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Abstract: In this work, we examine a nonlinear version of the Tavis–Cummings model for two two-
level atoms interacting with a single-mode field within a cavity in the context of power-law potentials.
We consider the effect of the particle position that depends on the velocity and acceleration, and
the coupling parameter is supposed to be time-dependent. We examine the effect of velocity and
acceleration on the dynamical behavior of some quantumness measures, namely as von Neumann
entropy, concurrence and Mandel parameter. We have found that the entanglement of subsystem
states and the photon statistics are largely dependent on the choice of the qubit motion and power-law
exponent. The obtained results present potential applications for quantum information and optics
with optimal conditions.

Keywords: power-law potentials; entanglement; two qubits; statistical properties; concurrence; cat states

PACS: 03.67.-a; 03.65.Yz; 03.65.Ud

1. Introduction

When the Jaynes–Cummings (JC) model was firstly proposed in 1963 [1,2], its practical
significance was not clear, as it prescribes the ideal situation of the resonant interaction of a
two-level atom with an electromagnetic field. A complete solvable quantum model of a
qubit in a single-mode field was studied to examine the classical properties of spontaneous
emission and to detect the presence of Rabi oscillations in the atomic excitation potentials
of fields of sharply defined energy. In the 1980s, due to technical progress, the importance
of this model increased significantly, since many of its predictions were confirmed experi-
mentally [3–5]. It is worth noting that even though the JC model is simple and easy to im-
plement, it still exhibits many physical effects, such as squeezing [6], Rabi oscillations [7,8],
revivals and collapses [9–12], qubit–field entanglement [13,14], antibunching [15,16], and
nonclassical states such as Fock states [17,18] and Schrödinger cat states [19]. The JC model
was originally designed to describe the interaction of a single atom with a single-mode
field, so it can be applied to various physical scenarios such as flux qubits [20], Josephson
junctions [21,22] and Cooper-pair boxes [23]. This model can also be used in solid-state
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systems to characterize the coupling of qubits to resonator modes, considering, super-
conducting circuits [24–29] and quantum dot systems [30,31]. One of the most important
generalizations of the JC model is the interaction of many atoms with the single-mode field
presented by the Tavis–Cummings model, where N identical two-level atoms interacting
with a single-mode of electromagnetic field at resonance has been studied [32]. Another
important implementation of the JC model is the characterization of Rydberg blockaded
atomic ensembles [33]. The detection and measure of nonclassical effects, phenomena that
Maxwell’s equations cannot explain, are the main tasks of experimental and theoretical
quantum optics. Over the last several decades, many of these effects have been intensively
studied, such as entanglement [34], squeezing [35,36] and photon antibunching [37]. How-
ever, there exist other effects outside of this set, such as quantum correlations caused by
the violation of the field intensity inequality [38,39].

Since the work published by Einstein et al. [40], entanglement has been considered one
of the most prominent features of quantum mechanics and has attracted a great amount of
interest. The quantum entanglement can be utilized for more than just testing and detecting
the quantum nonlocality [41]; it also plays an important role in the science of quantum
information, such as quantum cryptography [42], quantum teleportation [43] and quantum
dense coding [44]. In the framework of cavity quantum electrodynamics QED, several
schemes [45–48] have been proposed to generate entanglement via interaction among
atoms and fields. Recently, much attention has been paid to the properties of entanglement
for the models of light–matter interaction via models whose principal quantum system
is composed of more than one two-level atom coupled with a single-mode field and
also with each other via the dipole–dipole and Ising-like interaction [49,50], including
spin–spin interaction, trapped ions [51] microcavities [52] and dipolarly coupled two
molecules [53,54]. In addition, in this direction, based on the resonant two-atom JC model,
an interesting application is proposed to realize a new protocol to uniquely distinguish the
Bell state of two qubits [55].

However, neglecting the influence of time dependence in any quantum system cannot
give a complete description of the phenomena related to that system. Then, it is more
appropriate to assume the influence of time dependence when examining physical models
than to consider conservative systems without time dependence [56].

