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a b s t r a c t

Polyethylene terephthalate (PET) has caused serious environmental concerns but could be degraded at
high temperature. Previous studies show that cutinase from Thermobifida fusca KW3 (TfCut2) is capable
of degrading and upcycling PET but is limited by its thermal stability. Nowadays, Popular protein stability
modification methods rely mostly on the crystal structures, but ignore the fact that the actual conforma-
tion of protein is complex and constantly changing. To solve these problems, we developed a computa-
tional approach to design variants with enhanced protein thermal stability by mining Molecular
Dynamics simulation trajectories using Machine Learning methods (MDL). The optimal classification
accuracy and the optimal Pearson correlation coefficient of MDL model were 0.780 and 0.716, respec-
tively. And we successfully designed variants with high DTm values using MDL method. The optimal vari-
ant S121P/D174S/D204P had the highest DTm value of 9.3 �C, and the PET degradation ratio increased by
46.42-fold at 70℃, compared with that of wild type TfCut2. These results deepen our understanding on
the complex conformations of proteins and may enhance the plastic recycling and sustainability at glass
transition temperature.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Polyethylene terephthalate (PET) is one of the most widely used
man-made synthetic plastics worldwide, with an annual produc-
tion of nearly 70 million tons used in textiles and packaging [1].
However, its excellent durability has now become an environmen-
tal hazard. To solve or attenuate these environmental problems, a
variety of chemical and physical technologies have been developed
to treat plastic waste; however, the byproducts resulting from this
processing also contribute to environmental pollution [2,3]. There-
fore, using keratinase and lipase to biodegrade plastics has become
an important research focus [4–8]. However, the glass transition
temperature of PET plastics is high, at which the plastic degrada-
tion enzyme is easily inactivated, and the PET degradation enzyme
needs a high temperature of about 70℃ to carry out their activity
[9–13]. Therefore, it is very important to improve the thermal sta-
bility of the PET degradation enzyme for the realization of plastic
biodegradation.

At present, researchers have proposed several computational
methods to design, test, and track conformations or mutations that
improve thermal stability. Several methods are developed based on
sequence information. iPTREE-STAB uses a decision tree method to
predict the effects of single-point variations on protein stability
and considers the physicochemical properties and interactions
between substituted amino acids and their adjacent amino acids
[14]. SIFT (Sorts Invarierant From Tolerant) uses sequence homol-
ogy to explore the effects of sequence variations on protein func-
tion to identify beneficial and harmful variations in target
sequences by multiple sequences alignment analysis [15]. Simi-
larly, several methods have been developed based on structural
information. I-Mutant2.0 uses a support vector machine (SVM)
method to predict stable or unstable amino acid variations based
on free energy changes (DDG) [16]. SDM (Site-directed Mutator)
[17] predict protein stability based on the statistical derivation of
force field potential energy using changes in relatively free energy.
FoldX use the empirical force field to calculate relative free energy
differences caused by changes in interactions within the variant
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structure [18]. Rosetta is a modeling software library based on
Monte Carlo simulated annealing algorithm, and Rosetta ddg_-
monomer can be used to predict the thermal stability of protein
mutants (DDG) [19]. The DeepDDG can predict the stability change
of protein point mutations using neural networks [20]. Almost all of
these structure-based protein stability predication methods rely on
protein crystal structuredata. The protein crystal structureprovided
by protein data bank (PDB) only represents the conformation of a
protein under specific conditions but does not reflect the fact that
the conformation of a protein is complex and constantly changing.
Therefore, it is necessary to introduce other conformations of pro-
teins into the thermal stability design of PET degradation enzymes.

Molecular dynamics (MD) modeling has developed into a
mature technique capable of analyzing protein structure [21].
Molecular dynamics simulations can capture a variety of important
biomolecular processes, including conformational changes, ligand
binding, and protein folding, revealing the positions of all atoms
at femtosecond temporal resolution [22–24]. Using MD to simulate
the structural changes of proteins in a specific solution and at a
specific temperature will help to further understand the dynamic
properties of proteins [25–29]. MD simulation can provide subtle
and dynamically changing high-dimensional structural informa-
tion of proteins in solution, which requires an analytical method
to analyze the relationship between the high-dimensional dynamic
structural characteristics of proteins and their thermal stability.
The development of machine learning technology (ML) provides
an effective means for the analysis of high-dimensional data,
which can be used to construct the classification or regression
model of protein thermal stability based on the information of
multi-dimensional structural characteristics [30,31]. In this study,
we integrated MD simulations and ML (named the MDL method)
to predict protein variants with improved thermal stability. The
MD simulations provided sufficient structural features as input
for the ML algorithms, and the classification and regression results
showed that the MDL method performed well. Currently, research-
ers focus on PETase from Ideonalla sakaiensis (IsPETase), but the
amount of degradation product of IsPETase is lM grade [6,8,32].
Cutinase from thermobifida fusca KW3 (TfCut2) can degrade PET
plastic, and the amount of degradation products reached mM
grade. But TfCut2 loses 100% of its activity after 1 h at 65.6 ℃
[33]. A thermal stabilization of the enzyme is therefore required
to increase its efficiency for PET degradation. Here, TfCut2 was
modified with the MDL method, the thermal stability and PET
degradation ability of the variants were significantly improved.

