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Abstract Infectious diseases pose major socioeconom-
ic and health-related threats to millions of people across
the globe. Strategies to combat infectious diseases de-
rive from our understanding of the complex interactions
between the host and specific bacterial, viral, and fungal
pathogens. Lipid rafts are membrane microdomains that
play important role in life cycle of microbes. Interaction
of microbial pathogens with host membrane rafts influ-
ences not only their initial colonization but also their
spread and the induction of inflammation. Therefore,
intervention strategies aimed at modulating the assem-
bly of membrane rafts and/or regulating raft-directed
signaling pathways are attractive approaches for the.
management of infectious diseases. The current review
discusses the latest advances in terms of techniques used
to study the role of membrane microdomains in various
pathological conditions and provides updated informa-
tion regarding the role of membrane rafts during bacte-
rial, viral and fungal infections.
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Introduction

The cell, the basic unit of life, is separated from its
surroundings by a selectively permeable cell membrane.
Receptors and channels within cell membranes mediate
interactions between environmental factors and cells.
Early concepts of cell membranes envisioned a thin film
of lipoidal material coating water-soluble proteins and
surrounding the living cell. This model, which allowed
for selective membrane permeability, was superseded by
the fluid mosaic model of Singer and Nicholson (Singer
and Nicolson 1972). According to the fluid mosaic
model, cell membranes are two-dimensional liquid or-
ganelles with random distribution of phospholipids and
proteins in no specific organization pattern. Since intro-
duction of this concept, there have been revolutionary
changes regarding the concept of the plasma membrane
and this has been an area of intense research. For exam-
ple, the existence of detergent-resistant sphingolipid-
rich domains was demonstrated by Yu et al. (1973)
and asymmetric distribution of phospholipids in the
plasma membrane of erythrocytes were demonstrated
by van Meer and coworkers (van Meer et al. 1980,
1987). Further, Simons and Ikonen (1997) (Simons
and Ikonen 1997) proposed a glycosphingolipid/
cholesterol raft model based on the formation of lateral
lipid assemblies in an unsaturated glycerophospholipid
environment. Since then, several reports have shown
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that the plasma membrane is actually more mosaic than
fluid (Pike 2003; Engelman 2005; Vieira et al. 2010),
and that the lipids are not randomly distributed. This has
lead to the current model in which the plasmamembrane
is patchy, with segregated portions that are distinct in
structure and function and may vary in thickness and
composition (Pike 2003; Garcia-Marcos et al. 2006;
Pike 2009). The formation of rafts is thought to be
mediated by attractive forces between sphingolipids
with saturated hydrocarbon chains and cholesterol. This
model is based on the fact that formation of lipid rafts
cannot be based only on lipid-protein interactions as it
also depends on lipid-lipid associations, which includes
phase separation coupled with lateral associations.
These associations involve formation of hydrogen
bonds, electrostatic forces, van der Waals forces, hydro-
phobic, and hydrophilic interactions (Pike 2009;
Riethmuller et al. 2006; Nicolson 2014). In a seminal
talk given at the Keystone Symposium on Lipid Rafts
and Cell Function (2006) in Steamboat Springs, CO,
lipid rafts were defined as small (10–200 nm), hetero-
geneous, highly dynamic, and sterol- and sphingolipid-
rich domains that compartmentalize cellular processes
(Pike 2006). At this Keynote Symposium, it was also
suggested that small rafts can sometimes be stabilized to
form larger platforms through protein-protein and
protein-lipid interactions.

Lipid rafts are enriched in sphingolipids like
sphingomyelin and cholesterol and have a preponder-
ance of saturated acyl chains (Mishra and Joshi 2007;
Lingwood and Simons 2010). Membrane proteins are
attached via glycosylphosphatidylinositol (GPI) anchors
to the lipid raft entities. The signaling proteins which
reside or translocate to the rafts include Ras, nitric oxide
synthase (NOS), phosphatidylinositol 3-kinase (PI3K),
tyrosine kinases including Fyn and Src, insulin, and
epidermal growth factors to name a few. These mem-
brane domains/rafts exert their actions by separating or
concentrating specific membrane proteins and lipids
within microdomains, which were earlier thought to
serve as platforms in the trans-Golgi network for apical
membrane sorting and as foci for the recruitment and
concentration of signaling molecules at the plasma
membrane (Alonso and Millan 2001). The receptors
and stimuli that induce the formation of rafts include
cluster of differentiation (CD)5, CD20, CD40, CD95,
bacterial and viral infections, as well as exposure to UV
light, γ-irradiation, and chemical agents (Bollinger et al.
2005). Numerous proteins involved in cell signaling

