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During sleep, the two hemispheres display asymmetries in their activation pattern. Various hemispheric asymmetry measures
have been utilized in existing works. Nevertheless, all these measures have one common problem that they would merely take one
representative quantity into account when evaluating the functional asymmetry. However, there is a complex series of information
exchanges between the two cerebral hemispheres, and only considering one quantity inevitably leads to one-sided or even
incorrect conclusions. Consequently, to address the limitation of conventional laterality indices, we propose the so-called
enhanced laterality index (ELI), which considers multiple measures of functional asymmetries. Normal sleep and obstructive sleep
apnea electroencephalograms (EEGs) from 21 subjects collected in the clinical acquisition system are applied, and two repre-
sentative quantities are considered simultaneously in this paper. We measure the signal complexity by using fuzzy entropy, and
the signal strength is evaluated by calculating EEG energy. *e difference of ELI is demonstrated by the comparison with the
traditional laterality index (LI) in evaluating the functional asymmetry during sleep.

1. Introduction

Hemispheric oscillation of slow-wave activity in the brain
during sleep is well manifested in animals, such as birds and
cetaceans [1–3], and its research in humans is gradually
arousing people’s attention recently [4–7]. *e asymmetry
processing of sensory, affective, and cognitive information is
believed to be one of the intriguing properties of human
brain function. It is widely accepted that both cerebral
hemispheres are in constant communications with each
other during all kinds of brain activities [8]. At the same
time, the differences between left and right cerebral hemi-
spheres have been reported in existing studies with EEG
[9, 10] and fMRI [11], including language, vision, audition,
and memory [12].

First of all, a reliable measure that can accurately evaluate
the hemispheric asymmetry is needed [13, 14]. In the past,
existing works have proposed or applied different kinds of

indices to investigate the differences between the two ce-
rebral hemispheres. *e most commonly used one is called
the laterality index (LI) [15] or asymmetry index in other
works [16]. *e computation of LI is defined as
LI � λ · (QLH − QRH)/(QLH + QRH), where QLH and QRH

are representative quantities measured for left and right
hemispheres, respectively.*e parameter λ is a scaling factor
that defines the range of LI values. *e major rational for
using LI values to measure hemispheric differences lies in
that it facilitates the description of hemispheric asymmetry
from functional activation patterns because it is easier to
manipulate one value per subject than thousands of voxels.
When interpreting LI values and comparing between sub-
jects, there are several factors that need to be taken into
consideration including the nature of quantification of left
and right hemisphere contributions, the localization of
volumes of interest within each hemisphere, the thresh-
olding LI, and so on. At the same time, some modifications
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to the traditional LI equation have also been proposed. In
[15], a modified LI was proposed to solve the problem of
negative QLH and QRH values, while Nagata et al. also
presented an alternative way to minimise the influence of the
threshold on LI assessment [17].

In addition to LI and its modifications, some other
measures have also been proposed or applied in existing
publications. Magnitude of squared coherence (MSC) is the
modulus of the coherence function measuring the linear
correlation in amplitude and phase between two signals. In
[18], MSC was applied to C3 and C4 EEG signals in the
frequency domain to investigate the asymmetric sleep in
human patients, and their work reported an increase of MSC
in the delta EEG range during apneic episodes. Besides, the
phase lag index (PLI) is a measure of linear and nonlinear
interhemispheric phase synchrony, and it is sensitive to
phase differences between two EEG signals. Rial et al. re-
ported that the left hemisphere was the dominant during the
air flux since the PLI corresponding to the delta band was
positive and different from zero. In addition, the index L
measures the nonlinear synchronization between two signals
in their reconstructed state space using the concept of
generalized synchronization. *e calculation procedure of
index L refers to [18], and their work reported an obvious
increase in index L during apneic events. In general, all the
three indexes mentioned above show obvious and consistent
changes in interhemispheric symmetry depending on the
state of the airways during sleep. At the same time, some
works related to functional asymmetries of the brain asso-
ciated with EEG-arousals were also manifested by two other
indexes, called interhemispheric asynchrony (IHA) [19] and
interhemispheric synchrony index (IHSI) [20]. IHA is
computed based on the spectral correlation coefficients over
all EEG frequency bands, while IHSI is based on the higher
order spectral of IHA time series and principal component
analysis [20].

