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A B S T R A C T   

Target selection of the personalized cancer neoantigen vaccine, which is highly dependent on computational 
prediction algorithms, is crucial for its clinical efficacy. Due to the limited number of experimentally validated 
immunogenic neoepitopes as well as the complexity of neoantigens in eliciting T cell response, the accuracy of 
neoepitope immunogenicity prediction methods requires persistent efforts for improvement. We present a deep 
learning framework for neoepitope immunogenicity prediction – SIGANEO by integrating GAN-like network with 
similarity network to address issues of missing values and limited data concerning neoantigen prediction. This 
framework exhibits superior performance over competing machine-learning-based neoantigen prediction algo-
rithms over an independent test dataset from TESLA consortium. Particularly for the clinical setting of neo-
antigen vaccine where only the top 10 and 20 predictions are selected for vaccine production, SIGANEO achieves 
significantly better accuracy for predicting experimentally validated neoepitopes. Our work demonstrates that 
deep learning techniques can greatly boost the accuracy of target identification for cancer neoantigen vaccine.   

1. Introduction 

Neoantigen vaccines have emerged as a promising type of cancer 
immunotherapy through augmenting cancer-specific cytotoxic T cells 
[1,2]. The development of neoantigen vaccines is commonly initiated by 
computational prediction of candidate neoepitopes, the accuracy of 
which greatly impacts the efficacy of vaccine. The rationale for 
computational neoantigen prediction is retrieving neoepitopes derived 
from diversified events of genetic alteration and RNA dysregulation 
through bioinformatics analyses, which is followed by applying 
computational models to infer the likelihood of neoepitopes for eliciting 
T cell responses [3]. According to a recent survey, there are seven major 
categories of features being employed by a variety of academic and in-
dustrial groups for predicting tumor neoantigen immunogenicity [4]. To 
date, prediction accuracies of immunogenic neoepitopes are at a rela-
tively low level and vary greatly, implying that persistent efforts are 
required for improvement [4,5]. One of the bottlenecks of 

machine-learning-based algorithms lies in the availability of experi-
mentally validated immunogenicity results of candidate neoantigens. 
Only hundreds of neoantigens have been validated as immunogenic by a 
variety of independent studies. Furthermore, there is a great degree of 
inconsistency in features used by different studies. As a result, there was 
a great number of missing values after merging different datasets for 
model training. For instance, many biological features such as VAF and 
gene expression are not available due to the unavailability of raw 
sequencing data. Thus, to enhance the accuracy of computational neo-
antigen prediction and to optimally utilize experimentally validated 
data for model training, it is crucial to develop a novel machine learning 
framework for neoantigen prediction. This framework should manage to 
handle both limited positive samples and prevalent missing values in the 
training dataset. 

Here we present a neoepitope immunogenicity prediction framework 
– SIGANEO by integrating a generative adversarial network (GAN) with 
a similarity network. We demonstrate that GAN-imputed data exhibits a 
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higher level of agreement compared to other data-filling methods. In the 
meantime, our framework outperforms other machine-learning-based 
methods, especially in the top 10 or 20 predictions that are critical for 
the therapeutic application of neoantigen-based cancer vaccine [4,6,7]. 

2. Materials and methods 

2.1. Datasets 

To perform unsupervised training on our generative adversarial 
network (GAN) module, we collected paired-end whole-exome 
sequencing and RNA-sequencing data from 117 loci of 83 patients across 
six different cancer types [8–13]. After data processing and filtering, a 
total of 279,672 mutated peptides without labels were obtained for the 
GAN training process. 

A total of 1589 experimentally validated peptides (104 were vali-
dated as immunogenic neoepitopes), which span 8 different cancer 
types, were collected from 12 distinct studies for similarity network 
training (Table 1 and Supplementary Table 1). 

To evaluate the performance of SIGANEO, we compiled a test dataset 
by analyzing raw data of eight NSCLC and Melanoma patients obtained 
from the Tumor NeoEpitope Selection Alliance (TESLA) [4]. As a result, 
a total of 678 peptides that have been experimentally validated peptides 
were included in the dataset, out of which 34 were confirmed as 
immunogenic. 