2. Materials and methods

2.1. Dataset

Thermodynamics Database for Proteins andMutants (ProTherm)
is a collection of numerical data of thermodynamic parameters [34–
36]. From the ProTherm dataset, we gathered 1293 single point
mutations (M1293) in86wild typeproteinswith theexperimentally
measured thermal related parameters. Among them, 389 mutants
with improved thermal stability were used as positive samples
and 905 mutants without improvement in thermal stability as neg-
ative samples. The 3D structures of these 86wild type proteins used
for MD simulation were downloaded from the Protein Data bank,
http://www.rcsb.org. And the real experimental DTm value of these
1293 single point mutants ranges from�53℃ to 40℃. The training
and test data sets are listed in the Supporting Information Excel file.

2.2. MD simulations

The 3D structures of these 86 wild type proteins were down-
loaded from the PDB database [37]. All non-protein and hydrogen
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atoms were removed and hydrogens were added back with Discov-
ery studio 2.5.5. For residues with multiple conformations, the ‘‘A”
conformation was used. Protein molecules were placed in cubic
box at a minimum of 12 Å distances from the edge and solvated
with TIP3P explicit water and chloride counter-ions using VMD
1.9.2 [38], where the approximate density of which is determined
by the liquid water density at the corresponding temperature.

MD simulations were performed using NAMD 2.12 with the
CHARMM22 force field [39–43]. All simulations were carried out
with periodic boundary conditions, a 12 Å cut-off for nonbonded
interactions, and Particle Mesh Ewald for long-range electrostatics.
2 fs was used as the time step and snapshots were saved every 1 ps.
Each system was equilibrated using the following protocol. The
protein was fully constrained and the solvent was minimized for
2000 steps using a conjugate gradient algorithm. Under the NPT
condition, the solvent was equilibrated for 100 ps. The solvent
was then fully constrained and the protein was minimized for
2000 steps. The entire system was then minimized for 2000 steps.
Finally, the system was equilibrated for 100 ps under the same NPT
conditions. Then, all simulations were carried out at 400 K in the
NVE ensemble (20 ns each), with the box size fixed at its final size
from the equilibration.

2.3. Computational framework for the predicting models

As one of the state-of-the-art statistical methods, the logistic
regression (LR) model was used for calculation of the classification
and regression models. In this study, the R package glmnet was
used as the LR machine learning package [44]. To obtain the opti-
mal lambda parameter, the prediction effect was tested by iterat-
ing the lambda values. Finally, the optimal lambda value was
obtained for the LR machine learning models.

To build suitable SVM machine learning models, the R package
e1071 was selected as the SVMmachine learning package [45]. The
grid search was used for the parameter optimization of SVM
machine learning, and the Gaussian kernel was used as its kernel
function. As for parameter cost and gamma, they were optimized
using a grid search method and the optimal range of them were
[20, 210] and [2�13,1] respectively. Finally, the optimal cost param-
eter and gamma parameter were used for the SVM machine learn-
ing models.

As an important part of machine learning, RF is widely used in
various classification and regression problems. Here, R package
Randomforest was used for classification and regression of mutant
databases [46]. To get a RF model with excellent performance, the
grid search was used to optimize parameters and the optimal ntree
and mtry were used for the RF machine learning models. The opti-
mization range of ntree is [102, 104], and the step size is 100. The
optimization range of mtry varies according to the dimension of
the eigenvector. Compared with the other two machine learning
algorithms, RF model shows better predictive performance. There-
fore, RF is finally selected as the algorithm for classification model
and regression model construction in this study.