In the past few years, coherent states (CSs) of harmonic oscillators and other systems have
attracted widespread interest [57–59] and have played a vital role in various fields of quantum
physics. It is known that the CSs were known as the eigenstate of the annihilation operator.
Moreover, the CSs have been described as a linear combination between the Fock states [60,61].
The power-law potentials (PLPs) state depends on the eigenvalues of a Hamiltonian having a
one-dimensional power-law potential [62]. More recently, the power-law potentials (PLPs)
have provided many promising applications in theoretical and experimental physics, and
provided the possibility to describe a large class of quantum systems [63,64]. The CSs for this
kind of potentials are helpful and provide more insights in various topics [65–67]. Based on the
above considerations, this study is devoted to explore the role of PLPs on the control of some
important quantumness measures, such as von Neumann entropy, concurrence and Mandel
parameter, considering the Tavis–Cummings model that describes qubits–field interaction
under the effect of velocity and acceleration. The obtained results provide many different
interesting phenomena that are rather significant in different tasks of quantum information
and optics with optimal conditions.

The paper is organized as follows. In Section 2, we introduce the CSs of PLPs and
the physical model. In Section 3, we describe the quantumness measures and explain the
obtained results. A brief conclusion is given in Section 4.

2. Physical Model and System Dynamics

The general expression of a one-dimensional PLP is introduced as [68]

V(x, k) = Vo

∣∣∣ x
a

∣∣∣k, (1)
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where Vo and a describe the dimensions of energy and length, respectively. k is a positive
real number known as the power-law exponent. These PLPs can be utilized to introduce a
large class of quantum systems by a proper choice of the exponent k.

The Hamiltonian associated to PLPs has the following expression

Ĥ =
p̂2

2m
+ V̂(x, k), (2)

the corresponding eigenvalue equations are given by

Ĥ(k)|n〉 = En,k|n〉, n ≥ 0. (3)

The Fock states |n〉 are the eigenstates and En,k are the corresponding eigenenergies.
Substituting Equation (2) into Equation (3), we obtain

p̂2|n〉 =
[
2m(En,k − V̂)

]
|n〉, (4)

where
p(x) =

√
2m(En −V). (5)

The eigenenergy spectrum En,k can be obtained within the Wentzel–Kramers–Brillouin
(WKB) approximation, such that∫ +xo

−xo
p(x)dx =

(
n +

g
4

)
πh̄, (6)

where ±xo are the classical turning points. Here, g is the Maslov index, which accounts for
the boundary effects at the classical turning points, E = V(x); we then have

± xo = ±a
(

E
Vo

) 1
k
. (7)

Using Equation (1) and Equation (5), Equation (6) can be written as

2
∫ xo

0

√
2m
(

En −Vo

( x
a

)k
)

dx =
(

n +
g
4

)
πh̄. (8)

This integral can be solved using the substitution, u = ( x
a )

k with dx = a
k u

1
k−1du, and

we have
2a
√

2m
k

∫ E
Vo

0

√
(En −Vou)u

1
k−1du =

(
n +

g
4

)
πh̄, (9)

where ∫ E
Vo

0

√
(En −Vou)u

1
k−1du =

1

V
1
k

o

Γ( 1
k )Γ(

2
3 )

Γ( 1
k +

2
3 )

E
1
k +

1
2

n . (10)

Therefore, the eigenenergy spectrum is given by

En,k =

(n +
g
4

)
πh̄

kV
1
k

o

2a
√

2m

Γ( 1
k +

2
3 )

Γ( 1
k )Γ(

2
3 )

 2k
k+2

,

= ω(k)
(

n +
g
4

) 2k
k+2 , (11)

where ω(k) =
[

πh̄
2a
√

2m
V

1
k

o
Γ( 1

k +
2
3 )

Γ( 1
k +1)Γ( 2

3 )

] 2k
k+2

is the effective frequency.
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The parameter k determines the type of potential. To gain insight into the structure of
the energy spectrum given by Equation (11), we take into account the energy difference
between levels

4E(k)
n = E(k)

n − E(k)
n−1

∝
(

n +
g
4

) k−2
k+2 . (12)

Equation (12) shows that for k = 2, 4E(k)
n is independent on n, so the energy spectrum

is equally spaced. For the exponent k 6= 2, the level spacing varies with n. For k > 2,
the energy difference increases with n (tightly binding potentials), whereas for k < 2, the
energy between adjacent levels decreases with n (loosely binding potentials).