2.2. Data processing and feature extraction 

All the whole exome sequencing data were firstly filtered using 
FASTP (v0.20.1) to remove low-quality reads [26]. The resulting 
high-quality reads were aligned to the hg38 human genome reference by 
BWA-MEM (v0.7.17) [27]. Alignment preprocessing, including dupli-
cates marking and base quality score recalibration, was performed using 
the high-performance tool elPrep (v4.0) [28]. After preprocessing, so-
matic variants were identified by Mutect2 and FilterMutectCalls from 
GATK (v4.1.6) [29]. Only variants with PASS FILTER tag were retained. 
The effects of these variants were determined by VEP (v94) [30]. The 
identified variants were processed to extract mutant peptides (8- to 
11-mer) with a sliding window size of 1. All mutant peptides were 
screened against the reference proteome and only tumor-specific pep-
tides (without perfect matches in the reference proteome) were retained. 
Class I human leukocyte antigen (HLA) subtyping was inferred by 
running HLA-LA against the WES data of control samples [31]. Addi-
tionally, the whole transcriptome sequencing reads (RNA-seq) were also 
filtered using FASTP, followed by being aligned to the hg38 using STAR 
aligner (v2.7.2) [32]. 

Variant allele frequency (VAF) was calculated as the ratio of alter-
native allele depth (AD) to the total depth at a given variant locus. Gene 
expression quantification measures (TPM and FPKM) were retrieved 
using RSEM (v1.3.1) [33]. RNA alt/ref read counts were defined as the 

number of RNA-seq reads matching the variant/reference at a given 
locus. 

To get a comprehensive binding affinity feature representation, 
binding affinities between HLA molecules and peptides were predicted 
using netMHCpan (v4.0), MHCflurry and MATHLA respectively 
[34–36]. Apart from binding affinity, binding stability of the pMHC 
complex is another critical feature for characterizing the pMHC. 
Accordingly, netMHCstabpan(v1.0) was applied to predict the pMHC 
binding stability [37]. Both Thalf (predicted half-life of the pMHC 
complex) and rank metrics were taken into consideration. Peptide HLA 
pairs with predicted binding rank larger than 2 % or IC50 value larger 
than 500 were filtered out to remove low affinity results. The recogni-
tion score represents the TCR recognition probability which was defined 
by Marta Łuksza et al. [38]. The sequence similarity was determined by 
aligning peptides to all the epitopes in the Immune Epitope Database 
[39]. The BLOSUM62 matrix was applied during alignment with gap 
open penalty 11 and gap extension penalty 1 [40]. In the recognition 
score model, both a and k are free parameters adjusted during the 
calculation of binding energies. Here, a denotes the horizontal shifting 
of the binding curve, while k represents the steepness. The values of a 
and k were set to 26 and 4.86936, respectively. 

Many previous studies have uncovered that the strength of amino 
acid hydrophobicity plays an important role in activating T cell re-
sponses [41,42]. Therefore, we calculated two different amino acid 
hydrophobicity scores for each peptide with the following equations: 

acid_score1(acid) =
{

1, acid ∈ {F,K,M,W, S}
0, otherwise  

ah1 =
∑peptide length

i=0
acid_score1(acidi)

ah2 =
∑peptide length

i=0
KD(acidi) ∗ WMATHLA(HLA, i)

where KD refers to Kyte-Doolittle hydrophobicity, WMATHLA represents 
the amino acid weight obtained by the multi-head attention mechanism 
from MATHLA, and HLA refers to the HLA allele of the pMHC complex 
[36,43]. 

3. Model 

The whole SIGANEO framework is composed of five modules – GAN, 
pMHC encoder, representation encoder, similarity calculator and simi-
larity rank net. Firstly, to address the issue of missing features in the 
public datasets used for model training, we employed a generative- 
adversarial-network-like (GAN-like) structure to impute missing 
values, which is an unsupervised learning module that combines a 
generator module and a discriminator module to execute data imputa-
tion (Fig. 1B). Next, the pMHC encoder module is designed to eliminate 
redundant information from pMHC-associated features, thus obtaining 
relevant pMHC embeddings. The representation encoder module in-
tegrates pMHC embeddings with original biological features to generate 
the final embeddings. All of these three modules are trained using 
unlabelled data. Finally, the similarity calculator and similarity rank net 
use labelled data to calculate similarity matrix and predict neoantigen 
immunogenicity. 