2.4. Enzyme activity assay using bis-hydroxyethyl terephthalate

Bis-hydroxyethyl terephthalate (BHET) was used as a substrate
to detect enzyme activity [47], and BHET was purchased from
Sigma-Aldrich Co. (St. Louis, MO, USA) and the purity (GC) is
94.5%. The enzyme was heat-inactivated at two kinds of tempera-
tures (65℃ and 70℃) for different time (from 0 to 5 h) and then
mixed with BHET in a phosphate buffer (100 mM phosphate buffer,
100 mM NaCl, pH 8.0). The reaction system containing 50 lg/ml
enzyme and 2 mg/ml BHET was incubated at 50 �C for 1 h. Add
one volume of acetonitrile to stop the reaction. Use high perfor-
mance liquid chromatography (HPLC, Shimadzu) to detect the sub-
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strate and product (mono-(2-hydroxyethyl) terephthalic acid
(MHET) and terephthalic acid (TPA)) concentration [6].
2.5. Enzyme activity assay using PET powder

PET powder (crystallinity: 35.5%) was also used for enzyme
activity detection, and PET powder was got from AIMPLAS after
grinding (size 500um). The reaction system (100 mM phosphate
buffer, 100 mM NaCl, pH 8.0) containing 50 lg/ml enzyme and
10 mg/ml substrate was reacted for 48 h at 70 ℃. The reaction
was terminated by adding one volume of acetonitrile, and the pro-
duct (BHET, MHET, and TPA) concentration was detected by HPLC
[6].
2.6. Melting temperature (Tm) measurement

Thermal stability of TfCut2 proteins was determined by mea-
suring melting curves at pH 8.0 with the Protein thermal shift
dye (Applied Biosystems) in a QuantStudio 3 Real-Time PCR Sys-
tem (Thermo Fisher Scientific) [8]. Data analysis using Protein
Thermal ShiftTM software. Refer to the instruction manual for the
specific operation.
3. Results

3.1. MDL rational design strategy

We proposed an integrated MDL approach and used it to design
potential protein variants with improved thermal stability. As
shown in Fig. 1, the MD simulated the complex and dynamic struc-
tural conformations of proteins. Three different ML algorithms
were used to learn how the protein thermal stability and structural
characteristics of the conformations from the MD trajectories were
related. The learned rules were used to build models for predicting
thermal stability changes induced by sequence variations. Finally,
the conserved domain search tool (CD-search) [48,49] was used
to exclude the conserved functional sites and detect variations that
could potentially improve the thermal stability without affecting
catalyzing function (Fig. 4).

In the MDL design strategy, the key is to shift the usual para-
digm of structural bioinformatics from studying mainly single
structures to analyze conformational ensembles. We simulated
86 wild type proteins at 400 K with the NAMD v2.12 program
[43]. Subsequently, root mean square deviation (RMSD) in the sim-
ulation trajectories were calculated to understand the structural
changes in the protein unfolding process. As shown in Fig. S1, the
protein unfolding process was roughly classified as one-step or
multi-step unfolding. In the one-step unfolding process, the
three-dimensional structure of the protein was stretched continu-
ously during the simulation process, and finally reached a stable
unfolded state (Fig. S1a). In the multi-step unfolding process, the
protein reached a stable unfolded state through a cyclic process
of ‘‘extension-equilibrium-extension” of the structure (Fig. S1b).
Especially for the multi-step unfolding process, the conformations
of the protein in different equilibrium states were very variable.
Therefore, if only one of the conformations was used to design
the variations and the other conformations were ignored, only par-
tial structural information would be considered, which would
make it difficult to identify key variations that contribute posi-
tively to protein stability. The RMSD analysis confirmed that the
conformation ensembles provided by the MD simulations were
necessary for studying the relationship between protein structure
and thermal stability.
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3.2. Quality assessment of the models

To design variants with improved thermal stability, we con-
structed RF prediction model with every single structural feature.
The Receiver Operating Characteristic Curve (ROC) and Precision
Recall Curve (PRC) of each model in the 10-fold cross-validation
are illustrated in Fig. S2, we found that the area under the ROC
curve (AUROC) values ranged from 0.571 to 0.777 (Fig. S2a) and
the area under the PRC (AUPRC) values ranged from 0.728 to
0.886 (Fig. S2b) using the different structural features. Compared
with the models constructed with valence bond data, the models
constructed with unfolding free energy and amino acid interaction
network parameters had better AUROC values and AUPRC values.
Among these features, the amino acid network parameter (degree)
was the most outstanding feature.