In general, all the abovementioned indexes have been
successively applied to demonstrate the functional asym-
metries between two cerebral hemispheres during sleep
apnea or EEG-arousal in existing publications. However,
one common problem that desperately needs to be solved in
all the abovementioned indexes is that they merely take only
one representative quantity into account when calculating
the index. For example, only the power spectrum of
30 seconds of EEG time series was acquired to calculate LI in
[21], and only the voxels that survive a fixed threshold within
regions of interest of fMRI were counted to calculate LI in
[15]. Besides, other examples were also given in [18] that
only the correlations between two signals from each
hemisphere were considered for MSC, only the relative
phase between two signals from each hemisphere was
considered for PLI, and only the degree of the interde-
pendence between two signals from each hemisphere was
considered for index L. In addition, both IHA and IHSI only
considered the spectral correlation coefficients of signals
from both hemispheres [19, 20]. However, brain activities
involve a complex series of information exchanges between
two hemispheres; the conventional LI and its modifications
do not account for multiple representative quantities in

evaluating hemispheric asymmetry. Consequently, we in-
tend to solve this problem by proposing a more reliable
index called the enhanced laterality index (ELI), which could
consider more than one representative quantity from both
hemispheres. Compared with the existing indexes, ELI
would make more reliable conclusions since the information
from different quantities would be integrated and analyzed
simultaneously. Extensive experiments on normal sleep and
obstructive sleep apnea (OSA) EEG data were conducted in
this paper to test the effectiveness of ELI.

*e remaining sections of this paper are organized as
follows: the clinical data acquisition and ELI definition are
given in Section 2, the results on the traditional LI and the
proposed ELI are presented in Section 3, while discussions
and conclusions are given in Sections 4 and 5, respectively.

2. Materials and Methods

2.1. Clinical Data Acquisition. *e clinical data applied in
this paper are acquired in the Sleep Medical Centre of
Shandong Provincial Hospital, China. Patients suspected of
suffering from sleeping problems, including OSA or snoring,
are referred to the hospital for a routine overnight diagnostic
test known as the polysomnography test (PSG). Patients
were monitored by the Respironics Alice 5 PSG Diagnostic
Sleep System during overnight sleep. Electrodes were placed
in the basic sleep diagnostic montage, pressure and thermal
sensors are used for the oral and nasal airflow, and Nonin
finger probes are used for blood oxygen saturation. Table 1
presents the demographic details of the subjects in this study.
We include 21 subjects in this study with 9 females and 12
males aged from 18 to 85 years. *e corresponding sleep
efficiency, apnea-hypopnea index (AHI), sleep arousal, and
SpO2 (pulse oxygen saturation) for each individual subject
are also given.

Sleep efficiency is the percentage of time spent sleeping
while in bed. AHI is an index used to indicate the severity
of sleep apnea. It is represented by the number of apnea
and hypopnea events per hour of sleep. *e AHI is cal-
culated by dividing the number of apnea events by the
number of hours of sleep. AHI values are categorized as:
normal: 0–4; mild sleep apnea: 5–14; moderate sleep
apnea: 15–29; severe sleep apnea: 30 or more. Arousal is an
abrupt change in the pattern of brain wave activity, as
measured by an EEG. Arousal typically represents a shift
from deep sleep, which is commonly known as REM sleep,
to light sleep, known as NREM sleep, or from sleep to
wakefulness. SpO2 is a measurement of the amount of
oxygen attached to the haemoglobin cell in the circulatory
system. Put simpler, it is the amount of oxygen being
carried by the red blood cell in the blood. *e normal
range of SpO2 is around 96%.

In our overnight PSG test, multiple medical signals are
carefully monitored simultaneously. To be specific, elec-
trooculogram (EOG), EEG, electromyography (EMG), na-
sal/oral airflow, respiratory effort, SpO2, body positions,
body movements, and snore are included in this test for an
individual patient. Altogether, a PSG test involves over 24
channels of measurements requiring physical contact with

2 Journal of Healthcare Engineering



the patient. *e recorded PSG data are manually given
annotations by sleep technicians according to the American
Academy of Sleep Medicine (AASM) [22] so that the sleep
stages and REM/NREM status of sleep could be determined.
All related sleep diagnosis were made according to the
standard diagnostic criteria of the International Classifica-
tion of Sleep Disorders [23].

Two channels of EEG signals, C3-A2 and C4-A1,
recorded with and without OSA occurring are segmented
separately for further analysis. Each segment lasts
20 seconds. Since the sampling frequency in the acquisition
system is 200Hz, 4000 data points are included in each
segment. Besides, it is necessary to mention that EEG data
are recorded from the cortical regions of both hemispheres
using electrode positions, C4, C3, A2, A1, based on the
standard international 10–20 system of electrode placement
[24]. Figure 1 gives typical examples of 20 s epoch C3-A2 and
C4-A1 EEG for both normal sleep and OSA segment.

*e data studied in this paper were acquired in clinical
diagnosis. As a part of the analysis and also one advantage of
these PSG data, the event types are also carefully annotated
at the exact time positions throughout the whole mea-
surement (see Figure 2). Possible event types such as central
apnea, obstructive apnea, hypopnea, leg movement, snore,
long RR, heart rate rise, µ-arousal, and PTT drop are an-
notated for each individual patient. Consequently, the exact
signal segments related to specific event types could be easily
acquired. *is helps to mine data features to the greatest
degree for each kind of event.

