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Correlating gut microbial 
membership to brown bear health 
metrics
Sarah M. Trujillo1*, Erin A. McKenney2, Grant V. Hilderbrand3, Lindsey S. Mangipane4, 
Matthew C. Rogers5, Kyle Joly6, David D. Gustine4, Joy A. Erlenbach7, Buck A. Mangipane8 & 
Diana J. R. Lafferty1

The internal mechanisms responsible for modulating physiological condition, particularly those 
performed by the gut microbiome (GMB), remain under-explored in wildlife. However, as latitudinal 
and seasonal shifts in resource availability occur, the myriad micro-ecosystem services facilitated 
by the GMB may be especially important to wildlife health and resilience. Here, we use brown bears 
(Ursus arctos) as an ecological model to quantify the relationship between wildlife body condition 
metrics that are commonly used to assess individual and population-level health and GMB community 
composition and structure. To achieve these aims, we subsampled brown bear fecal samples collected 
during United States National Park Service research activities at three National Parks and Preserves 
(Katmai, Lake Clark, and Gates of the Arctic) and extracted microbial DNA for 16S rRNA amplicon 
sequencing and microbial taxonomic classification. We analyzed GMB communities using alpha 
diversity indices, subsequently using Spearman’s correlation analysis to examine relationships 
between alpha diversity and brown bear health metrics. We found no differences in GMB composition 
among bears with differing body conditions, nor any correlations between alpha diversity and body 
condition. Our results indicate that GMB composition reflects diverse foraging strategies while 
allowing brown bears to achieve similar body condition outcomes.

The niche variation hypothesis (NVH1) predicts that species with broader niches will exhibit greater among-
individual diet variation or individual specialization and that individual variation in dietary niche should confer 
an adaptive advantage. Researchers have used a range of methods to test the NVH, from evaluating diet varia-
tion to measuring physiological conditions related to fitness. For example, Bolnick et al.2 found that generalist 
species (e.g., three-spine stickleback [Gasterosteus aculeatus], Eurasian perch [Perca fluviatilis], Anolis lizards, 
intertidal gastropods, and neotropical frogs) do in fact display greater among-individual dietary niche variation 
compared to species with more specialized feeding strategies. While many generalist consumers exhibit dietary 
plasticity and variation3, it is unclear if these adaptations increase species resiliency when shifts in resource 
availability occur. However, at the ecosystem-level, when the range of natural variation (i.e., biodiversity)4 is 
reduced, so is resilience in ecosystem functionality5. Furthermore, in many systems, biodiversity is driven in 
part by multitrophic interactions dependent on the width of generalist consumers’ dietary niches6. As such, the 
successful management of ecosystems may depend on effectively protecting the resources that represent the full 
range of dietary niches represented within a population of generalist consumers. In addition, Lafferty et al.7 and 
Mangipane et al.8,9 found that individual brown bears (Urus arctos) achieve similar body condition independent 
of individual variation in dietary niches, suggesting that the diets consumed by different individuals can confer 
similar physiological benefits. However, the internal mechanisms responsible for modulating physiological con-
dition, particularly those performed by the gut microbiome (GMB), remain under-explored in wildlife despite 
evidence that the GMB plays an important role in host resiliency to global environmental change10. The myriad 
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micro-ecosystem services facilitated by the GMB11 may be especially important as generalist consumers respond 
to changes in resource availability.

GMBs co-evolved to complement host physiology and metabolism12,13; and the GMB’s collective genetic 
breadth and capacity for faster evolution further augments the host’s dietary plasticity. As such, the GMB can 
serve the host as a buffer against environmental perturbations and shifts in resource availability by promoting 
nutritional efficiency14 and adjusting fat storage13. While the GMB is an integral link between host diet and 
body condition, much of our knowledge regarding patterns of GMB community membership and host physi-
ological condition comes from studies in humans and model organisms. For example, studies in obese humans 
(Homo sapiens) and mice (Peromyscus spp.) reveal patterns in the relative abundance of bacteria phyla such as 
Bacteroidetes and Firmicutes that are associated with an increased capacity to harvest energy from the diet15. 
Obesity in humans is also correlated to GMB dysbiosis (i.e., imbalance or breakdown of community structure) 
that can lead to an array of diseases detrimental to host health16. Yet, in wildlife species, particularly species that 
hibernate or go into torpor, fat accumulation is critical to survival and is not associated with negative health 
effects. In fact, in contrast to humans, brown bears remain metabolically healthy during hyperphagia (i.e., rapid 
weight gain)17; when bears consume ~ 20,000 cal a day18. Given that GMB communities are shaped in part by host 
phylogeny19 and diet20, it is important to investigate species-specific patterns in GMB community composition 
to better understand how the GMB correlates to body condition.