To improve prediction performance, two-feature predictive
models were constructed. The ROC curves and PRC curves of each
model in the 10-fold cross-validation are illustrated in Fig. S3, due
to the addition of valence bond data, the AUROC values were
improved from 0.767 (DDG) to 0.774 (DDG/hbond) (Fig. S3a) and
the AUPRC values were also improved from 0.871(DDG) to 0.876
(DDG/sbond) (Fig. S3b). The addition of amino acid network
parameter data has a similar enhancement effect. The AUROC val-
ues were improved from 0.767(DDG) to 0.812(DDG/degree)
(Fig. S3a) and the AUPRC values were also improved from 0.871
(DDG) to 0.899(DDG/degree) (Fig. S3b). Compared with the
valence bond data, the addition of amino acid network parameter
data is more effective in improving the performance of the predic-
tive model.

On the basis of the above results, we constructed four multi-
feature combination prediction models: features combination of
DDG and four amino acid network parameters (DDG/nets), fea-
tures combination of DDG, four amino acid network parameters,
and hydrogen bond (DDG/nets/hbond), features combination of
DDG, four amino acid network parameters, and salt bond
(DDG/nets/sbond), and features combination of DDG, four amino
acid network parameters, hydrogen bond, and salt bond (DDG/
nets/hsbond). As shown in Fig. 2, the addition of four amino acid
network parameters improved the performance of the prediction
model significantly. The AUROC values increased from 0.767
(DDG) to 0.824 (DDG/nets) (Fig. 2a) and the AUPRC values
increased from 0.871 (DDG) to 0.913 (DDG/nets) (Fig. 2b). Based
on these results, we continued to provide the valence bond data
as input features and found that despite the performance still
improved, but not noticeably. In conclusion, the classification pre-
diction performance of the model constructed by the feature com-
bination DDG/nets/sbond is the best.

Then, we used RF regression models to predict the Melting tem-
perature variation (DTm) of the protein variants. The Pearson corre-
lation coefficient (PCC) between experimentally measured DTm
values and predicted DTm values was calculated. As shown in
Fig. 2, when only the predicted DDG is used as input, the PCC value
was 0.565 (Fig. 2c), whereas when the predicted DDG and four
amino acid network parameters were used as input, the PCC value
significantly improved to 0.712 (Fig. 2d). After adding hydrogen
bond data or ionic bond data, the PCC values improved to 0.712
and 0.716, respectively (Fig. 2e, f). When all the features were inte-
grated into the prediction model, the predictive performance was
not further improved and the PCC value dropped to 0.712
(Fig. 2g). These results indicated that the four network parameters
greatly improved the prediction performance of models and, com-
pared with hydrogen bond data, the addition of ionic bond data
was more effective in improving the performance of the prediction
models.

To further improve the prediction performance, including RF,
we also used other two different ML methods, logistic regression



Fig. 1. Flow chart of MDL rational design strategy. On the left is the extraction of molecular dynamics simulation features and the construction of machine learning prediction
models. On the right is the prediction of mutant with the improved thermal stability of new proteins and rational screening of mutant sites.
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(LR) and SVM, to build the prediction models. As shown in Table S1,
RF prediction model have the best performance, the most optimal
AUROC and AUPRC values were 0.826 and 0.913, respectively. We
also analyzed the classification accuracy of the different ML meth-
ods. As shown in Table S2, the RF model has the highest classifica-
tion accuracy of 0.780. In addition to classification models,
regression models were also constructed. As shown in Table S3,
RF model outperformed the other two ML methods, the optimal
PCC value for RF method was 0.716.
3.3. Blind test and comparison with four traditional thermostability
prediction methods

A blind test was used to evaluate the generalization of the MDL
approach. The dataset M1293 were divided into two datasets: 1000
single-point variants (M1000), which were used for the 10-fold
cross-validation test and model construction, and other 293
single-point variants (B293), which were used as an independent
test set. Our results validated our approach. The PCC values corre-
sponding to M1000 set and B293 set are 0.710 and 0.704, respec-
tively (Fig. 3).