2.2. Enhanced Laterality Index. Generally, in order to rec-
ognize the interrelationships between the two brain hemi-
spheres, the most commonly used data analysis index is
called the laterality index (LI). In this paper, we propose a

novel analysis index called enhanced laterality index (ELI)
which could capture multiple kinds of representative
quantities measured from left and right hemispheres si-
multaneously. ELI is defined as follows:
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Qi
LH and Qi

RH represent the ith quantity measured from the left
and right hemispheres, respectively, and λi is the scaling factor
that makes a tradeoff between N quantities. Concretely, for a
given set of λi, ELI would vary continuously from 1, which
represents for a pure left hemisphere asymmetry, to –1 that
represents for a pure right hemisphere asymmetry. Specifically,
when N � 1, ELI degrades into the traditional LI.

2.2.1. Step A: EEG Data Segmentation and Data
Preprocessing

(i) (A1) According to the event type annotation (see
Figure 1), 20 seconds of C3-A2 and C4-A1 EEG data
related to normal sleep and OSA are segmented for
each subject. Let the digitized EEG data from the left
hemisphere of the brain during PSG be xi

C3 and data
segmented from the right hemisphere be xi

C4, where i
represents the number of subject that ranges from 1 to
21 since we include 21 subjects in total in this study.

(ii) (A2) To remove the high frequency artifacts such as
the muscle noise and power line interference at
50Hz, the data acquired in step A1 passes through
an 8th-order digital Butterworth filter (see
Figure 3(a)) with the cutoff frequency f � 50Hz to
obtain the filtered segments yi

C3 and yi
C4. Typical

examples of the spectrum of the original signal and
the filtered signal are illustrated in Figure 3(b).

(iii) (A3) *e filtered EEG data yi
C3 and yi

C4 are dif-
ferentiated into frequency bands, delta (δ, 1–3Hz),
theta (θ, 4–7Hz), alpha (α, 8–13Hz), and beta (β,
14–30Hz) [25], based on the wavelet transform. Let
the resulting spectral magnitude be denoted by
yiδ

k , yiθ
k , yiα

k , and y
iβ
k respectively, where k represents

C3 or C4 channel. Figure 4 presents the four typical
frequency bands, δ, θ, α, and β, decomposed from
the original recorded EEG.

2.2.2. Step B: Computation of Representative Quantities.
In this step, signal complexity and signal strength are
considered simultaneously to determine the hemispheric
brain asymmetry during normal sleep and OSA:

Table 1: Demographic details of the subjects studied.

No. Age Sex Sleep efficiency
(%) AHI Arousal

(/h)
SpO2
(%)

1 76 M 35.6 16.7 17.4 96
2 64 F 73.0 — 8.2 —
3 51 M 94.3 43.3 19.4 95
4 51 M — 3.7 — 97
5 18 M — 37.6 — 94
6 45 F 77.6 — 8.4 —
7 26 M 98.5 70 51.5 93
8 21 M 95.8 35.4 9.1 96
9 53 M 96.8 69.1 43.7 95
10 35 M 91.7 76.6 12.7 91
11 46 F 96.3 3.9 5.4 97
12 51 F 92.1 9.8 3.9 98
13 60 F 91.9 14.0 0.9 97
14 44 M 92.5 31.5 13.8 96
15 85 F 26.2 39.4 7.9 96
16 47 M 87.0 29.7 25.1 97
17 63 F 81.0 30.7 12.5 94
18 44 M 90.1 37.1 15.0 95
19 56 F — 4.1 — 97
20 34 M 97.1 51.0 23.4 96
21 40 F 84.0 72.3 9.9 98
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(i) (B1) Computation of Fuzzy Entropy. *e detailed
physical significance of fuzzy entropy refers to
[26–28]. For a decomposed EEG frequency com-
ponent y

ij

k , where j denotes δ, θ, α, or β, it is

segmented into 20 epochs evenly. Each epoch is
notated as y

ij

k |l, where l ranges from 1 to 20, and it
lasts 1 second and 200 data points.*e fuzzy entropy
(FE) of each y

ij

k |l is then computed as follows:
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Figure 1: Illustration of 20 s epoch C3-A2 and C4-A1 EEG signals for normal sleep and OSA.
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Figure 2: PSG signals and event annotations, in which the red box indicates the exact OSA event annotation.
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where m is the embedding dimension, n is the fuzzy
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Figure 3: (a) Butterworth filter magnitude response, the cutoff frequency is 50Hz. (b) *e frequency spectrum based on the Fourier
transform of the original EEG data and the filtered data.
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Figure 4: Typical frequency bands decomposed from original EEG data based on the wavelet transform. (a) δ (1–3Hz), (b) θ (4–7Hz),
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value of y
ij

k |l. Finally, the average fuzzy entropy for
the entire sequence y

ij

k could be computed as follows:

FEij
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1
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(ii) (B2) Computation of Signal Strength. Similarly, y
ij

k |l
is firstly acquired, and the energy of this signal
segment is computed as follows:
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Consequently, the average energy of the entire se-
quence y

ij

k could be computed by the following
equation:
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2.2.3. Step C: Computation of ELI

(i) (C1) Computation of LI only considering signal
complexity. Since the fuzzy entropy of two channels
(C3 and C4) and four frequency bands (δ, θ, α, or β)
of each subject could be computed using (5) in step
B1, then LI based on the signal complexity could be
computed as follows:

LIFE|ij �
FEij

C3 − FEij

C4

FEij

C3 + FEij

C4

. (8)

(ii) (C2) Computation of LI only considering signal
strength. Similarly to step C1, the average energy of
two channels (C3 and C4) and four frequency bands
(δ, θ, α, or β) of each subject could be computed
using (7) in step B2, then LI based on signal strength
could be computed using the following equation:

LIE|ij �
E

ij

C3 − E
ij

C4

E
ij

C3 + E
ij

C4

. (9)

(iii) (C3) Calculate ELI over all subjects for four fre-
quency bands using (1) in (10) to (13), where i ranges
from 1 to 21. To investigate the variation trend of
ELI with the parameter λ, we vary λ in the range of
0 : 0.1 : 1. Specifically, if λ � 0, only the signal
complexity is considered as (8), and besides if λ � 1,
only signal strength is in consideration as (9),

ELI|iδ � λ · LIFE|iδ +(1 − λ) · LIE|iδ , (10)

ELI|iθ � λ · LIFE|iθ +(1 − λ) · LIE|iθ , (11)

ELI|iα � λ · LIFE|iα +(1 − λ) · LIE|iα , (12)

ELI|iβ � λ · LIFE|iβ +(1 − λ) · LIE|iβ . (13)

In summary, PSG data from 21 subjects were
studied in this paper. Asmentioned before, based on
the PSG data quality and other clinical evaluations,
20 seconds C3-A2 and C4-A1 EEG data labelled
with normal sleep and OSA were segmented sep-
arately for each subject. *e EEG decomposition
based on the wavelet transform was then performed
to acquire the four typical frequency bands. As a
result, we got a total of 3360 normal sleep EEG
epochs and 3360 OSA EEG epochs as described in
Step B1. All the following results were conducted on
MATLAB 2018a on a Dell computer with a
3.40GHz Intel Core i7-2600 CPU and 16.0GB
RAM.*is section consists of three main parts: EEG
complexity evaluation, EEG strength evaluation,
and computation of the enhanced laterality index.

3. Results

3.1. EEG Complexity Evaluation. To investigate the signal
complexity, we computed fuzzy entropy [29] on each epoch
of normal sleep and OSA EEGs.*e computation procedure
was given in Step B1. In this study, we do not intend to
investigate the influence of different parameters, thus we just
apply the same default parameters for each epoch that
m � 2, n � 2, and r equals 0.2 times of the standard devia-
tion. We present the fuzzy entropy values calculated for all
subjects in Table 2, in which the mean value and standard
deviation are given. To investigate the statistical properties of
fuzzy entropy among different EEG bands, between left and
right hemispheres, and between normal sleep and ob-
structive apnea, the paired samples T test was given in
Tables 3–5, in which p< 0.05 was annotated in bold and with
‘∗’, indicating that significant difference exists. Significant
and consistent changes in fuzzy entropy can be seen between
4 frequency bands. It is also interesting to note that dif-
ferences also exist between C3 and C4 channel or normal
sleep and OSA epochs, which is just not that numerically
significant.

Based on the signal complexity computed by fuzzy
entropy, the hemispheric asymmetry during normal sleep
and OSA is evaluated in this section by LI, in which λ � 1,
QLH � FEc3, and QRH � FEc4. Figure 5 illustrates the LI
distributions along with FEc3 and FEc4 for four frequency
bands. *e two axes denote FEc3 and FEc4 respectively, and
the pixels in each figure indicate the corresponding LI.
Concretely, on one hand, if LI scatters in the upper right
corner, i.e., FEc3 is close to 1, whereas FEc4 is close to 0, we
can make the conclusion that the left hemisphere dominates
the main brain activity. On the other hand, the main brain
activity is concentrated in the right hemisphere if LI locates
in the lower left corner. Both (A) and (B) in Figure 5 show
clear boundaries among δ, θ, α, and β bands. However, the LI
distribution in (A) and (B) is also similar, showing a
symmetry respect to the diagonal for both normal and
obstructive apnea EEG segments, contradicting the existing
conclusion of asymmetric sleep in apneic human patients
[18, 20]. Consequently, LI performs poorly in distinguishing
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between normal sleep and OSA just using one representative
quantity.