For each pMHC complex, we combined the biological features 
(RNA_ref_read_count, RNA_alt_read_count, Gene_FPKM, Gene_TPM, 
VAF) with the pMHC-associated features (ah1, ah2, MHCFlurry_aff, 
MHCFlurry_rank, NetMHCPan_aff, NetMHCPan_rank, NetMHC-
stabpan_Thalf(h), NetMHCstabpan_rank, MATHLA_aff, Recognition_-
score) as the input of the GAN module (Fig. 1B). The generator module is 
a symmetrical four-layer MLP (Tanh function as activation function), 
where the original neoepitope representation is encoded into 16 and 32- 

Table 1 
Summary of the training dataset.  

Studies Number of Samples Number of positive samples 

[14]  23  1 
[15]  45  5 
[16]  112  25 
[17]  17  3 
[18]  699  9 
[19]  60  3 
[20]  308  10 
[21]  37  10 
[22]  28  7 
[23]  21  9 
[24]  71  4 
[25]  168  18 
Total  1589  104  
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dimensional vectors respectively which are later restored into the 
original dimensionality. 

To ensure that the training process of generator module is not 
impacted by missing values, we used MSE loss with mask to evaluate the 
loss between the original representation and the restored representation, 
as shown in Equations 1 and 2 [44,45]. 

lossij =
xij − xij

num
× maskij (1)  

maskij =

{
1, if xij is not None

0, if xij is None (2) 

In this generative adversarial network, a two-layer MLP serves as the 
discriminator module to distinguish real data from imputed data. The 
representation of each sample is transformed to a 32-dimensional vector 
which is further reduced to a 2-dimensional vector. The performance of 
discriminator is evaluated by the Cross Entropy Loss [46]. Once the 
adversarial training process of generator and discriminator modules is 
completed, the final data generated by the GAN are fed into downstream 
embedding modules. 

We encoded and compressed pMHC features into pMHC binding 

representation through an auto-encoder-decoder module which consists 
of four fully-connected layers with dimensions of 16, 8, 8 and 16 
sequentially (Fig. 1C) [47]. Furthermore, another auto-encoder-decoder 
network, consisting of four fully-connected layers with sequential di-
mensions of 16, 64, 64 and 16, is employed to automatically integrate 
and compress the pMHC binding representation with other biological 
features to obtain a 64-dimensional query representation, which is then 
used for subsequent prediction and classification tasks (Fig. 1D). 

Due to the limited number of positive samples, the cosine similarity 
between the embedding of each sample and the positive samples was 
calculated, resulting in a new similarity vector according to the 
following equation [48]: 

SVi =

[
xi • x̌1

‖xi‖ • ‖x̌1‖
,

xi • x̌2

‖xi‖ • ‖x̌2‖
,…,

xi • x̌j

‖xi‖ •
⃦
⃦x̌j

⃦
⃦

]

where xi is the embedding of the neoepitope, SVi is the similarity vector 
of xi, and ̌xj is the embedding of the j-th positive sample; ‖ • ‖ is the norm 
of the vector. 

The embedding reconstruction can offset the systematic bias in 
previous steps. Meanwhile, the final embedding vector is not 

Fig. 1. The structure of SIGANEO. A. The overview of SIGANEO. B. The structure of GAN-like network. This network is composed of a generator module and a 
discriminator module. The output of the generator module is later used by the pMHC encoder and the representation encoder. The uncolored squares depicted in the 
figure correspond to the missing features within the original data. The differently sized, yellow rounded rectangles in the figure refer to linear layers with different 
dimensions. C. The structure of pMHC Encoder. This is an auto-encoder-decoder module for encoding pMHC-associated features imputed by preceding GAN-like 
module. The pMHC representation is the output of the second layer of the network. D. The structure of representation Encoder. This is an auto-encoder-decoder 
module to obtain sample representation by encoding biological features (imputed by GAN-like module) and pMHC representation in Fig. 1C. The sample repre-
sentation is the output of the second layer of the network. E. The structure of similarity network. Similarity calculator is used to calculate the representation similarity 
between query sample and positive samples, which obtains a new sample embedding for predicting immunogenicity by similarity rank net. 
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constructed directly from the original features, so the network is more 
fault tolerant to imputed values [49]. 

Ultimately, a two-layer MLP structure was used in the final classifi-
cation network. This facilitates the training of the similarity rank net, 
enabling it to achieve better performance even with a limited number of 
labelled training sets [50]. 