The CSs associated to PLPs are defined by [65,66]

|ξ, k〉 =
[

∞

∑
n=0

|ξ|2n

Ω(n, k)

]− 1
2 ∞

∑
n=0

ξn√
Ω(n, k)

|n〉 (13)

where

Ω(n, k) =
n

∏
i=1

[(
i +

g
4

) 2k
k+2 −

( g
4

) 2k
k+2

]
, Ω(0, k) = 1, (14)

Annihilation and creation operators, A and A†, associated to PLPs act on the Fock state |n〉
as Â|n〉 = Nn−1|n− 1〉, Â†|n〉 = Nn|n + 1〉 with Nn =

√
En+1 − E0.

Now, we investigate the time dependence of the two qubits that are coupled with a
single-mode cavity field. Hence, the system Hamiltonian can be written as follows:

Ĥ
} = ω â† â +

2

∑
j=1

Ωj

2
(|ej〉〈ej| − |gj〉〈gj|) +

2

∑
j=1

ζ j(T)
(

â|ej〉〈gj|+ â†|gj〉〈ej|
)

, (15)

The operators |ej〉(|gj〉) (j = 1, 2) represents the excited (ground) state for the qubit.
While â† and â denote the creation and annihilation operators, ω and Ωj, j = 1, 2 denote
the frequencies of the cavity mode and the qubits, respectively, while ζ j(T) is the time-
dependent coupling between the field and the qubits. Some previous studies confirmed
that the coupling parameter between the field and the qubits depends on the function of
the wave number and the direction of the propagation (cos λp or sin λp), where λ denotes
the wave number and p denotes the direction of propagator [69]. For a moving qubit,
the direction of the propagation depends on the velocity and acceleration of the qubits as
p = ϑT2 + ϕT + c, where ϑ, ϕ and c are the acceleration, the velocity and phase coefficients,
respectively [70].

Suppose that the coupling function takes the follows form,

ζ j(T) = ε`(T)(e(i(χ(T)−ηj(T))) + e(−i(χ(T)−ηj(T)))), j = 1, 2 (16)

where ε`(T), χ(T) and ηj(T) are arbitrary functions that we will define later [71]. Suppose
we introduce the scaled time operators,

Â = â exp(iχ(T)),

|0j〉〈1j| = |ej〉〈gj| exp
(
∓iηj(T)

)
, j = 1, 2 (17)
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After we apply the scaled time, the above Hamiltonian (15) becomes,

Ĥ
} = ω(T)Â† Â +

2

∑
j=1

Ωj(T)
2

(|0j〉〈0j| − |1j〉〈1j|)

+ε`(T)
2

∑
j=1

(e(i(χ(T)−ηj(T))) + e(−i(χ(T)−ηj(T))))

×
(

Â e(−i(χ(T)−ηj(T)))|0j〉〈1j|+ Â†e(i(χ(T)−ηj(T)))|1j〉〈0j|
)

(18)

where ω(T) = ω + ∂χ
∂T and Ωj(T) = Ωj +

∂ηj
∂T .

The interaction terms in (18) are separated into four quantities; the first two terms

are |0j〉〈1j| e(2i(χ(T)−ηj(T))) and |1j〉〈0j| e(−2i(χ(T)−ηj(T))), while the last two terms are
the fast-varying terms, so it can be neglected without loss of generality. When we take
χ(T) = η1(T) = η2(T) the Hamiltonian (18) becomes as follows

Ĥ
} = ω(T)Â†Â+

2

∑
j=1

Ωj(T)σ̂
(j)
z

2
+ ε`(T)

2

∑
j=1

(
Â |0j〉〈1j|+ Â†|1j〉〈0j|

)
(19)

In the exact resonance case, the above Hamiltonian can be rewritten as,

ĤIN = ε`(T)
2

∑
j=1

(Â|0j〉〈1j|+ Â+|1j〉〈0j|), (20)

where `(t) = sin(ϑT2 + ϕT + c) is the function that describes the time-dependent interaction.
We consider that the two qubits to be initially in the Bell state

|vAB(0)〉 =
1√
2
(|01, 02〉+ |11, 12〉) (21)

and the field takes associated with the state

|vF(0)〉 = Nξ,k[|ξ, k〉+ r| − ξ, k〉], Nξ,k =
1√

1 + r2 + 2r〈ξ, k| − ξ, k〉
, with r = 0, 1. (22)