900 single-point variants with DDG data (M900) isolated from
dataset M1293 were divided in 630 variants (M630) and 270 vari-
ants (B270). M630 was used to construct an MDL prediction model
to predictDDG, and B270 was used as independent test set for per-
formance comparison between different prediction methods. As
shown in Table 1, for the existing methods, the optimal PCC value
among the predicted and actual DDG values was 0.492, and for the
MDL method, the optimal PCC value was 0.725. When 10% of the
outliers were removed, the PCC value for the MDL method reached
0.755, whereas the optimal PCC value among the other methods
increased to only 0.642. In the MAE (mean absolute error) compar-
ison, the MDL method had a smaller MAE value than the other four
methods (1.456, 0.979). The MDL method also performed well in
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predicting DTm values (PCC: 0.726, 0.827), but the MAE values
were relatively high (3.048, 2.109).
3.4. Improved thermal stability and enzyme activity of TfCut2 variants

We used MDLmodel to design variants of TfCut2 with improved
thermal stability. A total of 177 variants with predicted DTm > 1℃
were analyzed for conserved domains and variation hotspots, and
variants were selected for experimental verification as follows.
177 positive single-point variants were distributed on 53 amino
acid residue sites, among which Asp174, Asp204, Trp234, Trp183,
Glu253, Glu254, and Trp61 were the variation hotspots that pro-
duce positive variants, as shown in Fig. S5. After considering the
results of the conserved domain analysis, we selected eight posi-
tive variants with predicted DTm > 1℃ for experimental verifica-
tion, namely D174S (1.2℃), S121P (1.6℃), E202L (2.6℃), S113P
(3.7℃), S113E (3.2℃), S163K (1.0℃), S194P (1.8℃), and A55V
(1.9℃) (Fig. 4). Because the largest number of predicted positive
variants were on Asp204, we also selected the D204P variant, giv-
ing us a total of nine variants for experimental verification.

Among the nine variants, the Tm values of seven variants were
higher than that of the wild type TfCut2 (Fig. 5a). While only
A55V and S163K variants had the lower Tm values than the wild
type. We combined the five single-point variants (S121P, D174S,
S194P, E202L, D204P) that showed significantly improved thermal
stability to randomly construct 10 double-point variants. The Tm
values of all the double-point variants ranged from 73.8℃ to
79.5℃, which were significantly higher than that of wild type
TfCut2 with the Tm value of only 71.4℃ (Fig. 5b). To generate more
thermally stable variants, we combined three of the double-point
variants (S121P/D174S, D174S/S194P, D174S/E204P) to construct
triple-point variants (Fig. 5c). The Tm values of all the triple-point
variants further improved the Tm values of TfCut2, and the
D174S/S194P/D204P and S121P/D174S/D204P variants had Tm val-
ues of 80.1℃ and 80.7℃ respectively. Among these variants, we



Fig. 2. Effects of the integration of DDG, network parameters, and valence bond on the performance of RF models. RF classification models of 10-fold cross-validation: (a) ROC
curves and their corresponding AUROC values. (b) PRC curves and its corresponding AUPRC values. RF regression models of 10-fold cross-validation: (c) Regression model of
DDG. (d) Regression model of DDG/nets. (e) Regression model of DDG/nets/hbond. (f) Regression model of DDG/nets/sbond. (g) Regression model of DDG/nets/hsbond.

Fig. 3. Blind test for MDL method. (a) M1000 was used for the 10-fold cross-
validation. (b) B293 was used as an independent test set.
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selected the seven variants (D174S, S121P/D174S, D174S/E202L,
D174S/D204P, S121P/D174S/D204P, D174S/S194P/D204P, D174S/
E202L/D204P) that had the most notable improvement of thermal
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stability for the subsequent polyethylene terephthalate (PET)
degradation experiments (Fig. 5d).

Interestingly, we found that the enzyme activity of TfCut2 vari-
ants was also improved with BHET as substrate. After treatment at
65℃ for 2 h, the residual enzyme activity of the wild type TfCut2
has been almost lost, but all of the variants still have at least 60%
of the activity, and the best one S121P/D174S/D204P retains 80%
of the residual enzyme activity (Fig. 6a). Moreover, the activity of
this variant was higher than 80% even after the treatment at 65
℃ for 5 h. Since the glass transition temperature (Tg) of PET plastic
is >70℃, polyester hydrolases for PET degradation need to be ther-
mally stable at � 70℃. The enzyme activity of wild type TfCut2 and
its variants was measured at 70℃ (Fig. 6b). After treatment at 70℃
for 0.5 h, the enzyme activity of wild type TfCut2 was lost, but the
residual enzyme activity of the variants was more than 10%. And
the S121P/D174S/D204P variant had the highest residual enzyme
activity, which reached more than 44%. After treatment at 70℃
for 2 h, the S121P/D174S/D204P variant still had a residual enzyme
activity above14%.