Brown bears are generalist consumers that forage across trophic levels based on food availability, nutritional 
needs, and competition, and thus drive widespread ecosystem effects21–23. As such brown bears provide an eco-
logically relevant model for quantifying the relationship between wildlife body condition metrics that are com-
monly used to assess individual and population-level health and GMB community composition and structure. 
Here, we aimed to (1) characterize brown bear GMB community composition associated with body condition 
as measured by percent body fat, lean mass, fat mass, and net mass, (2) examine differences between the relative 
abundance of specific GMB bacterial taxa, alpha diversity among bears with differing body conditions, and beta 
diversity, and (3) assess correlations between specific GMB bacterial phyla, genera, and alpha diversity among 
bears with differing body conditions. We hypothesized that brown bears with different body conditions would 
harbor unique GMB communities. Specifically, we predicted that differences in phylum and genus-level bacterial 
relative abundances and GMB diversity indices would exist between bears with above median and below median 
body condition. We further hypothesized that body condition would correlate to GMB diversity because more 
diverse microbial communities can facilitate greater nutrient absorption and energy storage24 while phyla and 
genera relative abundance would correlate to body condition. To test these hypotheses, we measured percent 
body fat, net mass, lean body mass, and fat mass, and used 16S rRNA amplicon sequencing to characterize GMB 
communities from three populations of brown bears across Alaska.

Results
Community composition.  We identified seven major bacterial phyla (relative abundance ≥ 1%) among 
brown bears sampled across body metric categories, with five phyla shared among all groups (Actinobacteria, 
Bacteroidetes, Epsilonbacteraeota, Firmicutes, Proteobacteria). Firmicutes and Proteobacteria were the domi-
nant bacterial phyla in brown bear GMB communities, with the relative abundance of Firmicutes at 49.46% 
(± 32.44 SD) and the relative abundance of Proteobacteria at 31.18% (± 27.20 SD; Supplement, Table S1). Teneri-
cutes were detected in most brown bear body condition groups, excluding above median net mass and above 
median fat mass. Fusobacteria were only detected in abundances > 1% in brown bears with above median lean 
mass (Fig. 1; Supplement, Figs. S1–S4).

We identified 14 major bacterial genera (relative abundance ≥ 1%) and 4 additional major taxa not identified 
to the genus level across percent body fat median-split categories (i.e., below median, median, and above median) 
(Supplement, Fig. S5). Each body fat category was associated with 8 major bacterial taxa. Escherichia-Shigella 
dominated the GMBs of bears with below median percent body fat. Bacteroides and Paenalcaligenes were unique 
to bears with below median percent body fat. Actinobacillus were only identified in bears with median percent 
body fat, while minor taxa (relative abundance < 1%) comprised 19% of the total GMB. Pseudomonas were unique 
to bears with above median percent body fat, while Streptococcus dominated those samples.

Across net body mass median-split categories, we identified 15 major genera and 4 additional major taxa 
not identified to the genus level (Supplement, Fig. S6). Seven major taxa were shared across all net body mass 
categories. Bears with below median net body mass had one unique genus (Paenalcaligenes) and were dominated 
by Escherichia-Shigella. Actinobacillus, Cellulosilyticum, Edwardsiella, and Terrisporobacter were all unique to 
bears with median net body mass. Median net body mass GMBs were dominated by minor taxa. Pseudomonas 
were only identified in bears with above median net body masses. The GMBs of bears with above median net 
body mass were dominated by taxon only identified to the order Lactobacillales.