The value r = 0 corresponds to the case of CSs for PLPs and r = 1 to for even cat states.
The wave function of the proposed system at T = εt > 0 can be formulated as

|v(T)〉 =
∞

∑
m=0

Θ1(m, T)|01, 02, m〉+ Θ4(m, T)|11, 12, m + 2〉

+{Θ2(m, T)|01, 12〉+ Θ3(m, T)|11, 02〉}|m + 1〉, (23)

with the initial condition |v(0)〉 = |vF(0)〉 ⊗ |vAB(0)〉. The coefficients Θj(m, T) can be
obtained by solving

i
dΘ(m, T)

dT
= R(T)Θ(m, T),

Θ(m, T) = Θ(m, 0) exp−i
∫ T

0
R(t)dt (24)

where

Θ =


Θ1

Θ2

Θ3

Θ4

 and R(t) =


0 ε`(T)

√
n + 1 ε`(T)

√
n + 1 0

ε`(T)
√

n + 1 0 0 ε`(T)
√

n + 2
ε`(T)

√
n + 1 0 0 ε`(T)

√
n + 2

0 ε`(T)
√

n + 2 ε`(T)
√

n + 2 0

. (25)
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The two qubits density matrix can be determined by calculating the trace over the
field basis as

ρ̂AB(T) = TrField{|v(T)〉〈v(T)|}, (26)

where the diagonal elements of the two atoms density matrix are given by

ρll =
∞

∑
m=0
|Θl(m, T)|2, l = 1, 2, 3, 4, (27)

while the off-diagonal elements satisfy ρij = ρ∗ji and have the form

ρ12
ρ13
ρ14
ρ23
ρ24
ρ34

 =


∑∞

m=1 Θ1(m, T)Θ∗2(m− 1, T)
∑∞

m=1 Θ1(m, t)Θ∗3(m− 1, T)
∑∞

m=1 Θ1(m + 1, T)Θ∗4(m− 1, T)
∑∞

m=0 Θ2(m, t)Θ∗3(m, T)
∑∞

m=1 Θ2(m, t)Θ∗4(m− 1, T)
∑∞

m=1 Θ3(m, t)Θ∗4(m− 1, T)

. (28)

According to Equation (26), we are able to study the time evolution of the qubits–field
entanglement and qubit–qubit entanglement. Moreover, we use the Mandel’s parameter to
discuss the quantum statistics of the field.

3. Quantum Quantifiers and Main Results
3.1. Qubits–Field Entanglement and Qubit–Qubit Entanglement

To quantify the entanglement between two qubits with the field, we use the von
Neumann entropy, which is given by:

SN(T) = −Tr[ρ̂AB(T) ln ρ̂AB(T)]. (29)

This quantity can be evaluated through the eigenvalues of the density operator ρ̂AB.
To evaluate the amount of the qubit–qubit entanglement, we use the concurrence

defined as
CAB = max{0, Υ1 − Υ2 − Υ3 − Υ4}, (30)

in which Υj are the eigenvalues given in decreasing order of R = ρAB(σy⊗ σy)ρ∗AB(σy⊗ σy),
where ρ∗AB denotes the conjugate of ρAB and σy is the Pauli operator. When the two qubits
are in separable state then CAB = 0. While CAB = 1 indicates that two-qubit is in a
maximally entangled state.

In Figure 1, we display and analyze the entanglement between the two qubits and the
field through the Equation (26), by setting the parameter ξ =

√
5 (see references [72,73]),

and the other parameters (ϑ, ϕ, c) = (0, 0, π/2). For first case, the harmonic well potential
(k = 2, g = 2) and a coherent state (r = 0), the entanglement function SN(T) grows
gradually and reaches its peak on the revival periods, while the SN(T) achieves its lowest
value on the collapse periods [74,75]. When setting the field in the even coherent state
(r = 1), the entanglement increases from the start of the interaction and the intensity of
the oscillations increases. Therefore, a strong entanglement arises between the field and
the two qubits, and the function does not approach the minimum value (zero) during the
interaction period. For the triangular well (k = 1, g = 3) and a coherent state (r = 0), the
intensity of the oscillations decreases and the entanglement decreases slightly compared
to the previous case. When the field is placed in the even coherent state (r = 1), clear
fluctuations are generated between the maximum and minimum values with an increase in
the amplitude of the oscillations. For the infinite barrier (k→ ∞, g = 4) and a coherent state
(r = 0), strong entanglement appears immediately after the beginning of the interaction
with random oscillations. Moreover, the amplitude of the oscillations decreases and the
SN(T) function does not approach minimum value (zero) during the interaction. When the
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even coherent state (r = 1) is considered, the entanglement is weakened slightly and the
SN(T) function regularly reaches its minimal values.
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T 