3.2. EEG Strength Evaluation. Similar results on EEG
strength evaluation are then presented in this section. *e
computation procedure of EEG epoch strength is given in
Step B2. To give a comparable presentation with Figure 5, the
computed values of signal strength are normalized between 0
and 1. Table 6 shows the normalized signal strength of 4
frequency bands calculated for all subjects. To investigate the

statistical properties of signal strength among different EEG
bands, between left and right hemispheres, and between
normal sleep and obstructive apnea, the paired samples T
test is also given in Tables 7–9, in which p> 0.05 was an-
notated with ‘∗’, indicating that no significant difference
exists. According to Table 7, signal strength has significant
differences between each other among four frequency bands.
Besides, differences in signal strength also exist between C3
and C4 or normal sleep and OSA epochs.

At the same time, LI based on signal strength is cal-
culated to investigate the asymmetry between two

Table 2: Differences in signal complexity for normal sleep and OSA EEG epochs.

Bands
Normal sleep Obstructive apnea

FEC3 FEC4 FEC3 FEC4

δ 0.1412± 0.0705 0.1499± 0.0749 0.1491± 0.0756 0.1547± 0.0774
θ 0.3473± 0.0857 0.3427± 0.0972 0.3436± 0.0869 0.3483± 0.0887
α 0.5036± 0.0715 0.4940± 0.0934 0.4948± 0.0733 0.4931± 0.0878
β 0.6007± 0.0776 0.6019± 0.1005 0.5859± 0.0701 0.5899± 0.0769
Mean value and standard deviations are presented for each frequency band. *e functional complexity of the brain during sleep mainly concentrates in the β
band.

Table 3: Paired samples T test of fuzzy entropy between paired EEG bands.

Bands
Normal sleep Obstructive apnea

FEC3 FEC4 FEC3 FEC4

δ-θ 0.000∗ 0.003∗ 0.000∗ 0.035∗
δ-α 0.015∗ 0.004∗ 0.000∗ 0.009∗
δ-β 0.000∗ 0.023∗ 0.002∗ 0.011∗
θ-α 0.032∗ 0.000∗ 0.043∗ 0.009∗
θ-β 0.000∗ 0.009∗ 0.029∗ 0.028∗
α-β 0.000∗ 0.008∗ 0.000∗ 0.000∗

*ere are significant differences in fuzzy entropy between each pair of frequency bands, whether in normal sleep or obstructive sleep apnea. *e asterisks in
Table 3 mean that P < 0.05 in the paired samples T test, indicating that significant differences in fuzzy entropy exist between paired EEG bands.

Table 4: Paired samples T test of fuzzy entropy between two hemispheres.

Bands Normal sleep Obstructive apnea
FEC3 - FEC4 FEC3 - FEC4

δ 0.004∗ 0.017∗
θ 0.051 0.038∗
α 0.000∗ 0.022∗
β 0.391 0.000∗

In normal sleep, significant differences in fuzzy entropy between C3 and C4 channels exist in both δ and α bands, while not in θ and β. In contrast, significant
differences exist in all bands in OSA sleep. *e asterisks in Table 4 mean that P < 0.05 in the paired samples T test, indicating that significant differences in
fuzzy entropy exist between two hemispheres.

Table 5: Paired samples T test of fuzzy entropy between normal sleep and obstructive apnea.

Bands FEC3 FEC4
Normal sleep-obstructive apnea Normal sleep-obstructive apnea

δ 0.001∗ 0.123
θ 0.556 0.001∗
α 0.000∗ 0.190
β 0.026∗ 0.000∗

In the C3 channel, significant differences in fuzzy entropy between normal sleep and OSA sleep exist in δ, α, and β. While in the C4 channel, significant
differences exist in θ and β. *e asterisks in Table 5 mean that P < 0.05 in the paired samples T test, indicating that significant differences in fuzzy entropy exist
between normal sleep and obstructive apnea.
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Figure 5: LI distribution along with FEC3 and FEC4. Total epochs were presented in (a) normal sleep and in (b) obstructive sleep apnea.

Table 6: Difference in signal strength for normal sleep and OSA EEG epochs.

Bands
Normal sleep Obstructive apnea

EC3 EC4 EC3 EC4

δ 0.6919± 0.0917 0.6863± 0.0943 0.6853± 0.0862 0.6874± 0.0915
θ 0.1218± 0.0643 0.1316± 0.0674 0.1283± 0.0680 0.1302± 0.0670
α 0.5504± 0.0649 0.5400± 0.0760 0.5450± 0.0643 0.5433± 0.0685
β 0.4159± 0.0725 0.4075± 0.0771 0.4147± 0.0743 0.4095± 0.0706
Mean value and standard deviations are presented for each frequency band. *e functional strength of the brain during sleep mainly concentrates in the δ
band.