Fig. 4. Analysis of conserved domain of TfCut2. COG4188 is the conserved domain sequence found in the conserved database. The amino acid residue sites with strong
conserved values are marked in red, and the amino acid residue sites circled in blue are the selected mutation sites. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Table 1
Results for MDL models and four traditional thermostability prediction methods for the independent test set B270.

Method Predict type No. of predictions PCC MAE

SDM DDG 270/243 0.323/0.383 1.992/1.307
Foldx DDG 270/243 0.407/0.534 1.853/1.171
Rosetta DDG 270/243 0.492/0.579 3.001/2.390
Deepddg DDG 270/243 0.484/0.642 1.636/0.950
MDL DDG 270/243 0.725/0.755 1.456/0.979
MDLa DTm 270/243 0.726/0.827 3.048/2.109

a MDL algorithm for DTm prediction.
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3.5. Enhanced PET powder degradation by TfCut2 variants

To further investigate the PET degradation properties, we mea-
sured the PET degradation of wild type TfCut2 and its variants at
70℃ using PET powder with a crystallinity of 35.5% as the sub-
strate. The wild type TfCut2 only degraded 0.45% of the PET pow-
der, while the degradation ratio of PET powder for the D174S,
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D174S/D204P, S121P/D174S, D174S/E202L, D174S/S194P/D204P,
S121P/D174S/D204P, and D174S/E202L/D204P variants were
9.35%, 18.66%, 8.73%, 4.93%, 19.79%, 20.89%, and 11.95%, respec-
tively (Fig. 6c). For the optimal S121P/D174S/D204P variant, the
PET degradation ratio is 46.42 folds higher than that of the wild
type TfCut2.



Fig. 5. Tm values of wild type (WT) TfCut2 and mutants. (a) Tm values of nine single mutants. (b) Tm values of ten double mutants. (c) Tm values five triple mutants. (d) Seven
mutants with significantly improved thermal stability were used in subsequent enzyme activity and PET plastic degradation experiments. The redder the color, the higher the
Tm value, and the bluer the color, the lower the Tm value.
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The PET degradation products were detected by HPLC, and the
result showed that the PET powder was completely degraded to
MHET and TPA, and BHET was barely detectable. Wild type TfCut2
degraded the PET powder to 0.23 mM TPA, and no BHET or MHET
was detected. The D174S variant degraded the PET powder to
1.27 mM MHET and 3.60 mM TPA, and no BHET was detected.
Among the three D174S-derived double-point variants, the
D174S/D204P variant degraded the PET powder to 0.02 mM BHET,
3.11 mM MHET, and 6.60 mM TPA, which is an improvement over
the degradation ability of D174S. Among the three D174S/D204P-
derived triple-point variants, the degradation ability of the
D174S/S194P/D204P and S121P/D174S/D204P variants was fur-
ther improved. And the optimal S121P/D174S/D204P variant
degraded the PET powder to 0.02 mM BHET, 3.52 mM MHET, and
7.34 mM TPA (Fig. 6d). There were few BHET in degradation prod-
ucts of PET plastics.

3.6. Mutant-induced changes in the distribution of hydrogen bonds

To explore the mechanism of thermal stability improvement of
TfCut2 variants, we analyzed structure changes of the wild type
and TfCut2 variants. Considering that the mutant sites are dis-
tributed on the surface of the protein structure, we analyzed the
hydrogen bond distribution between each amino acid site of the
protein and the surrounding solvent environment. As shown in
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Fig. 7, When Ser121, Asp174, Ser194, Glu202, and Asp204 were
mutated into Pro, Ser, Pro, Leu, and Pro, respectively, the number
of hydrogen bonds between the mutant site and the surrounding
environment decreased to varying degrees. This result means that
the region where these amino acid residues are located become
more hydrophobic, facilitating a more compact structure in the
region where they are located.

Then, the MD simulation trajectory of the S121P/D174S/D204P
variant and its structure was analyzed. As shown in Fig. 8a, the
RMSD value of the wild type TfCut2 did not stabilize and showed
a further upward trend after the end of 20 ns simulation, while
the RMSD value of the variant was stable and finally lower than
that of the wild type TfCut2. RMSF analysis was also performed,
compared with the wild type TfCut2, the variant had a lower RMSF
value near the mutant residues site region (Fig. 8b). The last frame
structure of the MD simulation trajectories of wild type TfCut2 and
the variant were used for further analysis. For the wild type TfCut2,
Ser121, Asp174, and Asp204, they can form 3, 5, and 5 hydrogen
bonds with the surrounding solvent environment, respectively.
After mutation, Pro121, Ser174, and Pro204 can form 1, 2, and 1
hydrogen bonds with the surrounding solvent environment,
respectively (Fig. S4). The three mutation sites all occurred in the
loop region of the protein. Proline mutations limit the conforma-
tional flexibility of surrounding amino acid residues, thus improv-
ing the thermal stability of proteins. The decrease in the number of