Figure 1. Time evolution of the von Neumann entropy SN(T) for ξ =
√

5, with the case of constant
two qubits–field coupling (ϑ = ϕ = 0 and c = π/2). Figs. (a,c,e) are plotted for the field initially
in the coherent states (CSs) for power-law potentials (PLPs) (r = 0) and Figs. (b,d,f) for the field
initially in the SCSs for PLPs (r = 1). Figs. (a,b) for harmonic well potential (k = 2), Figs. (c,d) for the
triangular well (k = 1), and Figs. (e,f) for infinite barrier (k→ ∞).

In Figure 2, we study the effect of time dependence on the entanglement between the
cavity field and the qubits with the same conditions mentioned in the first Figure. In general,
when taking the velosity and the acceleration into account (ϑ = ϕ = 1, c = 0), a strong
entanglement arises and the SN(T) function never reaches a minimum value (zero) during
the interaction period. When there is only an effect of the atomic speed (ϑ = c = 0, ϕ = 1),
the behavior of the SN(T) is completely affected. For the first case, harmonic well potential
(k = 2) and coherent state (r = 0), strong entanglement is generated at regular intervals
during the interaction time and the SN(T) function reaching minimum values every π.
When the SCSs for PLPs (r = 1) are considered, the entanglement is significantly enhanced.
For the triangular well (k = 1) with the field state in a coherent state (r = 0), more
entanglement increases periodically and the SN(T) function does not reach a minimum
value (zero). For the field in SCSs for PLPs (r = 1), SN(T) function tends to attain zero
value. For the infinite barrier (k→ ∞) and the field state with r = 0, the amplitude of the
oscillations of SN(T) decreases and the entanglement between the field and the two qubits
increases. In the case of the field state with r = 1, the entanglement decreases slightly with
increase in the amplitude of the oscillations at the smallest values of the function SN(T).



Entropy 2021, 23, 452 8 of 15

0 10 20 30 40 50
0

0.5

1

0 10 20 30 40 50
0

0.5

1

0 10 20 30 40 50
0

0.5

1

0 10 20 30 40 50
0

0.5

1

0 10 20 30 40 50
0

0.5

1

0 10 20 30 40 50
0

0.5

1

a) b) 

c) d) 

e) f) 

S
N

T T 

T T 

time time 

S
N

S
N

S
N

S
N

S
N

Figure 2. Effect of time-dependent coupling, `(t), on the evolution of the atomic entropy SN(T)
where the solid curve is for ϕ = 1 and ϑ = c = 0 (atomic speed effect) and the dotted red curve is
for the acceleration effect (ϑ = ϕ = 1 and c = 0). Figs. (a,c,e) are plotted for the field initially in the
coherent states (CSs) for power-law potentials (PLPs) (r = 0) and Figs. (b,d,f) for the field initially in
the SCSs for PLPs (r = 1). Figs. (a,b) for harmonic well potential (k = 2), Figs. (c,d) for the triangular
well (k = 1), and Figs. (e,f) for infinite barrier (k→ ∞).

In Figure 3, we display the plots the concurrence with the same previous conditions as
in Figure 1, the concurrence is considered to study the entanglement between the two qubits.
For the first case, the harmonic well potential (k = 2) with a coherent state (r = 0), the
entanglement starts from the maximaly entangled Bell state, followed by partial entanglement
until the function CAB(T) reaches the minimum values. The phenomena of sudden death and
sudden birth are achieved in multiple inverals during the interaction time. The entanglement
can be enhanced after preparing the field in the even coherent state (r = 1) and the periods
of sudden death and sudden birth decrease. For the triangular well (k = 1) with a coherent
state (r = 0), the intensity of the oscillations decreases and the entanglement between the
qubits decreases slightly compared to the previous case. For the infinite barrier (k→ ∞) with
a coherent state r = 0, the entanglements are more powerful than the previous two cases,
while the periods of sudden death and sudden birth are reduced. Moreover, the amount of
entanglement between the two qubits increases and the intensity of oscillations decreases
after setting the field in the even coherent state (r = 1).

