
na
lt
iss
ue
s
th
at
m
im
ic
in
viv
o
lu
m
in
al

ox
yg
en

lev
els
.T
hi
s
sy
ste
m
su
pp
or
ts
th
e
gr
ow
th
of
do
m
in
an
t

an
ae
ro
bi
c
pr
ob
iot
ic
ba
cte
ria
,L
ac
to
ba
cil
lu
s
rh
am
no
su
s
GG

[1
28
]

—
stu
dy

of
co
m
m
en
sa
lb
ac
te
ria
ls
tra
in
s.
De
ve
lo
pm

en
t
of
a
sc
aff
ol
d-

ba
se
d
3D

m
od
el
th
at
co
nt
ain
ed

en
te
ro
cy
te
s,
go
bl
et
an
d
im
m
un
e-
lik
e

ce
lls
.T
he

ce
lls
we
re
ex
po
se
d
to
sy
nt
he
tic

co
m
m
en
sa
lm

icr
ob
ial

co
m
m
un
ity

an
d
LP
S
fro
m
E.
co
li
O1
11
:B
4
str
ain
.T
hi
s
in
te
rac
tio
n

pr
om
ot
es
th
e
ad
he
sio
n
of
sp
ec
ifi
c
ba
cte
ria
ls
tra
in
s,
Ve
illo
ne
lla

pa
rv
ul
a,
to
sti
m
ul
at
e
th
e
ep
ith
eli
um

ba
rri
er
fu
nc
tio
n
an
d
in
te
rle
uk
in

pr
od
uc
tio
n
[1
34
]

—
in
fe
cti
on

w
ith

Sa
lm
on
ell
a
ty
ph
im
ur
iu
m
.T
he

hu
m
an

in
te
sti
na
lv
illi

ep
ith
eli
um

wa
s
m
im
ick
ed

in
a
hy
dr
og
el
sc
aff
ol
d.
Us
in
g
th
is
m
od
el
it

wa
s
po
ss
ib
le
to
es
ta
bl
ish

th
e
im
po
rta
nc
e
of
M
UC
17

du
rin
g
ba
cte
ria
l

in
fe
cti
on

[1
26
]

—
in
fe
cti
on

w
ith

Ye
rsi
ni
a
ps
eu
do
tu
be
rcu
los
is.
Th
e
hu
m
an

in
te
sti
na
ll
um

en

wa
s
re
pl
ica
te
d
in
a
3D

po
ro
us
sc
aff
ol
d.
In
to
ev
alu
at
e
th
e
im
po
rta
nc
e
of

m
uc
us
an
d
th
e
es
ta
bl
ish
m
en
t
of
low

ox
yg
en

to
stu
dy

ba
cte
ria
l

in
te
rac
tio
ns
/c
ol
on
iza
tio
n
[1
28
]

—
in
fe
cti
on

w
ith

Ca
m
py
lob
ac
te
r
jej
un
i.
A
de
ce
llu
lar
ize
d
ex
tra
ce
llu
lar

m
at
rix

sc
aff
ol
d
an
d
re
se
ed
ed

w
ith

hu
m
an

Ca
co
-2
ce
lls
wa
s
de
sig
ne
d
to
stu
dy

ho
st–

pa
th
og
en

in
te
rac
tio
ns
.T
he

in
fe
cti
on

w
ith

C.
jej
un
ir
ep
lic
at
ed

so
m
e

pa
th
og
en
ic
pr
oc
es
se
s
pr
ev
iou
sly

ob
se
rv
ed

in
an
im
al
m
od
els

an
d
sh
ow
ed

ne
w
vir
ul
en
tf
ac
to
rs
in
vo
lve
d
[1
32
]

—
in
fec
tio
n
wi
th
Cr
yp
to
sp
or
idi
um

pa
rv
um
.I
tw

as
po
ss
ib
le
to
re
pr
od
uc
e

th
e
m
icr
oe
nv
iro
nm

en
ta
lc
on
di
tio
ns
of
th
e
in
te
sti
na
lt
rac
tt
o
su
pp
or
t

th
e
lif
e
cy
cle

of
C.
pa
rv
um

in
a
bi
oe
ng
in
ee
re
d
3D

hu
m
an

in
te
sti
na
l

tis
su
e
m
od
el.

Th
is
sy
ste
m
ha
s
op
en
ed

th
e
po
ss
ib
ilit
y
to
ev
alu
at
e

ho
st–

pa
ra
sit
e
in
te
rac
tio
ns
an
d
id
en
tif
y
ne
w
dr
ug

ta
rg
et
s
[1
29
,1
30
]

—
stu
dy

of
th
e
ea
rly

ste
ps
of
En
ta
m
oe
ba

hi
sto
lyt
ica

in
fe
cti
on
.T
he

ge
ne
ra
l

as
pe
cts

of
th
e
hu
m
an

co
lo
n
we
re
re
pr
od
uc
ed

in
a
3D

m
od
el,

w
hi
ch

hi
gh
lig
ht
ed

th
e
im
po
rta
nc
e
of
se
ve
ra
lv
iru
len
ce
m
ar
ke
rs
pr
ev
iou
sly

ob
se
rv
ed

an
d
als
o,
de
sc
rib
ed

ne
w
m
ol
ec
ul
es
an
d
re
gu
lat
or
y
fac
to
rs

in
vo
lve
d
in
th
e
am
oe
bi
c
in
va
siv
e
pr
oc
es
s
[1
36
]

(C
on
tin
ue
d.
)
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during the interaction of bacteria or parasites and the human
intestine.
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