We identified 15 major genera and 4 major taxa unidentified at the genus level within the lean mass categories 
(Supplement, Fig. S7). Like bears with below net body mass, bears with below median lean mass had one unique 
genus (Paenalcaligenes) and were dominated by Escherichia-Shigella. The GMBs of bears with median lean mass 
were dominated by minor taxa and had one unique genus (Edwardsiella). Actinobacillus and Cellulosilyticum 
were only identified in bears with above median lean mass. The GMBs of bears with above median net body 
mass were dominated by Escherichia-Shigella.

We identified 17 major genera (relative abundance ≥ 1%) and 5 major taxa unidentified at the genus level 
among fat mass categories (Supplement, Fig. S8). Ureaplasma were only detected in bears with below median fat 
mass measurements. GMBs within the below median fat mass category were dominated by Escherichia-Shigella. 
Actinobacillus, Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, Bibersteinia, Cellulosilyticum, Lactobacil-
lus, Mycoplasma, and Ursidibacter were all unique to bears with median fat mass. The GMBs of bears with median 
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fat mass were dominated by minor taxa. The GMBs of bears with above median fat mass were dominated by a 
taxa only identified to the order Lactobacillales and had 1 unique genus (Pseudomonas).

We detected Ursidibacter arcticus in 8 bears across all parks with relative abundance within individuals rang-
ing from 0.02 to 15.73%.

GMB differences among body conditions.  The average relative abundance of Actinobacteria was high-
est in bears with below median percent body fat (3.1% ± 5.8 SD), below median net mass (3.0% ± 5.9 SD), below 
median lean mass (3.7% ± 6.4 SD), and median fat mass (2.7% ± 3.7 SD; Supplement, Table S2). Actinobacteria 
were not detected at ≥ 1% in bears with above median fat mass. Bacteroidetes were most abundant in bears with 
below median percent body fat (2.3% ± 5.5 SD), below median net mass (2.5% ± 5.8 SD), median lean mass 
(2.6% ± 6.7 SD), and median fat mass (3.2% ± 4.9 SD; Supplement, Table S2). Bacteroidetes were not present 
at ≥ 1% in bears with above median fat mass. Epsilonbacteraeota were highest in the GMBs of bears with median 
percent body fat (9.1% 18.8 SD), below median net mass (9.3% ± 15.4 SD), above median lean mass (15.4% ± 27.1 
SD), and below median fat mass (9.5% ± 17.4 SD; Supplement, Table S2). The average relative abundance of Fir-
micutes in GMBs was highest in bears with above median body fat (54.7% ± 22.3 SD), above median net mass 
(72.1% ± 26.2 SD), median lean mass (54.8% ± 27.4 SD), and above median fat mass (66.2% ± 21.2 SD; Supple-
ment, Table S2). The average relative abundance of Proteobacteria was highest in the GMBs of bears with median 
percent body fat (35.0% ± 28.8 SD), median net mass (35.6% ± 28.4 SD), below median lean mass (38.8% ± 29.0 
SD), and median fat mass (35.2% ± 27.5 SD; Supplement, Table S2). Tenericutes average relative abundance was 
highest in bears with above median percent body fat (9.4% ± 22.9 SD), below median net mass (4.7% ± 12.1 
SD), above median lean mass (5.9% ± 9.4 SD), and median fat mass (9.8% ± 18.6 SD; Supplement, Table S2). 
Tenericutes were not detected in abundances ≥ 1% in bears with above median net mass or above median fat 
mass. There were no significant differences in the average abundance of brown bear major GMB bacterial phyla 
between below median, median, and above median categories of each brown bear health metric (Supplement, 
Tables S3, S4).

The average relative abundance of Escherichia-Shigella was highest in bears with below median percent 
body fat (24.5% ± 29.5 SD), below median net mass (25.7% ± 28.9 SD), below median lean mass (28.9% ± 30.6 
SD), and below median fat mass (24.0% ± 28.5 SD; Supplement, Table S5). Streptococcus was most abundant in 