have been identified in caveolae and lipid rafts (planar),
suggesting that these structures function as signal trans-
duction moieties. Depletion of membrane cholesterol
through the use of cholesterol-binding drugs or by
blocking cellular cholesterol biosynthesis disrupts the
formation and function of both lipid rafts and caveolae,
indicating that these membrane domains are involved in
a wide range of biological processes. The role of lipid
rafts in bringing together specific set of proteins in
response to stimulus has been extensively documented
in the literature (Simons and Toomre 2000; Lafont and
van der Goot 2005). Further, lipid rafts can also include
or exclude proteins depending on their modifications.
For example, palmitoylation increases the affinity of
proteins for rafts, but not the ability of proteins to
associate with rafts (Melkonian et al. 1999). Another
example is monomeric transmembrane proteins which
only reside in rafts for time periods until they are
crosslinked or oligomerized (Harder et al. 1998). The
distribution of lipids between the lipid bilayer has also
been shown to play an important role in membrane
function (Simons and Toomre 2000).

Caveolins and flotillins constitute a group of proteins
that are enriched within lipid rafts (Hansen and Nichols
2009; Bauer and Pelkmans 2006; Yao et al. 2009).
Caveolin-1, a palmitoylated membrane protein, is an
essential component of a major subclass of rafts known
as caveolae (flask-shaped invaginations of the plasma
membrane), which causes rafts to polymerize (Rothberg
et al. 1992; Anderson 1998). In contrast, planar rafts
have flotillins as essential components (Giri et al. 2007;
Zhao et al. 2011). Three caveolin isoforms transcribed
from different genes have been identified so far which
include caveolin-1, caveolin-2, and caveolin-3. The role
of caveolin-1 and caveolin-3 in the formation of caveo-
lae is well documented; however, the role of caveolin-2
is unclear (Sowa et al. 2008; Drab et al. 2001; Razani
et al. 2001). Caveolin-1 mediates activation of insulin
receptor-β and regulation of the angiotensin/TGF-β
pathways suggesting a role in diabetes (Yamamoto
et al. 1998) and pulmonary and cardiac fibrosis, (Wang
et al. 2006; Cohen et al. 2003), respectively. On the
other hand, caveolin-3 defects are associated with mus-
cular dystrophy (autosomal dominant limb girdle mus-
cular dystrophy, idiopathic hyperCKemia, rippling mus-
cle disease, and distal myopathy) (Minetti et al. 1998;
Betz et al. 2001; Tateyama et al. 2002). The flotillin
family includes flotillin-1 and flotillin-2, which are im-
portant for signaling, endocytosis, and interactions of
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rafts with the cytoskeleton. Functional roles of flotillins
have also been documented in polarization and chemo-
taxis of neutrophils in response to chemo attractants
in vivo (Ludwig et al. 2010; Rossy et al. 2009). Both
types of raft entities are also enriched in cholesterol and
glycosphingolipids (Simons and Ikonen 1997; Korade
and Kenworthy 2008; Wang 2014). The outer leaflet
consists of sphingolipids, phosphatidylcholine, and
sphingomyelin, whereas the inner leaflet consists of
phosphatidylinositol, phosphatidylethanolamine, and
phosphatidylserine with cholesterol being found in both
leaflets (Mishra and Joshi 2007). Enrichment of phos-
pholipids with saturated fatty acids allows close packing
of lipids within rafts, and as a result lipid rafts are more
complex and less fluid than the surrounding membrane.