In Figure 4, we study the effect of time dependence on the entanglement the qubits
with the same conditions mentioned in the first figure. For the first case, k = 2 with r = 0
and ϑ = c = 0, ϕ = 1, the concurrence function CAB(T) fluctuates smoothly between the
maximum and minimum values. Therefore, periods of sudden death and sudden birth
are realized regularly. Note that the periods of sudden death and sudden birth increase
after the inclusion of the even coherent state (r = 1). In the second case (the triangular
well), the entanglement function behavior the saming as the first case (the harmonic well
potential), with an increase in the intensity of fluctuations. For the infinite barrier, the
entanglement increases significantly to the point where the phenomenon of sudden death
and sudden birth disappear. Moreover, the entanglement function reaches maximum
values for every time interval 2π. The phenomena of sudden death and sudden birth
returns after preparing the field in the even coherent state (r = 1). For the second case of
time dependence (ϑ = ϕ = 1 and c = 0), the entanglement can be enhanced for the fields
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with r = 0, especially in the harmonic well potential case. The entanglement decreases
when preparing the field in the even coherent state (r = 1).
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Figure 3. Time evolution of the the concurrence CAB(T) for ξ =
√

5, with the case of constant two
qubits–field coupling (ϑ = ϕ = 0 and c = π/2). Figs. (a,c,e) are plotted for the field initially in the CSs for
PLPs (r = 0) and Figs. (b,d,f) for the field initially in the SCSs for PLPs (r = 1) Figs. (a,b) for harmonic
well potential (k = 2), Figs. (c,d) for triangular well (k = 1) and Figs. (e,f) for infinite well (k→ ∞).
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Figure 4. Effect of time-dependent coupling or qubit motion, `(t), on the evolution of the concurrence
CAB(T) where the solid curve is for ϕ = 1 and ϑ = c = 0 (atomic speed effect) and the dotted red
curve is for the acceleration effect as (ϑ = ϕ = 1 and c = 0). Figs. (a,c,e) are plotted for the field
initially in the coherent states (CSs) for power-law potentials (PLPs) (r = 0) and Figs. (b,d,f) for the
field initially in the SCSs for PLPs (r = 1). Figs. (a,b) for harmonic well potential (k = 2), Figs. (c,d)
for the triangular well (k = 1), and Figs. (e,f) for infinite barrier (k→ ∞).
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3.2. Photon Statistics

In order to deeper our understanding on the underlying physics of this system, we
analyze the nonclassicality of the field through studying the Poissonian distribution of the
photons. These properties are identified by the Mandel’s parameter [76]

PM =

〈
N̂2〉〈
N̂
〉 −〈N̂

〉
− 1. (31)

The field photon statistics is classified according to the value of the parameter PM as PM > 0
and PM < 0 for the case of super-Poissonian and sub-Poissonian distribution, respectively.
The Poissonian distribution is obtained in the case PM has zero value.

In Figure 5, we study the Mandel parameter to define regions of the nonclassical
distribution of photons. For the first case, (k = 2 with r = 0), the Mandel parameter
PM indicates a super-Poissonian distribution. The Mandel parameter gradually increases
with increasing time, whether the field is set in the coherent or even coherent states.
The nonclassical distribution appears in the second case, k = 1, with r = 0, it is more
pronounced when setting the field in the even coherent state (r = 1). In the third case,
k → ∞ with r = 0, the nonclassical distribution completely disappears and the super-
Poisson distribution appears again.
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Figure 5. Time evolution of the Mandel parameter PM for ξ =
√

5 with the case of constant qubits–
field coupling (ϑ = ϕ = 0 and c = π/2). Figs. (a,c,e) are plotted for the field initially in the CSs
for PLPs (r = 0) and Figs. (b,d,f) for the field initially in the SCSs for PLPs (r = 1). Figs. (a,b) for
harmonic well potential (k = 2), Figs. (c,d) for triangular well (k = 1) and Figs. (e,f) for infinite well
(k→ ∞).