Figure 1.   Relative abundance of the major GMB bacterial phyla identified across (a) percent body fat; (b) net 
body mass; (c) lean mass; and (d) fat mass in Alaskan brown bear (Ursus arctos). We include all major taxa 
occurring at ≥ 1% relative abundance; “minor” taxa are those occurring at < 1% relative abundance. Body metrics 
categories were created using median splitting.
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bears with above median percent body fat (17.5% ± 23.6 SD), median net mass (14.5% ± 23.2 SD), median lean 
mass (15.1% ± 23.6 SD), and above median fat mass (18.2% ± 27.2 SD; Supplement, Table S5). Turicibacter was 
highest in the GMBs of bears with below median percent body fat (16.6% ± 23.7 SD), above median net mass 
(26.6% ± 37.5 SD), median lean mass (17.5% ± 24.0 SD), and median fat mass (86.4% ± 12.1 SD; Supplement, 
Table S5). The average relative abundance of Clostridium sensu stricto 1 in GMBs was highest in bears with 
median body fat (10.2% ± 17.4 SD), below median net mass (8.9% ± 15.1 SD), median lean mass (9.4% ± 14.6 SD), 
and below median fat mass (9.9% ± 15.8 SD; Supplement, Table S5). Clostridium sensu stricto 1 was not detected 
at ≥ 1% in bears with above median fat mass. Helicobacter were most abundant in bears with median percent 
body fat (8.6% ± 15.5 SD), below median net mass (8.9% ± 14.5 SD), above median lean mass (15.3% ± 27.1 SD), 
and below median fat mass (9.1% ± 16.9 SD; Supplement, Table S5). There were no significant differences in 
the average abundance of brown bear major GMB bacterial genera between below median, median, and above 
median categories of each brown bear health metric (Supplement, Tables S6, S7).

The average Faith’s PD value was highest in bears with above median body fat (12.6 ± 6.5 SD), median net 
mass (11.0 ± 7.3 SD), below median lean mass (11.6 ± 8.8 SD), and median fat mass (13.8 ± 9.2 SD) (Supplement, 
Table S8). The average Shannon diversity value was highest in bears with median body metrics (Supplement, 
Table S8). Inverse Simpson index was lowest (more diverse) in bears with above median body metrics (Supple-
ment, Table S8). Despite these trends, there were no significant differences in alpha diversity indices among bears 
with different body conditions (Supplement, Fig. S9, Table S9).

GMB beta diversity did not differ significantly among brown bears of varying body conditions (Supplement, 
Table S10). The dominant lineages of just a few bear GMBs with below median and median body conditions 
appear to drive the majority of the weighted UniFrac variation (Supplement, Fig. S10), and unweighted UniFrac 
distances suggest that most bacterial taxa are present across samples (Supplement, Fig. S11).

We found a total of 31 ASVs that were differentially represented between body condition measurements (Sup-
plement, Table S11). In bears with median percent body fat, we identified 1 differentially abundant ASV belonging 
to a minor phylum. In bears with above median percent body fat, we identified a differentially abundant bacteria 
belonging to Firmicutes. In net mass body condition categories, we identified 2 differentially abundant ASVs 
in bears with median net mass (1 Firmicutes, 1 Proteobacteria) and 1 differentially abundant ASV belonging to 
a minor genus within Actinobacteria in bears with above median net mass. Between lean mass categories, we 
found 3 differentially abundant ASVs (2 Actinobacteria, 1 Bacteroidetes) in bears with below median lean mass, 
2 differentially abundant ASVS (1 Epsilonbacteraeota, 1 Firmicutes) in bears with median lean mass, and 2 ASVs 
(1 Firmicutes, 1 Proteobacteria) in bears with above median lean mass categories. Between fat mass categories, 
we identified 15 ASVs (1 Actinobacteria, 8 Firmicutes, 5 minor phyla) that were differentially represented within 
bears with median fat mass and 4 ASVs (1 Actinobacteria, 1 Proteobacteria, 2 minor phyla) within bears with 
above median fat mass.

Correlation between the GMB and body condition.  None of the body condition measurements cor-
related to the relative abundance of any major phyla or dominant genera (p > 0.05; Fig. 2; Supplement, Table S12). 
Furthermore, none of the body condition measurements correlated to alpha diversity (p > 0.05; Supplement, 
Table S12).