Fig. 6. Residual enzyme activity and PET degradation ability of wild type (WT) TfCut2 and mutants. (a) Residual enzyme activity at 65℃ with BHET as substrate for different
treatment times. (b) Residual enzyme activity at 70℃with BHET as substrate for different treatment times. (c) Using PET powder with a crystallinity of 35.5% as the substrate,
degradation rate of PET plastics treated with wild type TfCut2 and seven mutants respectively. The redder the color, the higher the degradation rate of PET plastic, and the
bluer the color, the lower the degradation rate of PET plastic. (d) Using PET powder with a crystallinity of 35.5% as the substrate, determination of degradation products of PET
plastics by HPLC, after treated with wild type TfCut2 and seven mutants respectively. Here purple stands for TPA, green for MHET, and orange for BHET. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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hydrogen bonds with the surrounding environment makes these
three regions more hydrophobic, making the structure of these
regions more compact, which is conducive to the improvement
of protein stability. There are cavities near residues 174 and 204,
and the reduction of hydrogen bonds with the surrounding envi-
ronment makes this region more hydrophobic and compact, which
contributes to the narrowing of the cavity and thus improves the
thermal stability of the protein (Fig. 8c-8d).
4. Discussion

In this study, we constructed a database of MD simulation tra-
jectories of 86 proteins and explored the internal relationship
between the complex dynamic protein conformations and the
thermal stability. On the basis of the dynamic conformational char-
acteristics, we constructed a predictor to predict the changes in
thermal stability of proteins induced by sequence variations. We
found that 1) the predictor based on the unfolding free energy pre-
dicted the impact of the variations on thermal stability well, 2) the
introduction of dynamic protein conformational characteristics
significantly improved the predictive performance of the predictor,
and 3) introduction of amino acid interaction network parameters
further significantly improved the predictive performance of the
466
predictor. Our results are consistent with earlier reports that there
is a strong correlation between the unfolding free energy and pro-
tein thermal stability [50,51]. Unlike previous studies, we com-
bined MD simulations and ML to include the dynamic structural
conformation of proteins and the amino acid interaction network
in a model to predict the thermal stability of proteins.

The combination of MD simulations and ML models to predict
the effects of amino acid modifications on protein thermal stability
is an important highlight of this study. We used mainlyDDG as the
input feature to build the ML model, and the PCC values between
experimentally measured and predicted DTm values were used as
the performance evaluation criteria. The changes in PCC values
with simulation time are shown in Fig. 9. The starting point for
each protein structure was the PCC value calculated using FoldX
before beginning the MD simulations (crystal structure PCC
0.423). When the MD simulation was introduced into the ML
model, the PCC values increased with the simulation time. These
results show that the introduction of MD simulations was impor-
tant in improving the performance of the ML model.

The introduction of hydrogen and ionic bonds into ML models
was previously shown to have inconsistent effects on model per-
formance [52,53]. Therefore, we analyzed the differences in the
number of hydrogen and ionic bonds between variant and wild
type proteins. Compared with the wild type protein structure,