Meanwhile, the formation of rafts rich in ceramide
following exposure to external stimuli/stress has also
received significant attention (Hannun and Obeid
2002) (Tables 1 and 2). Ceramide can be generated by
de novo synthesis or hydrolysis of sphingomyelin by
sphingomyelinases (Gault et al. 2010; Silva et al. 2009).
Ceramide is composed of sphingosine and a fatty acid
chain, and is found in higher concentrations within the
cell membrane. An increasing body of literature has
shown ceramide (sphingolipid), as an important mole-
cule that regulates a diverse array of cellular processes
including differentiation, immune responses, apoptosis,
growth arrest, and senescence (Korade and Kenworthy
2008; Caliceti et al. 2012; Arana et al. 2010; DiNitto
et al. 2003; Castro et al. 2009; Megha and London 2004;
Yu et al. 2005). The role of sphingomyelinase and
ceramide has been implicated in pathological conditions
including pulmonary failure and erythrocyte apoptosis
caused by platelet activating factor (Goggel et al. 2004;
Lang et al. 2005). Furthermore, ceramide is also in-
volved in the fusion of endosomes with lysosomes

during the internalization of microbial pathogens into
mammalian cells (Bollinger et al. 2005; Anes et al.
2003; Gulbins et al. 2004; Miller et al. 2012; Hartlova
et al. 2010; Heung et al. 2006). Conversion of
sphingomyelin into ceramide plays an important role
in modulation of the membrane structure, which results
in membrane vesiculation, fission/fusion and vesicular
trafficking and contributes to cellular signaling (Devaux
et al. 2008). Interestingly, rafts on one leaflet of the
membrane can induce localized changes in the other
leaflet of the bilayer, and they can potentially serve as
the link between signals from outside the cell to those
produced inside the cell (van Meer et al. 2008). In
addition, ceramide has been shown to form organized,
large channels traversing the mitochondrial outer mem-
brane, which leads to the egress of proteins from the
intermembrane space. Ceramide may affect the perme-
ability of the mitochondrial outer membrane and the
release of cytochrome C (Siskind et al. 2002). Thus, in
the process of apoptosis, the breakdown of plasma
membrane sphingomyelin to ceramide results in disor-
ganization of rafts and may regulate apoptotic body
formation. High ceramide levels in the lipid rafts in-
creases the size of these platforms due to fusion, and
reorganized ceramide-rich rafts retain/restrict proteins
differently than other rafts (Spiegel and Milstien
2003). Ceramide-activated proteins act as secondary
messengers and they are directly involved in activation
of protein phosphatases PP1 and PP2, isoforms of pro-
tein kinase C, cathepsin D, and phospholipase A2, other
signaling pathway components, although the precise
mechanism of activation is unknown yet. Thus, forma-
tion of ceramide may serve different functions at distinct
locations in the cell, and therefore, the effects of cer-
amide rafts are still under investigation (Silva et al.
2009; Zheng et al. 2006).

Table 1 Involvement of ceramide rafts in bacterial infections

S.No Bacteria Receptor Model used Reference

1 Pseudomonas aeruginosa CD95 receptor (HNEpC) (Grassme et al. 2003b; Grassmé
et al. 2001)

2 Neisseria gonorrhea CD66 receptor Human epithelial cells
and primary fibroblasts

(Hauck et al. 2000; Grassmé et
al. 1997)

3 Staphylococcus aureus GPI-anchored proteins Human 293 T cells (Esen et al. 2001; Sinha et al. 1999)

4 Mycobacterium avium GPI-anchored proteins
CR3 and CR4,

Murine macrophage (Maldonado-García et al. 2004;
Irani and Maslow 2005)
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Techniques used to study the formation
and functions of lipid rafts

Ordered and tightly packed acyl chains in lipid raft
domains render them the ability to withstand disruption
by non-ionic detergents, whereas the low protein/lipid
ratio gives them much lower density than other solubi-
lized membrane proteins. Utilizing this property, lipid
rafts were originally isolated by sucrose density gradient
ultracentrifugation from cellular extracts prepared in 1%
Triton-X (Mishra and Joshi 2007; Ostrom and Liu
2007). Several other detergents have subsequently been
used to isolate rafts. An alternative approach to study the
role of lipid rafts or the association of certain compo-
nents with rafts is treating them with cholesterol-
sequestering agents or chelators like methyl-β-
cyclodextrin to disrupt/deplete lipid raft constituents.
Moreover, exogenous unsaturated fatty acids, ganglio-
sides or cholesterol can also be used to destabilize raft
assembly (Ostrom and Liu 2007; Brown 2006). The
drawback of using a cholesterol-sequestering agent or
chelator is the possible induction of structural or meta-
bolic changes. Therefore, these may not be appropriate
options to determine raft-associated cellular changes.
Alternatively, genetic approaches such as small interfer-
ing RNA (siRNA) or gene knockout animals are widely
used to disrupt planar rafts or caveolae (Pelkmans et al.