Table 7: Paired samples T test of signal strength between paired EEG bands.

Bands
Normal sleep Obstructive apnea

EC3 EC4 EC3 EC4

δ-θ 0.024∗ 0.006∗ 0.000∗ 0.045∗
δ-α 0.005∗ 0.026∗ 0.031∗ 0.007∗
δ-β 0.002∗ 0.003∗ 0.042∗ 0.013∗
θ-α 0.000∗ 0.000∗ 0.033∗ 0.008∗
θ-β 0.000∗ 0.001∗ 0.024∗ 0.030∗
α-β 0.018∗ 0.004∗ 0.000∗ 0.002∗

*ere are significant differences in signal strength between each pair of frequency bands, whether in normal sleep or obstructive sleep apnea. *e asterisks in
Table 7 mean that P < 0.05 in the paired samples T test, indicating that significant differences in signal strength exist between paired EEG bands.

Table 8: Paired samples T test of signal strength between two hemispheres.

Bands Normal sleep Obstructive apnea
EC3 –EC4 EC3 –EC4

δ 0.085 0.083
θ 0.005∗ 0.163
α 0.000∗ 0.396
β 0.021∗ 0.006∗

In normal sleep, significant differences in signal strength between C3 and C4 channels exist in θ, α, and β bands, while not in δ. In contrast, significant
differences exist in all bands in OSA sleep. *e asterisks in Table 8 mean that P < 0.05 in the paired samples T test, indicating that significant differences in
signal strength exist between two hemispheres.

8 Journal of Healthcare Engineering



hemispheres. *e LI distribution is then illustrated in Figure 6.
Consistent conclusions could be drawn that strength differ-
ences among the 4 bands are significant since the LI distri-
bution boundaries are clear. However, since both (A) and (B) in
Figure 6 illustrate symmetry distributions of LI, it seems that LI
with only signal strength in consideration is also unable to
make the distinction between normal sleep and OSA.*e poor
performance of LI is further manifested in this section with just
signal strength in consideration.

3.3. Enhanced Laterality Index. To address the problems of
LI mentioned in Sections 3.1 and 3.2, we calculate and
present the results in this section based on the proposed ELI.
According to (10–13), ELI is computed as the sum of λ times
of the LI calculated based on the signal complexity and 1 − λ
times of the LI calculated based on the signal strength.

Figure 7 shows the result of ELI, in which 4 randomly
selected subjects are illustrated in subfigures (a)∼ (d). Each
column in Figure 7 shows the ELI values of δ, θ, α, and β bands
for normal sleep andOSA EEG. Specifically, so as to investigate
the influence of parameter λ, we vary it in the range of 0 : 0.1 :1.
More precisely, when λ is set to 0, only the signal complexity is
considered, as presented in Section 3.1, whereas when λ is set to
1, only signal strength is in consideration, as presented in
Section 3.2. To save space, we only show the ELI results of 4
typical choices of parameter λ. In Figure 7, (a1)∼ (d1) illustrate
the results when λ � 0.2, λ � 0.4 for (a2)∼ (d2), λ � 0.6 for
(a3)∼ (d3), and λ � 0.8 for (a4)∼ (d4).

*e line graphs in Figures 7(a)–7(d) clearly manifest that
there is a significant difference between normal sleep and OSA
EEG. *e ELI values of OSA EEG are generally higher than
those of normal sleep for all 4 frequency bands, and the dif-
ferences between each other increase gradually with the pa-
rameter. In order to give an overall relationship of ELI with
each of δ, θ, α, and β for all parameter λ in [0,1], the average ELI
from 21 subjects are computed and presented in Figure 8. It is
illustrated that the relationship of ELI and λ is linear, which can
also be concluded from the definition equation [1]. Besides, it is
proven again that ELI in obstructive sleep apnea is always
higher than that in normal sleep, and the difference intends to
increase with the parameter λ.

4. Discussion

In the work of this paper, we aim to propose a novel measure
for assessing functional asymmetries across frequency bands
called the enhanced laterality index (ELI) by taking more

than one representative quantity into account simulta-
neously in investigating the functional differences between
two cerebral hemispheres.