Discussion
Firmicutes dominating GMBs of all bears is consistent with research indicating Firmicutes are essential to the 
breakdown of complex plant carbohydrates and weight gain25. Within Firmicutes, the order Lactobacillales may 
dominate the GMBs of bears with above median body mass because they are facilitating efficient energy produc-
tion of lactic acid. For example, burning lactic acid in addition to carbohydrates would allow bears to produce 
more energy than solely relying on carbohydrates for fuel26.

The GMBs of brown bears with poorer body condition were dominated by E-Shigella, which are opportunistic 
and potentially pathogenic. This is consistent with the possibility that these bears may lack sufficient fat or body 
mass to support fully functional immune systems27. Furthermore, Paenalcaligenes were only detected in the 
GMBs of bears with below median body conditions. Paenalcaligene are associated with cognitive impairment 
in humans and cause both cognitive impairment and colitis in mice28. In addition, Ureaplasma is associated 
with infection of human urogenital tracts29 and may also be an indication of a compromised immune system 
in bears with below median fat mass. However, it is possible that Ureaplasma are assisting in the essential urea 
cycling that occurs in the gut during hibernation30 or that bears with low body condition are not consuming 
enough food to support their microbiome, forcing their GMBs to shift toward alternate resources such as urea 
to support ATP synthesis.

To our knowledge, we report the first detection of Ursidibacter arcticus in a wild brown bear population. 
Ursidibacter arcticus was first described by Johanne Hansen et al.31 and is thought to have co-evolved and radi-
ated with the Ursidae family.

While larger bears on average had a higher relative abundance of Firmicutes and lower abundances of Act-
inobacteria, consistent with the obese phenotype in rodents32, there were no significant differences in the relative 
abundance of either Firmicutes or Actinobacteria relative to body condition. While there was no correlation, the 
results of our genus-level analyses suggest that different taxa are adapted to specific host physiological condi-
tions associated with different health metrics. Specifically, while Escherichia-Shigella, Streptococcus, Clostridium 
sensu-stricto 1, and Helicobacter have all been previously characterized as broadly “opportunistic” or “potentially 
pathogenic”27,33–35, the emerging patterns of the relative abundance of each taxon with a distinct set of host health 
metrics in our study suggests nuanced niche differentiation in response to host physiology. These results pave 
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the way for future studies to investigate which specific physiological states, mechanisms, and pathways (e.g., 
host metabolic processes or immune and inflammatory status) might contribute to gut microbial regulation.

GMB alpha diversity was generally higher in larger bears, yet there were no significant differences in any alpha 
diversity indices relative to body condition categories. Assuming that bears with higher body fat are eating more 
food, this would support that their GMBs have more available niche space. However, recent studies demonstrate 
that brown bears can achieve similar body condition outcomes with variable foraging strategies7–9. Therefore, it 
is likely that bears with higher percent body fat, net mass, and fat mass still vary in the amounts of meat and fiber 
consumed per individual. While high fiber diets are associated with higher GMB diversity36, patterns of alpha 
diversity in brown bear GMBs may be masked by individual variation in dietary niches. Furthermore, because 
the GMB plays an essential role in a host’s ability to extract nutrients from their diet37 and nutrient quality is 
positively correlated with brown bear body condition measurements38, our findings may further support the 
NVH in that GMB composition reflects diverse foraging strategies while allowing brown bears to achieve similar 
body condition outcomes.

Based on correlation analyses we did not identify any significant relationships between body condition and 
any major phyla. The Firmicutes to Bacteroidetes ratio prevalent in obese mice39 was not correlated to above 
median body condition metrics in brown bears. However, previous research suggests that large brown bears and 
obese model organisms (e.g. mice, humans) differ metabolically40. Further, patterns of GMB community compo-
sition differ among host species19. Although calculating bacterial phyla relative abundance is an important part 
of assessing community composition, some studies suggest that a more robust understanding of the relationship 
between a host and their GMB requires microbial identification to the species level41. It is also possible that the 
contributions of minor taxa to brown bear physiological condition are underestimated. For example, keystone 
species have disproportionately large effects on their ecosystem relative to their abundance42.