Fig. 7. Cluster analysis of hydrogen bond distribution. The horizontal axis repre-
sents wild type and different mutant proteins and the vertical axis represents
different amino acid residue sites. The bluer the color the less hydrogen bonds there
are, the redder the color the more hydrogen bonds there are. The black arrow
represents the amino acid residue sites where the mutations occurred.
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0.32 hydrogen bonds were increased in the positive variants and
0.31 hydrogen bonds were increased in the variants with lower
thermal stability, but the Wilcoxon test showed that the hydrogen
bond changes between the positive and negative variants were not
significant (p = 0.79) (Fig. 10a). For the ionic bonds, 0.10 ionic
bonds were reduced in the variants with improved thermal stabil-
ity, and 0.07 ionic bonds were reduced in the variants with reduced
thermal stability (Fig. 10b), and the Wilcoxon test showed that the
ionic bond changes between the positive and negative variants
were extremely significant (p = 2.7E � 14). The significant differ-
ence in numbers of ionic bonds between the positive and negative
variants is consistent with the observed improved performance of
the ML models with the introduction of ionic bond data.
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Biomolecular networks, which describe interactions between
biological molecules, are increasing being used to discover the
basic molecular processes and rules that underlie biological system
such as growth, development, aging, and disease [54–56]. Here,
several topology properties of the amino acid interaction network
were used to analyze the positive and negative protein variants. As
shown in Fig. 10c–f, the distribution of positive and negative vari-
ant sites in the networks was significantly different in the central-
ity assessment parameters of these networks (Wilcoxon test: p < 2.
22e � 16). The degree values of the positive and negative variation
sites were 0.096 and 0.082 respectively (Fig. 10c), which reflected
that the positive variation sites were more likely to be distributed
on the core residue sites of the network or the core nodes of a mod-
ule in the network than the negative variation sites. The parameter
clustering coefficient values of positive and negative variation sites
were 0.71 and 0.49 respectively (Fig. 10e), which also reflected that
the positive variation sites were more likely to be distributed on
the central residual sites in a local region of the network (subnet-
work). The centrality closeness values of positive and negative
variation sites were 0.37 and 0.29 respectively (Fig. 10d), which
indicates that positive variation sites tend to be distributed on
the core residue sites of the network. Compared with these three
network parameters, betweenness centrality indicates the proba-
bility of the shortest path through residue X between any two resi-
dues other than residue X. This means that residues with high
betweenness centrality are generally the key hub residues between
the amino acid interaction networks that connect different net-
work nodules. The betweenness centrality of positive and negative
variation sites was 0.020 and 0.024 respectively (Fig. 10f). The neg-
ative variation sites were more likely to be distributed on the con-
necting nodes between the residue network modules than the
positive variant sites. In summary, positive variant residues tended
to be distributed in the core sites of the amino acid interaction net-
work or the core sites of a module of the amino acid interaction
network, whereas negative variant residues tend to be distributed
in the channels connecting different amino acid interaction net-
work modules.

The distribution of predicted positive variants at amino acid
residues sites was analyzed when selecting suitable variation sites.
Three important Ca2+ binding residues (Asp174, Asp204, Glu253)
were identified as positive variation hotspots (Fig. S5), which is con-
sistent with the findings of previous studies [13]. Then et al. [57]
focused on these hotspots and significantly improved the thermal
stability of TfCut2 by introducing a disulfide bridge (D204C/
E253C) to replace the Ca2+ binding function. Tournier et al. [7] also
found three corresponding residues in leaf-branch compost cuti-
nase, namely two acidic residues (Glu208 and Asp238) and neutral
Ser283, and replaced the divalent metal binding site with a disul-
fide bridge (D238C/S283C) to improve the thermal stability of the
leaf-branch compost cutinase. Moreover, the MDL method accu-
rately predicted additional positive variation hotspots, which were
modified to design more positive variants (Fig. S5). However, the
MDL method can be further improved to predict multi-point vari-
ants. For example, the predicted DTm values of variants D204C
and E253C were 1.8 �C and 0.4 �C respectively, but the DTm values
of the D204C/E253C variant could not be predicted; thus, disulfide
bond design prediction could not be conducted. In future studies,



Fig. 8. Structural analysis of variant S121P/D174S/D204P. (a) RMSD analysis of MD simulation trajectories, the structural stability of the variant S121P/D174S/D204P was
superior to that of the wild type. (b) RMSF analysis of MD simulation trajectories, the thermal stability of the variant region is improved. (c) The numbers 1 and 2 represent
the two cavities that exist around Asp174 and Asp204 and are marked orange and yellow, respectively. (d) The number 3 represents the cavity that exist around Ser174 and
Pro204 and is marked orange. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Effects of MD simulation time on the performance of ML regression models. ML methods: (a) LR, (b) SVM, (c) RF.
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Fig. 10. Difference analysis of positive and negative mutation sites. (a) The differences in the number of hydrogen bonds between mutants and wild type proteins. (b) The
differences in the number of salt bonds between mutants and wild type proteins. (c) The distribution difference in the degree of network parameter between positive and
negative mutation sites. (d) The distribution difference in the closeness of the network parameter between positive and negative mutation sites. (e) The distribution
difference in the clustering of network parameters between positive and negative mutation sites. (f) The distribution difference in the betweenness of the network parameter
between positive and negative mutation sites.
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we plan to further improve the MDLmethod to increase the predic-
tion accuracy and include a wider application range.
5. Data availability

All data supporting the results are available within the paper
and its supplementary information files.
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