4.1. #e Functional Differences in EEG Frequency Bands.
*e functional interpretation to various EEG frequency
bands has gone through a revolution in recent studies. *e
low-frequency bands, including δ, θ, and α bands, were
believed to ascribe the broad functional role of cortical
inhibition to slow rhythms, while the high-frequency bands,
i.e., β and c bands (30–100Hz), were associated with cortical
activation and neural networks integration [30]. However,
other studies have given new claims on the functional in-
terpretations of EEG bands. Stein et al. [31] reported that all
bands marked different levels of cortical, top-down inte-
gration except the δ band. *e functional meaning of high-
frequency bands was associated with cognitive processing,
integration and learning, while low-frequency bands cor-
related with either working memory engagement or active
inhibition of task-irrelevant cortical regions. *e functional
differences of EEG frequency bands have also been reported
in various studies. In the work of analysing language
hemispheric lateralization, young adults were reported
rightward lateralization in the δ frequency band, while all
aged groups showed left-lateralized linguistic effects con-
cerning the β band [32]. *us, the β band was believed to
represent the most reliable EEG marker of language
hemispheric asymmetry in children and adults. While in the
study of hemispheric lateralization of brain activity during
cognitive tasks, Bolduc et al. [33] revealed left prefrontal
lateralization on the total spectrum amplitude power and
right occipital lateralization in the δ band. At the same time,
right frontal lateralization in θ and β bands and right lat-
eralization in occipital δ activity were also observed during
REM sleep. In the work of analysing OSA hemispheric
asymmetry of this paper, the signal complexity and signal
strength are investigated on various EEG frequency bands.
Significant differences are presented in Tables 2 and 6 among
4 bands. On one hand, the lowest fuzzy entropy, or signal
complexity, exists in the δ band, whereas the β band shows
the highest signal complexity. Besides, the α band also has a
significant complexity increment than θ. On the other hand,
the δ band always has the strongest strength, α and β bands
are similar while the θ band is commonly extremely smaller
than the other three. Figure 7 reveals that ELI values of OSA
patients are generally higher than those of normal subjects
among 4 bands.

Table 9: Paired samples T test of signal strength between normal sleep and obstructive apnea.

Bands EC3 EC4
Normal sleep-obstructive apnea Normal sleep-obstructive apnea

δ 0.006∗ 0.486
θ 0.026∗ 0.308
α 0.004∗ 0.010∗
β 0.614 0.054
In the C3 channel, significant differences in signal strength between normal sleep and OSA sleep exist in δ, α, and β. While in the C4 channel, significant
differences exist in θ and β.*e asterisks in Table 9mean that P < 0.05 in the paired samples Ttest, indicating that significant differences in signal strength exist
between normal sleep and obstructive apnea.
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Figure 6: LI distribution along with EC3 and EC4. Total epochs were presented in (a) normal sleep and in (b) obstructive sleep apnea.
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4.2. ELI in InvestigatingHemisphericAsymmetry during Sleep.
Existing publications have manifested that sleep in ob-
structive apnea patients is significantly disturbed with fre-
quent apnea and arousal events, and these events would lead
to functional asymmetry of the brain [20]. In this paper, we
first computed the classical laterality index (LI) with signal
complexity and signal strength independently, and then, the
proposed ELI was calculated by considering both repre-
sentative quantities simultaneously. Furthermore, the dif-
ferences in ELI in four frequency bands were also presented
to make a deep understanding of the functional asymmetries
among frequency bands. In terms of signal complexity, fuzzy
entropy was computed. A significant difference in fuzzy
entropy values among 4 frequency bands is presented in
Table 2. Conclusions would be drawn that the signal
complexity grows with frequency, and the functional
complexity of the brain during sleep mainly concentrates in
the β band. However, when it comes to signal strength, as
presented in Table 6, a different result would be reported that
the functional strength of the brain during sleep mainly
concentrates in the δ band. *us, if we only consider signal

complexity in the β band while ignoring signal strength in
the δ band, or vice versa, one-sided or even incorrect results
would be inevitable. As shown in Figure 9, when only signal
strength of δ or signal complexity of β is considered, con-
clusions are contradictory. Furthermore, as illustrated in
Figures 5 and 6, both normal sleep and obstructive sleep
apnea show an overall symmetry on both hemispheres, and
we could not observe obvious differences of LI distribution
between each other, contradicting the proven fact. However,
ELI solves this problem and shows obvious differences
between normal sleep and obstructive sleep apnea that ELI
values of obstructive apnea EEG are generally higher than
those of normal sleep for all frequency bands, as presented in
Figure 7. By contrast, we just took into account of two
representative quantities simultaneously in ELI, the dis-
tinction in functional asymmetry between normal sleep and
obstructive sleep apnea was clearly presented.