2004; Maguy et al. 2006). These studies address the
physiological importance of membrane microdomains
and help to determine their importance in signal trans-
duction and bacterial/viral entry into cells (Zhong et al.
2008).

Recent use of more advanced and non-disruptive
techniques have significantly advanced our understand-
ing about these highly dynamic and fragile rafts. These
include fluorescence correlation spectroscopy (FCS),
single-molecule tracking microscopy (Kusumi et al.
2014; Parton and del Pozo 2013; Gambin et al. 2014),
the use of a 2-dimethylamino-6-lauroylnaphthalene
(laurdan) labeling probe for studying lateral organization
of membranes using conventional confocal microscopy
(Dodes Traian et al. 2012), and fluorescence resonance
energy transfer (FRET) for determining the formation
and influence of lipid rafts (Silvius and Nabi 2006).
The sensitivity of the FCS technique for the determina-
tion of phase separation using free standing artificial lipid
bilayers was demonstrated in earlier reports (Korlach
et al. 1999; Bacia et al. 2004). This technique utilizes
excitation and detection as in scanning microscopy to
determine temporal fluorescence fluctuations due to the
diffusion of individual fluorescent molecules. The auto-
correlation curve generated from these fluctuations is
used to determine the mobility (diffusion coefficients)
of particles and can be used to monitor a single molecule

Table 2 Involvement of ceramide rafts in viral infections

S.No Viruses Receptor Model used References

1 Rhinovirus ICAM-1 Hela epithelial cells and
WI-38 fibroblasts

(Greve et al. 1989; Staunton et al.
1989; Arruda et al. 1994)

2 Dengue virus ICAM, Heat shock proteins
(HSP)-HSP90 and 70,
Fcγ receptor

Human myelomonocyte
cell line U937

(Reyes-del Valle et al. 2005; H
Puerta-Guardo et al. 2010;
Takahashi and Suzuki 2011b)

3 Hepatitis C virus (HCV) CD81, SR-BI Huh-7 cells (Kapadia et al. 2007)

4 HIV-1 (human
immunodeficiency virus)

Chemokine receptors-
CXCR4/CCR5 and CD4

CD4+ cells, human embryonic
kidney 293 T cells, H9
leukemic T cells and
Peripheral blood mononuclear
cells (PBMC)

(Dragic et al. 1996; Hill and
Littman 1996; Ostrowski et
al. 1998)

5 Influenza virus Sialic acid and
GPI-anchored proteins

GM 95 cells, mouse B16
melanoma cells

(Suzuki et al. 2000; Matrosovich
et al. 2006)

6 Ebola virus GPI- anchored protein and
folate receptor (FRα)

Human 293 T cells (Takahashi and Suzuki 2011b;
Chan et al. 2001)

7 Measles virus CD46 and signaling
lymphocyte-activation
molecule (SLAM)

T and B cells, CD46-transgenic
mice, HeLa cells, and the
established murine lung
and kidney cultures

(Dhiman et al. 2004;
Blixenkrone-Møller et al. 1998)
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to hundreds of molecules (Schutz et al. 2000; Ha 2001a,
b). Further advancement in fluorescence microscopy
techniques came with single molecule imaging (SMI)
or single molecule tracking (SMT). This technique pro-
vides the ability to monitor collisions, interactions, bind-
ing, dissociation, organization, concentration, and disen-
gagement of molecules in living cells with some limita-
tions (Kusumi et al. 2014; Kusumi et al. 2005a; 2005b).
Therefore, SMT, which is performed using high resolu-
tion photon detector(s) to track only one molecule or to
simultaneously image thousands of molecules, has sig-
nificantly advanced understanding of the three-tiered
architecture of plasma membrane (Hinner and Johnsson
2010). In conjugation with FRET, SMT can also be used
to detect activation of single molecules. The combination
of these two techniques was first used to assess the
activation of the G protein Ras (fluorescently labeled),
which functions downstream of receptor-type tyrosine
kinases, by detecting its binding the fluorescent GTP
(energy acceptor) (Murakoshi et al. 2004). Moreover, a
fluorescent membrane probe, Laurdan, can be used to
determine the extent of water penetration into the lipid
bilayer enabling assessment of lipid packing and mem-
brane fluidity. The photophysical properties of laurdan
determine its spectral sensitivity in polar solvents and
leads to a shift of its emission spectra in loosely packed
membranes with higher water penetrability (Dodes
Traian et al. 2012; Kwiatek et al. 2013). The studies
conducted using these techniques not only support the
existence of rafts in live cells, but electron paramagnetic
resonance studies and single molecule tracking methods
have been used to determine the half-life of rafts and to
assess their interactions with various proteins, respective-
ly (Swamy et al. 2006). As a result, it is now clear that the
half-life of rafts is in the range of 102 ns, which is not
only faster than the rate of many enzyme reactions, but
also less than the half-life of interactions between several
proteins known to be involved in signal transduction
(Swamy et al. 2006). Thus, there was imminent need
for improving techniques for isolation of membrane rafts
and for exploring the functional changes involved in
signaling. In this regard, a recent study by Doughty
et al. used secondary ion mass spectrometry (Nano
SIMS) technology to determine the subcellular localiza-
tion of hopanoid lipids in bacteria using stable-isotope
labeling (Doughty et al. 2014). The SIMS technique,
however, uses primary ions like Cs+ or O− to bombard
the surface of sample resulting in generation of secondary
ions that are then measured by mass spectrometry.