Lack of correlation between brown bear body condition and their GMB alpha diversity suggests that the 
relationship between the GMB and body condition may be more complex than we were able to describe in this 
study and more nuanced than can be captured with a single summary statistic. In contrast, Amato et al.43 found 
that host phylogeny can have a greater influence over GMB alpha diversity than dietary niche in primates. 
Therefore, it is possible that brown bear phylogeny may be a better predictor of GMB alpha diversity than diet.

In congruence with the NVH, brown bears exhibit the ability to achieve similar body conditions across sub-
stantial range of among-individual dietary niche variation7–9. In a previous study, we characterized brown bear 
GMB bacterial community composition associated with location, season, and reproductive condition with taxa 
relative abundance44. We found that brown bear GMBs vary in membership and overall composition, comple-
mentary to the nutritional landscape of each location and that GMB composition presents similarly high levels 
of among-individual variation as diet. Further, while food resource availability and average bear size differed 
by location45, we did not consider any location as more or less “favorable” because all brown bears sampled 
were considered “healthy” (i.e., normal lean mass and body size)45. While assessing the relationship between an 

Figure 2.   The relative abundance of major phyla (≥ 1%) in brown bear (Ursus arctos) gut microbiomes across 
individuals with different percent body fat.
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individual brown bear’s body metrics and GMB community composition may identify health implications associ-
ated with major taxa, brown bear body condition and GMB health may better be assessed by multiple taxonomic 
signatures. Instead, assessing inter-individual variation within a population may help managers identify shifts 
in GMB composition that impact the ability for brown bears to process myriad food resources, which enables 
brown bears to successfully occupy diverse landscapes. Managing for diverse GMBs may allow managers to 
foster bear populations that consist of individuals with a broader ability to derive nutrients from the variety of 
resources that are available at a given time (i.e., increased dietary plasticity facilitated by the GMB). For example, 
balancing the number of natural resources humans take (i.e., fisheries) with the provision of long term needs for 
brown bear populations would ensure the continuing availability of important food sources and GMB inputs for 
bears. Further, managing for diverse GMBs may include managing for “healthy” GMBs by not allowing bears 
to obtain human foods that might alter GMBs and negatively impact health. Managing to protect the full range 
of diversity represented within a population, including among-individual GMB diversity, may be beneficial to 
ensure brown bear populations are resilient when confronted with environmental change.

Materials and methods
Study area.  Our study area encompassed regions of Katmai National Park and Preserve (Katmai), Lake 
Clark National Park and Preserve (Lake Clark), and Gates of the Arctic National Park and Preserve (Gates; 
Fig. 3). Katmai is located in southern Alaska on the Alaska Peninsula. Within Katmai, our study area included a 
section of the eastern Aleutian Range as well as coastal, intertidal, and island areas. Key food resources used by 
brown bears in Katmai include fish (e.g., salmon [Oncorhynchus spp.]), salt marsh vegetation (e.g., Carex spp. 
and Plantago maritima), berries and herbaceous vegetation45. Some Katmai bears were observed consuming 
unique food sources such as marine mammals (e.g., sea otter [Enhydra lutris], harbor seal [Phoca vitulina]), 
marine invertebrates, and flounder (Platichthys stellatus). Lake Clark is a historically glaciated ecosystem located 
in southcentral Alaska, between the Alaska and Aleutian Mountain Ranges. Our Lake Clark study area is char-
acterized by subalpine tundra, spruce (Picea spp.) forest, and riparian zones within the Chigmit Mountains 
that divide the western interior region from the coastal region of the park8. Based on GPS-collar data8, Lake 
Clark study animals did not leave the western interior region and, consequently, did not have access to coastal 
resources. Instead, the Lake Clark study bears relied on herbaceous vegetation and berries, moose (Alces alces), 
caribou (Rangifer tarandus), Dall’s sheep (Ovis dalli), small mammals, and salmon8,45. Gates is located in north-
ern Alaska above the Arctic Circle. The study area included a region on the south side of the Brooks Mountain 
Range characterized by tundra, spruce forest, and riparian zones46. Primary foods for brown bears in Gates are 
more limited than in southern systems due to a shorter growing season and low ungulate density47. However, 
Gates bears are known to consume small mammals (e.g., Arctic ground squirrels [Urocitellus parryii]), large 
mammals (i.e., moose, caribou, and Dall’s sheep), seasonal herbaceous vegetation and berries, and limited, sea-
sonal salmon8,45.