In Figure 6, we examine the influence of the time dependence on the Mandel param-
eter. The time dependence strongly affects the Mandel parameter. In the case of time
dependence (ϑ = c = 0, ϕ = 1), we consider the first case (k = 2, r = 0). The Mendel
parameter oscillates in the positive parts (super-Poisson distribution) and the distribution
never reaches the negative regions (sub-Poisson distribution). In the second case (k = 1,
r = 0) the nonclassical distribution (sub-Poisson distribution) appears uniformly during
the interaction period. Moreover, the nonclassical distribution decreases after the inclusion
of the even coherent sate of the interaction cavity. While the distribution super-Poisson
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appears again in the third case (k→ ∞, r = 0), and the sub-Poisson distribution completely
disappears, whether the field is set in the coherent or even coherent states. When consid-
ering the coupling dependence on time (ϑ = ϕ = 1, c = 0), we note that the nonclassical
distribution appears in the first (k = 2) and second (k = 1) cases, while disappears in the
last case (k→ ∞).
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Figure 6. Effect of time-dependent coupling, `(t) on the evolution of the Mandel parameter PM

where the solid curve is for ϕ = 1 and ϑ = c = 0 (atomic speed effect) and the dotted red curve is for
the acceleration effect as (ϑ = ϕ = 1 and c = 0). Figs. (a,c,e) are plotted for the field initially in the
coherent states (CSs) for power-law potentials (PLPs) (r = 0) and Figs. (b,d,f) for the field initially in
the SCSs for PLPs (r = 1). Figs. (a,b) for harmonic well potential (k = 2), Figs. (c,d) for the triangular
well (k = 1), and Figs. (e,f) for infinite barrier (k→ ∞).

3.3. Effect of Qubit–Qubit Interaction

In this section, we examine the effect of qubit–qubit interaction parameter D within
the interaction Hamiltonian

ĤIN = ε`(t)
2

∑
j=1

(Â|0j〉〈1j|+ Â+|1j〉〈0j|) + D(|0112〉〈1102|+ |1102〉〈0112|). (32)

The solution of the above Hamiltonian (32) is calculated numerically. In Figure 7, we
show the effect of the qubit–qubit interaction term on the entanglement and the Mandel
parameter. We Note that the von Neumann entropy does not affected by adding the qubit–
qubit interaction to the interaction cavity. Therefore, consider the concurrence to test the
effect of the qubit–qubit interaction on the entanglement. In the first case (k = 2, r = 0), the
amount of the entanglement between the two qubits gradually reduced with increasing
time. The phenomena of sudden death and sudden birth increase. The Mandel parameter is
not affected by the inclusion of the two qubits interacting together, so the Mandel parameter
PM indicates that the super-Poisson distribution and the function PM does not reach the
nonclassical distribution. In the second case (k = 1, r = 0), the entanglement CAB(T)
decreases with increasing interaction time. Whereas in the third case (k→ ∞, r = 0), the
improvement in entanglement is more pronounced. In general, the Mandel parameter states
that the distribution of photons is classical for all parameters values and the nonclassical
distribution appears in short intervals for the second case (k = 1, r = 0).
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Figure 7. Effect of qubit–qubit interaction (D = 1) in the absence of time-dependent coupling or
qubit motion (sin(ϑT2 + ϕT + c) for ϑ = ϕ = 0 and c = π/2) for the three CSs for PLPs studied:
Figs. (a,b) for harmonic well potential (k = 2), Figs. (c,d) for triangular well (k = 1) and Figs. (e,f) for
infinite well (k→ ∞).

4. Conclusions

In this work, we have introduced a nonlinear version of the Tavis–Cummings model
for two two-level atoms interacting with a single-mode field within a cavity in the context
of power-law potentials. We have considered the effect of the particle position inside the
cavity field that depends on the velocity and acceleration, and the coupling parameter is
supposed to be time-dependent. We have examined the effect of velocity and acceleration
on the dynamical behavior of some quantumness and nonlocality measures namely; von
Neumann entropy, concurrence and Mandel parameter. We have considered that the two
qubits are initially prepared in the Bell states and the field from the generalized coherent
states for power-law potentials state. We have examined the time evolution of entanglement
of the cavity field and the two qubits through the von Neumann entropy, the entanglement
between two the qubits together through the concurrence as well as the distribution of the
photons through the Mandel parameter, for different potentials. We have shown in detail
the dynamical behavior of the different measures for the cases of harmonic, triangular
and infinite barrier potentials with respect to the main physical parameters in the absence
and presence of the qubit motion. The obtained results present potential applications for
quantum information and optics with optimal conditions.
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