Images are formed from the collection of mass spectra
data from several spots on the surface. This technique can
also be utilized to determine isotope ratios with high
precision and used to visualize labeled sample regions
(Altelaar et al. 2006; Grignon 2007). Furthermore, ad-
vances in microscopy techniques utilizing fluorescent
labels or genetically-encoded probes and the mini-sin-
glet–oxygen generator (miniSOG) to visualize the sub-
cellular localization of proteins and lipids by electron
microscopy moved the field forward significantly
(Huang et al. 2009a). Additionally, new super-
resolution microscopy techniques such as 3D-structured
illumination microscopy (SIM), photoactivated localiza-
tion microscopy (PALM), stochastic optical reconstruc-
tion (STORM), and stimulated emission depletion mi-
croscopy (STED) allow the investigation of lipid rafts at a
level that was previously unattainable (Huang et al.
2009a). Among these, SIM is an ultra-resolution light
microscopy technique that utilizes patterned illumination
from a coherent light source to observe structures below
the resolution limit of light microscopy by generating
difference/beat frequencies termed Moiré fringes. This
technique can be used with any conventional fluorophore
and cell preparation (Kusumi et al. 2005a, b, 2014). On
the other hand, PALM method is based on serial
photoactivation or photoswitching and subsequent
bleaching of several randomly scattered fluorescent pro-
teins. This method provides a significant edge over the
limitations of electronmicroscopy and conventional fluo-
rescent microscopy to quantify protein aggregates or
view cluster sizes that lie below diffraction limits. Utiliz-
ing total internal reflection fluorescence geometry (TIRF)
in PALM further improves the detection range of fluo-
rescent molecules. In order to investigate lipid rafts,
another important technique which can be utilized is
STORM imaging. This method involves several imaging
cycles where a fraction of fluorophores are optically
resolved in the field of view during each cycle, resulting
in a highly accurate determination of individual active
fluorophores (Rust et al. 2006). Yet another important
technique in lipid rafts research is the STED technique,
which uses non-linear fluorophore responses to improve
the resolution and acquire images below the diffraction
limit (Kusumi et al. 2014; Eggeling et al. 2013; Sahl and
Moerner 2013). Both PALM and STORM techniques, on
the contrary utilize mathematical modeling to reconstruct
the sub-diffraction limit from multiple sets of diffraction-
limited images (Rust et al. 2006; Sengupta et al. 2011;
Hess et al. 2006). To summarize, the utilization of novel

Cell Biol Toxicol (2017) 33:429–455 433



tools has helped generate deeper insight into the func-
tional aspects of lipid rafts, which will help direct future
studies and therapeutic intervention strategies targeting
lipid rafts and lipid raft-associated proteins.