Body metric data collection and fecal sampling.  We obtained 66 fecal samples from Katmai (n = 33), 
Lake Clark (n = 12), and Gates (n = 21). United States National Park Service (NPS) collected samples during 
population monitoring from 2015 to 2017. Bears were anesthetized via darting from a helicopter using tileta-
mine hydrochloride and zolazepam hydrochloride (Telazol®, Fort Dodge Laboratories, Fort Dodge, IA, USA) 
according to Taylor et al.48. Bears were weighed using an electronic load cell ( ± 0.5 kg; MSI-7200; Measurement 

Figure 3.   Map of study areas: Katmai National Park and Preserve (Katmai; n = 33), Lake Clark National Park 
and Preserve (Lake Clark; n = 12), and Gates of the Arctic National Park and Preserve (Gates; n = 21). Photos 
of parks by National Park Service. Map created using R (version 4.0.2.; R Core Team 2020), RStudio (version 
1.3.1056; RStudio Team 2020), sf (R, version .0-7), tmap (R, version 3.3-3), and spData (R, version 2.0.1). Park 
boundary shapefile from National Park Service (https://​irma.​nps.​gov/​DataS​tore/).

https://irma.nps.gov/DataStore/
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Systems International, Seattle, WA, USA) and body composition (body fat, lean mass, and fat mass) was deter-
mined by bioelectric impedance analyses (RJL Systems, Clinton Township, MI, USA)49,50. Individuals with body 
fat percentages below 3% (n = 4) were likely the result of measurement errors. We rounded body fat values up to 
3% for these individuals according to Mangipane et al.9. Study methods have been followed in accordance with 
all guidelines and capture and handling procedures were approved by the Institutional Animal Care and Use 
Committees of the National Park Service (AKR_KATM_Hilderbrand_Brown-Bear_2014, AKR_LACL_Man-
gipane_BrownBear_2014, AKR_GAAR_Gustine_GrizzlyBear_2014) and the U.S. Geological Survey, Alaska 
Science Center (2014-01, 2015-04, 2015-06). Biological samples (e.g., feces, hair, blood) collected during these 
research activities were archived along with the physiological data for each animal (e.g., reproductive condition, 
age, net mass, lean body mass, fat mass, percentage body fat; Supplement, Table S13) as well as environmen-
tal data associated with capture locations (e.g., elevation, land cover/habitat). Fecal samples were immediately 
stored in 95% ethanol upon collection then in a − 20 °C freezer for the long term.

Methods.  Laboratory methods.  We used DNeasy PowerSoil Kits (QIAGEN) to extract microbial DNA 
from brown bear fecal samples. Though we followed the manufacturer’s protocol, we included an additional heat 
incubation period to further break down proteins in the feces and a second elution step to increase DNA yields51. 
We used a NanoDrop 2000c (ThermoFischer Scientific, MA, USA) to quantify DNA yields and then stored the 
DNA extracts at − 80  °C. We sent standardized DNA aliquots to Argonne National Laboratory (Lemont, IL, 
USA) for amplicon library preparation and paired-end multiplexed sequencing of the 16S rRNA hypervariable 
v4 gene region. As a quality control measure, Argonne National Laboratory includes negative PCR controls in 
every plate amplified and proceeds with sequencing only if negative controls are uncontaminated/clean.

Bioinformatics analysis.  We imported the microbial sequence reads received from Argonne National Labo-
ratory into Quantitative Insights Into Microbial Ecology (QIIME2, version 2019.4). Using DADA2 QIIME2 
plugin52, we joined raw sequences, quality-filtered, demultiplexed, and called the amplicon sequence variants 
(ASVs) for analysis. We filtered the sequences to remove chloroplasts, mitochondria, Archaea, and all microbial 
sequences unidentified below the kingdom level. Next, we classified microbial taxa to the genus level using the 
SILVA 99 database (version 13253).