SImmunogenicity = Sigmoid(Tanh(SVi • w1) • w2 )

Where SImmunogenicity is the predicted value of immunogenicity, SVi ∈

R1∗104 is the Similarity Vector of the i-th sample, Sigmoid and Tanh are 

activation functions, and w1 ∈ R104∗32 and w2 ∈ R32∗1 are weight 
matrices of MLP. 

During the training process of SIGANEO, the Adam optimization 
function is utilized with a learning rate of 0.001. The batch size of the 
GAN module is set as 256 and the epoch is set as 1000. In the similarity 
module, the batch size of the pMHC encoder, Representation encoder, 
and Similarity Rank Net are set to 64, 64, and 32 respectively. For each 
of these networks, the epoch is set as 200. The early stop technique is 
used, which stops the training process is if there is no decrease in loss 
over five consecutive epochs. 

Fig. 2. Model performance. A. Line plot of fraction ranked values (y axis) at the top-N ranked predictions per sample (x axis). Each dot denotes the fraction of 
validated immunogenic peptides in the top N ranked predictions. B. Visualization of data imputation by SIGANEO’s GAN module, zero-filling and mean-filling 
methods. The t-SNE results are visualized along dimensions 1 and 2. The complete TESLA dataset is denoted by red dots. Blue, green and purple dots represent 
data points imputed by GAN, mean-filling and zero-filling methods, respectively. C. Line plot of fraction ranked values (y axis) at the top-N ranked predictions per 
sample (x axis). Different colors represent different machine-learning-based immunogenicity methods. D. Histogram of FR values corresponding to each tool at the 
top 20 predictions among different patients (x axis). Bar colors represent different prediction tools. Patient IDs of P1 to P8 correspond to patient ID 1, 2, 3, 12, 16, 4, 8 
and 9 from the TESLA consortium respectively. Methods with FR of 0 were assigned with a small value of 0.01 to avoid blank bar in the figure. 
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4. Results 

To select the appropriate method for handling missing values in the 
training data, we compared three missing value imputation algorithms – 
zero-filling (filling all the missing values with 0), mean-value-filling 
(filling all the missing values with mean value of a given feature), and 
GAN-based filling methods. Initially, we utilized five-fold cross-valida-
tion to determine the optimal hyperparameters for the GAN-based 
model and to assess its performance (Fig. S1A). Next, the bench-
marking metric – fraction ranked (FR), which was specifically designed 
to reflect accuracy of neoantigen prediction algorithm by a previous 
study, is utilized to compare different filling methods [4]. Fraction 
ranked is defined as the ratio of the number of experimentally validated 
neoepitopes in the top N predictions to the total number of validated 
immunogenic neoepitopes in the test set. 

It can be apparently seen that FRs at the top-N predicted neoepitopes 
(N ranges from 10 to 100 with step size of 10) of the similarity network 
trained on the GAN-imputed data are significantly higher than the other 
two data filling methods (paired t-test p-values: 2.72*10− 9 and 
5.65*10− 9 as compared to zero-filling and mean-filling respectively) 
(Fig. 2A). The average improvement of GAN-coupled similarity network 
of each top-N setting are 197 % and 376 % over zero-filling-coupled and 
mean-value-filling-coupled networks, respectively. It is also worth 
noting that the average performance of zero-filling-coupled network is 
higher than mean-value-filling-coupled network. One possible expla-
nation is that zero-filling method can mask missing values by 0, whereas 
mean-filling method introduces more inaccurate information to the 
network [51]. To gain a more intuitive understanding of the impacts of 
missing-value imputation methods on neoantigen prediction perfor-
mance, we randomly removed 42.5 % of values from the test dataset 
according to the rate of missing value in the training dataset. Given that 
t-SNE (t-Distributed Stochastic Neighbor Embedding) is better at pre-
serving the local structures in high-dimensional data, it was employed to 
reduce the data dimensions for visualization before and after imputa-
tion. It is evident that the data imputed by GAN (blue dots) align more 
closely with the original complete data (red dots) compared to the other 
two methods (Fig. 2B). 