Lipid rafts and bacterial infections

Lipid rafts have been shown to play an important role
during bacterial infections. Evidence of the ruffling of
membrane lipids and proteins during pathogen engulfment
and requirement for cholesterol during pathogen invasion
substantiates this claim. Further, the requirement of raft-
associated receptors on epithelial cells, including CD55 on
the apical membrane and CD44 on the basolateral mem-
brane, has been reported for bacterial entry (Selvarangan
et al. 2000; Peiffer et al. 1998; Stuart et al. 2002a;
Oliferenko et al. 1999). Several strains of bacteria invade
phagocytes and non-phagocytic cells through the
endocytic pathway in order to avoid the host defense
mechanism (Simons and Gruenberg 2000; Steinberg and
Grinstein 2008; Gruenberg and van der Goot 2006). Path-
ogens entering the host cells through the endosome-
lysosome pathway involving clathrin-coated pits have
the ability to avoid fusion or acidification following fusion
with lysosomes to prevent degradation. Recent evidence
suggests that these endocytic entry mechanisms are direct-
ed by the structure of lipid rafts, which are internalized via
clathrin-dependent pathways. After endocytosis lipid rafts
can form caveosomes and fuse with the Golgi complex or
endoplasmic reticulum, or alternatively, form intracellular
vesicles and remain within the organelle. The entry of
pathogens via lipid rafts promotes intracellular survival
and dissemination within the host. Raft-mediated entry of
Escherichia coli (E. coli), Shigella flexneri, Salmonella
thyphymurium, Mycobacterium spp., Chlamydia spp.,
Ehrlichia chaffeensis, Anaplasma phagocytophilum,
Campylobacter jejuni (Lafont and van der Goot 2005;
Manes et al. 2003a), Listeria monocytogenes (Seveau
et al. 2004), Mycoplasma fermantas (Yavlovich et al.
2006), and Sphingomonas spp. (Ammendolia et al.
2004) have been studied extensively to find out the role
of lipid rafts in the pathogenesis of the bacterial infections.
In this regard, role of molecular motors kinesin and cyto-
plasmic dynein has also been investigated in terms of
trafficking of pathogens inside cells towards lysosomal
degradation. Molecular motors are important in the trans-
port of organelle cargoes along microtubules in the cell.
This transport driven by molecular motors, either

unidirectional or bidirectional is regulated through their
post-translational modifications, interactions with effector
molecules or autoinhibition. Movement of early
phagosomes along microtubules is bidirectional manner,
and of late phagosomes is unidirectional which promotes
its fusion with lysosomes (Grover et al. 2016). In a recent
study, Rai et al. demonstrated that themobility of early and
late phagosomes correlates with the appearance of lipid
rafts and clustering of dynein motors in phagosome mem-
brane. The geometrical reorganization allows dyneins
within cluster generate cooperative force on a single mi-
crotubule and results in rapid directed transport of
phagosome which probably promotes phagosome and
lysosome fusion leading to pathogen degradation. Disrup-
tion of clustering of small lipid microdomains by several
pathogens can helps in survival of pathogen inside the host
by inhibition of phagosome motion and phagosome-
lysosome fusion (Rai et al. 2016). Interestingly, lysosome
function can also be regulated by cholesterol. Further,
Deng and coworkers demonstrated that cholesterol deple-
tion can also disrupt lysosome membrane permeability
(Deng et al. 2009). In this line of thought, mycobacteria
was shown to exploit lipid rafts to enhance their adaptive
fitness and protection from intracellular degradation by
lysosomal pathways. Mycobacteria induce recruitment of
tryptophan aspartate-containing coat protein (TACO),
which associates with the phagosomal membrane in a
cholesterol-dependent way and prevents its fusion with
lysosomes (Gatfield and Pieters 2000a). A report byWang
and coworkers demonstrate that depletion of lipid rafts by
methyl-β-cyclodextrin resulted in reduced survival and
virulence of Porphyromonas gingivalis, a periodontal
pathogen in the host. Interestingly, lipid rafts disruption
was shown to promote the colocalization of internalized
P. gingivalis with lysosome (Wang and Hajishengallis
2008).WhileChlamydia trachomatis, a common sexually
transmitted pathogen also use lipid rafts to disguise the
phagosome as a vesicles which are derived from Golgi
apparatus. These phagosomes are transported to Golgi
apparatus to capture sphingolipid-rich vesicles to disguise
host defense system (Norkin et al. 2001). These studies
clearly indicate an important role of lipid rafts in pathogen
survival beyond entry. Therefore, it is important to under-
stand the mechanism(s) of invasion used by pathogens in
order to design the successful strategy for regulating dis-
ease pathogenesis.