Due to unequal ASV count data that can lead to subsequent biases54, we normalized samples at a Cmin depth 
of 4087 for 253,394 total sequences (11.41% of the original input), retaining 62 samples. Normalization was 
accomplished using scaling with ranked subsampling (SRS55), a method that retains the same relative frequencies 
of all species. First, SRS divides all ASVs by a scaling factor so that the sum of scaled counts equals a selected 
total number of counts (Cmin). SRS then ranks ASVs by converting non-integer counts into integers to minimize 
subsampling error55.

Statistical analysis.  Community composition.  We used R (version 4.0.2.; R Core Team 2020) and Rstudio 
(version 1.3.1056; RStudio Team 2020) for all statistical analyses and visualizations. Data were imported into 
R using qiime2R (R, version 0.99.34) then converted to phyloseq (R, version 1.32.0) objects. We used median 
splitting to create three categories (i.e., below median, median, and above median) for all body condition meas-
urements (i.e., percent body fat, net mass, lean body mass, and fat mass; Table 1). We identified major GMB 
bacterial phyla (relative abundance ≥ 1%) and calculated relative abundancies of major taxa to visualize brown 
bear GMB communities associated with each brown bear health metric using categorization based on median 
splitting. Major taxa are defined by the 1% threshold based on definitions described in previous studies in order 
to identify the roles and contribution of all microbial taxa56,57.

GMB differences among body conditions.  After calculating relative abundancies of major bacterial taxa associ-
ated with each brown bear body condition metric category, we used combination of one-way analysis of variance 
(ANOVA) and non-parametric Kruskal–Wallis rank sum tests with Bonferroni corrections to test for significant 
differences between mean major bacterial phyla abundance in different body condition categories. We then used 
we used Linear discrimination analysis effect size (LEfSe) with the Galaxy online tool (https://​hutte​nhower.​sph.​
harva​rd.​edu/​galaxy) to identify any ASVs that were significantly enriched between body condition categories. 
We designated a logarithmic linear discriminate analysis (LDA) score of 2.0 as the cut-off for LEfSe analysis58.

We quantified the alpha diversity of GMB bacterial communities using microbiome (R, version 1.10.0) and 
picante (R, version 1.8.2). We used Shannon’s diversity index to quantify GMB bacterial community richness 
and evenness59, and we used Faith’s Phylogenetic Diversity (Faith’s PD60) to qualitatively assess GMB bacterial 

Table 1.   Alaskan brown bear (Ursus arctos) body condition categories. Body metric categories were created 
using median splitting.

Below median Median Above median

Body fat (%) 3.0–15.0 15.1–27.0 27.1–39.0

Net body mass (kg) 76.8–152.0 152.1–228.0 228.1–303.0

Lean mass (kg) 72.6–115.0 115.1–157.0 157.1–199.0

Fat mass (kg) 1.0–38.3 38.4–75.6 75.6–113.0

https://huttenhower.sph.harvard.edu/galaxy
https://huttenhower.sph.harvard.edu/galaxy
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community richness and phylogenetic relationships. Additionally, we used inverse Simpson’s diversity index61 
to quantify both the richness and evenness of microbial communities while incorporating phylogenetic rela-
tionships. We then used ANOVA tests to test for significant differences between mean alpha diversity indices 
across different body conditions and Tukey’s honestly significant difference post hoc tests to identify which body 
condition categories were significantly different from one another.

We compared pairwise GMB beta diversity using weighted and unweighted UniFrac distance matrices62, 
with weighted-UniFrac incorporating the relative abundance of taxa shared between samples and unweighted-
UniFrac reflecting species presence/absence. We used multivariate analysis of variance, W*

d test63, to test dif-
ferences amongbody conditions and the T2

w test64 with Bonferroni’s correction post hoc for significant factors.

Correlation between the GMB and body condition.  We then used Spearman’s correlation analysis to examine 
the association between major phyla, dominant genera, and each body condition metric. Additionally, we used 
Spearman’s correlation analyses to examine the relationship between GMB bacterial alpha diversity indices and 
each body metric.

Data availability
The datasets generated during and/or analyzed during the current study (i.e., phyloseq-R objects from imported 
qiime2 artifacts, demultiplexed EMP-paired end sequences from Argonne National laboratory, and R code) are 
available in the Zenodo repository, https://​zenodo.​org/​record/​57590​55#.​YbuUq​vHMLVY.
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