To further evaluate the performance of our method, we compared 
SIGANEO to another four neoepitope immunogenicity prediction tools – 
SNM, PRIME, DeepImmuno and IEDB immunogenicity prediction tool 
[39,52–54]. We initiated a comprehensive model comparison using 
conventional evaluation metrics – the Area Under the Receiver Oper-
ating Characteristic Curve (AUROC) and the Area under the 
Precision-Recall Curve (AUPRC). This comparison aimed to provide an 
insight into the performance of our model over the entire range of 
prediction results. It is revealed that SIGANEO significantly outperforms 
all the other competing methods by achieving AUROC of 0.94 and 
AUPRC of 0.338 (Fig. S1B and S1C). In the field of neoantigen cancer 
vaccine, FR metric is a more important metric due to the fact that it can 
effectively capture the accuracy of the top-ranked predicted neo-
epitopes, which are subsequently utilized in the formulation of cancer 
vaccines. As a result, FRs of SIGANEO are distinctly higher than all the 
other four tools at every setting of the top N ranked neoepitopes 
(Fig. 2C). The mean FR of SIGANEO is 0.685 which is significantly 
higher than PRIME and SNM by 45 % and 47 % respectively (paired 
t-test p-values: 1.79*10− 8 and 3.19*10− 8). In real world clinical appli-
cation of neoantigen vaccine, the top 10 or 20 predicted neoepitopes are 
usually selected for vaccine development [4,6,7]. Therefore, FRs at the 
top 10 and 20 predicted neoepitopes garner more weights during 
assessment of immunogenicity prediction tools. FRs at the top 10 and 20 
predicted neoepitopes reaches 0.441 and 0.529 which are 114 % and 50 
% higher than the second highest tools (SNM at the top 10 with FR of 
0.206 and PRIME at the top 20 with FR of 0.353), demonstrating that 
SIGANEO possesses a significant advantage in identifying immunogenic 
peptides in the context of therapeutic application. 

To further examine the performance of SIGANEO, we scrutinized the 

top 20 predicted neoepitopes at the level of individual patients as shown 
in Fig. 2D. The results of IEDB were excluded from the comparison 
because none of validated immunogenic peptide was included in its top 
20 predictions of any patient. Overall, FRs of the top 20 predictions of 
SIGANEO are greater than or equal to FRs of all the other tools in all 8 
patients. Particularly, SIGANEO identified 18 validated immunogenic 
neoepitopes for 8 patients which was much higher than competing tools 
(PRIME: 12, SNM: 11, DeepImmuno: 2). Notably, for the top 20 pre-
diction results of all the 3 patients in the independent cohort of TESLA, 
namely P6, P7 and P8, two machine learning based tools, SIGANEO and 
SNM, both managed to identify 100 % of validated immunogenic epi-
topes, surpassing the approach proposed by the TESLA consortium [4]. 
Last but not least, SIGANEO was the only method being able to include 
at least one validated immunogenic neoepitope in the top 20 results of 
all 8 samples, showing its robustness in the ability to identify immu-
nogenic peptides across different individuals. 

5. Discussion 

The efficacy of the individualized cancer neoantigen vaccine is 
heavily dependent on the accuracy of the neoantigen prediction. 
Therefore, accurate computational prediction of immunogenic neo-
epitopes is highly desired and has attracted great attention from both 
academic and industrial endeavors. However, the limited availability of 
experimentally validated neoepitope data has posed a challenge for 
machine learning algorithms to achieve high accuracy in neoantigen 
prediction. The superior performance of our model integrating autoen-
coder, generative adversarial network (GAN) and similarity network 
have provided several insights into further development of machine- 
learning-based neoepitope immunogenicity prediction frameworks. 
Firstly, unsupervised deep learning model such as GAN has a great po-
tential in handling missing values within training dataset as well as 
reconciling heterogeneity across different studies. The superior perfor-
mance of GAN imputation can likely be attributed to the inherent cor-
relations among the features used for neoantigen prediction. In contrast 
to univariate imputation methods like zero-filling and mean-filling, GAN 
leverages the intercorrelation of features to more accurately estimate the 
distribution of missing data, resulting in a more precise imputation al-
gorithm. In addition, GAN framework can also augment immunogenic 
neoepitope data which could possibly boost the performance of epitope 
immunogenicity prediction significantly [55,56]. Secondly, the simi-
larity network can, to an extent, mitigate the imbalance between posi-
tive (immunogenic peptide) and negative samples in the training set. In 
a similar situation with an imbalanced training dataset, one-class kernel 
extreme learning machine has been effectively utilized for the 
Covid-19-Pneumonia classification [57]. In this regard, one-class clas-
sification algorithms can be implemented to neutralize the impact of 
imbalanced data on neoepitope immunogenicity prediction. 
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