Mechanisms of bacterial entry in cells Caveolae,
Clathrin-coated pits and phagocytosis all provide entry
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pathways to toxins, and fall within the size range of 60-
100 nm, respectively (Conner and Schmid 2003;
Rollason et al. 2007). Of these, clathrin-coated pits are
considered raft-free, while the caveolae pathway has
been considered to be raft-mediated. Interestingly, Shiga
toxin and the protective antibody against anthrax toxin
both associate with rafts on the cell surface and are
subsequently internalized via clathrin-coated pits
(Kurzchalia 2003; Sandvig and van Deurs 2002a, b).
Association of caveolae with E. coli-containing
phagosomes has been reported during its cellular entry
(Jermy 2010; Zaas et al. 2005), which reflects that
caveolae may provide signaling platforms required for
bacterial engulfment.

Signaling pathways regulated during bacterial
infections The entry of bacteria through lipid rafts leads
to changes in signaling pathways including autophagy,
alterations in inflammatory cytokine production, and in-
duction of apoptosis (Fig. 1). Some bacteria like Salmo-
nella typhimurium and S. flexneri, modulate host signaling
by secreting bacterial invasion effector proteins which
associate with membrane rafts (Manes et al. 2003b;
Lafont et al. 2002; Lacalle et al. 2002). Further, while

cellular entry of certain toxins and bacteria have been
found to occur through raft-containing pathways, the
step(s) required may differ depending on the pathogens.

Besides utilizing rafts to generate phagosomes as a
survival mechanism within non-professional and profes-
sional phagocytic cells (Gatfield and Pieters 2000b; Kim
et al. 2002; Ferrari et al. 1999;Watarai et al. 2001), bacteria
like L. monocytogenes, an intracellular bacterium, have
been shown to augment raft-mediated signaling thereby
leading to increased cytokine production at the site of
infection (Seveau et al. 2004; Coconnier et al. 2000;
Parihar et al. 2013; Gekara et al. 2010; Barbuddhe and
Chakraborty 2008; Kayal and Charbit 2006). Moreover,
recent studies have shown impaired immune responses
and reduced survival of caveolin-1-deficient mice in re-
sponse to pulmonary challenge with Klebsiella
pneumoniae and Pseudomonas aeruginosa (Guo et al.
2012; Gadjeva et al. 2010). Further, it was observed that
knocking down caveolin-1 resulted in reduced bacterial
clearance and an increase in production of pro-
inflammatory cytokines in Klebsiella-challenged lung ep-
ithelial MLE-12 cells (Guo et al. 2012). Lipid rafts have
thus been proposed to modulate bacterial internalization,
which may impact host repair mechanisms, a critical

Fig. 1 Role of caveolae and lipid rafts in bacterial entry. Bacteria
usually enters the cell through endocytic pathway and survives by
avoiding fusion with lysosome. The entry is mediated through
caveolae or lipid rafts and can be targeted to a number of different

intracellular compartments. Bacteria that enter in a lipid raft-
dependent manner trigger signaling pathways including induction
of apoptosis and cytokine production
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phenomenon for host defense against the possibility of
DNA damage caused by K. pneumoniae infection
(Huang et al. 2013). It was reported that lungs from
caveolin-1 deficient mice showed suppressed NF-кB acti-
vation in response to intraperitoneal injection of lipopoly-
saccharide, an effect believed to be mediated via endothe-
lial NO synthase (eNOS) (Garrean et al. 2006) (Fig. 2).
P. aeruginosa, on the contrary, induces the formation of
ceramide-rich rafts, which not only promote host-
pathogen interactions but also induces apoptosis of infect-
ed cells (Grassme et al. 2003a). Together, these studies
suggest that lipid rafts play critical roles not only in bac-
terial entry, but also in influencing the host inflammatory
responses critical for promoting or clearing infection.