4.3. Representative Quantities. To reflect the hemispheric
asymmetry during specific events, such as EEG-arousal or

0.04
Le� Hemisphere

Right Hemisphere

0.02

–0.02

–0.04

–0.06

–0.08

–0.1

–0.12
0 0.1 0.2 0.3

λ
0.4 0.5 0.6 0.7 0.8 0.9 1

EL
I-

 δ

0

Normal Sleep
Obstructive Sleep Apnea

(a)

Le� Hemisphere

Right Hemisphere

0 0.1 0.2 0.3

λ
0.4 0.5 0.6 0.7 0.8 0.9 1

0.02

-0.02

0

–0.06

–0.04

–0.08

–0.12

–0.14

–0.1

–0.16

–0.18

EL
I-

 θ

Normal Sleep
Obstructive Sleep Apnea

(b)

Le� Hemisphere

Right Hemisphere

0 0.1 0.2 0.3

λ
0.4 0.5 0.6 0.7 0.8 0.9 1

0.04

0.02

–0.02

–0.04

–0.06

–0.08

EL
I-

 α

0

Normal Sleep
Obstructive Sleep Apnea

(c)

Le� Hemisphere

Right Hemisphere

0 0.1 0.2 0.3

λ
0.4 0.5 0.6 0.7 0.8 0.9 1

0.03

0.01

0.02

–0.02

–0.01

0

–0.03

–0.05

–0.06

–0.04

–0.07

EL
I-

 β

Normal Sleep
Obstructive Sleep Apnea

(d)

Figure 8: Average ELI from 21 subjects for each of δ, θ, α, and β.
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sleep apnea, various features have been extracted in existing
publications. For example, power spectrum, voxels, signal
correlations, relative phase, and degree of interdependence
have been applied independently in [15, 18, 21]. In this work,
we extract two physically direct features, i.e., signal com-
plexity and signal strength, to evaluate the functional
asymmetry during normal sleep and obstructive sleep apnea.

In existing publications, signal complexity [34–36] has
been widely used in EEG-based signal processing such as
EEG classification and disease diagnosis. Reports revealed
that EEG signal complexity may contain important infor-
mation on the neural network architectures in the brain on
many scales.*us, the study in EEG signal complexity would
help to learn the neural connectivity of the brain. In ad-
dition, signal complexity was also believed to be associated
with the ability of attending and adapting to a cognitive task.
A study on schizophrenia reported that the patients have a
significantly lower EEG signal complexity than that of
normal subjects. At the same time, the EEG signal com-
plexity also showed significantly higher interhemispheric
and intrahemispheric cross-mutual information values in
patients compared with the controls [37]. At the same time,
signal strength [38], or signal energy, was also a commonly
used feature in existing reports. *e energy indicates the
strength of the signal as it gives the area under the curve of
power at any interval of time. A classification system based
on signal strength was developed to classify the ictal and
seizure-free EEG signals. EEG signal strength was also re-
ported to be helpful in epileptic seizure detection [39].

4.4. Limitations and Future Work. Nevertheless, we should
also point out the main limitation of this work. It is pre-
liminarily proved that the proposed ELI performs well in
assessing hemispheric asymmetry, but discussions on how to
choose optimum values for the λ are still missing. Con-
sidering that sample size is important in determining the
optimum λ, we think that a different way to determine the
optimum λ is to explore the weight of signal complexity and
signal strength in assessing lateralization of brain function
from a physiological perspective in the future work. Besides,
the superiority of ELI was verified by considering only two
quantities from EEG data. Other features should be carefully

extracted and selected from not only EEG data but also fMRI
in the future. Since ELI is able to deal with multiple
quantities, we believe it will perform better with more
representative quantities. In addition, the way of informa-
tion fusion between different representative quantities is also
worth further study and improvement.

5. Conclusions

We proposed a novel measure for investigating the func-
tional differences between two cerebral hemispheres called
the enhanced laterality index (ELI). Its reliability is man-
ifested by comparison with a traditional laterality index (LI).
Compared with existing measures, ELI is theoretically re-
liable because it would take more than one representative
quantity into account when evaluating hemispheric domi-
nances. *is is believable because both cerebral hemispheres
always have complicated information communications be-
tween each other during brain activities. *us just one kind
of quantity is hard to make a comprehensive understanding
to the whole brain activity. However, all existing measures
merely consider one quantity in this issue, and this is where
ELI intend to address. *e superiority of ELI is further
verified in the experiment for normal sleep and obstructive
sleep apnea. Clinical EEG data from 21 OSA patients are
involved in this study. Two commonly used features, i.e.,
signal complexity and signal strength, are extracted fromC3-
A2 and C4-A1 EEG channels to calculate ELI. Concretely,
the signal complexity is evaluated by fuzzy entropy, and the
signal strength is evaluated by calculating signal energy.
Finally, by comparison with the traditional LI, we present
that the ELI is indeed superior in assessing the functional
differences of both hemispheres. *e future work will be
focused on investigating more representative quantities
from EEG/fMRI data and improving the way of information
fusion.
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