Bacterial membrane microdomains In addition to the
role of host cell membrane domains during infections,
bacterial proteins appear to recognize specific sites on their
own membranes as well. Recently Lopez and Kolter de-
scribed the existence of functional microdomains in bacte-
rial membranes that harbor homologs of Flotillin-1 (eu-
karyotic lipid raft protein) and are rich in polyisoprenoids
and other signaling and transport proteins (Lopez 2015;
Lopez and Kolter 2010). Bacterial membrane proteins
contained in lipid rafts function similarly to those found
in eukaryotes and are involved in cell signaling pathways
(Barak and Muchova 2013). Furthermore, as discussed by
Barak and Muchova, differential aspects of a bacterial
membrane’s physical characteristics, specifically, a nega-
tive curvature (concave) or a positive curvature (convex),
are recognized by bacterial proteins. Specifically, mem-
branes with a convex shape are linked with asymmetric
cell division. Yet another physical characteristic that is
important for the organization/localization of proteins in
bacterial membranes is the transmembrane electric poten-
tial (Barak and Muchova 2013). As utilized for study of
eukaryotic lipid rafts, the procedure used to analyze bacte-
rial rafts is based on their ability to resist disaggregation by
non-ionic detergents followed by separation by sucrose
gradient. Studies conducted by Lopez and coworkers dem-
onstrate that the detergent-resistant membranes (DRM) of
S. aureus involves the proteins required for biofilm forma-
tion, virulence, and signaling (Lopez and Kolter 2010).
Moreover, all of these processes can be inhibited by
blocking the formation of lipid rafts with the use of small
molecules (Bramkamp and Lopez 2015). Zaragozic acid
(ZA), a known inhibitor of squalene synthase, which is
involved in the formation of polyisoprenoids , inhibits the
formation of lipid rafts resulting in impaired biofilm

formation. In a recent study, Somani and coworkers dem-
onstrated constitutive expression of FlotP, a Flotillin-1
homolog in Bacillus anthracis. The importance of rafts
in the growth, membrane fluidity, and virulence of
B. anthraciswas demonstrated by studies conducted using
ZA (Somani et al. 2016). Evidence of detergent soluble
and detergent-resistant membrane fractions in Bacillus
halodurans and Bacillus subtilis and the presence of
flotillin-1 like protein (FloT) in the cytoplasmic membrane
of the latter was also provided in recent studies (Donovan
and Bramkamp 2009; Zhang et al. 2005). The membranes
microdomains of bacterium Borrelia burgdorferi, which
causes lime disease, have also been shown to possess
properties similar to eukaryotic lipid rafts. Likewise,
B. burgdorferi domains favor selective incorporation of
molecules which are membrane anchored via saturated
acyl chains but not those having unsaturated acyl chains
(LaRocca et al. 2013). The other interesting observation
reported in this study suggests that any changes in
B. burgdorferi membrane morphology and integrity may
affect the physical connection between flagella and the
outer membranes. This may result in loss of flat wave
morphology, which changes the membrane permeability
leading to loss of flagellar subunits followed by death of
spirochetes due to increased sensitivity to secondary os-
motic lysis. These events confirm the functional impor-
tance of membrane microdomains in B. burgdorferi
(LaRocca et al. 2013).

Bacterial membrane microdomains were discovered
relatively recently, and therefore, increased understand-
ing is still needed. Future studies need to focus on
determining the structural components of bacterial rafts
and their biological role in different bacterial species.
Further, since the perturbation of bacterial microdo-
mains can affect several physiological processes associ-
ated with pathogenesis, this field of study also may open
new avenues for the control of bacterial infections.

Lipid rafts and viral infections

Viruses are classified into four basic types based on their
outer structure. These include the following: enveloped
DNA viruses, enveloped RNA viruses, non-enveloped
DNA viruses, and non-enveloped RNA viruses. In addi-
tion, the general virus cycle of infection is typically divided
into four stages: entry, translation, replication, and
assembly/release (Fig. 3). The early stage of viral entry
into the host cell involves the binding of the virus to one or
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more cell-surface receptors followed by entry into the
cell (Ono and Freed 2005). Study of the localization of
viral structural proteins and the effects of use of

cholesterol/raft disrupting agents on the replication of
several viruses have demonstrated the role of membrane
microdomains in viral cycle.

Fig. 2 Bacterial entry and interaction with receptor molecules. a
Entry of bacteria into a host cell involves specific interactions of
bacterial PAMPs (e.g., LPS and lipopeptides) with receptor mol-
ecules on cell surface, leading to conformational changes in rafts.
b Upon stimulation by bacterial lipopeptides, TLR2 forms hetero-
dimers with TLR6 in lipid raft domains, while CD14 and CD36
(cluster of differentiation) act as adaptor molecules for ligand

transfer onto TLR2/6 heterodimers. Following ligand stimulation
TIRAP binds to TLR2 through TIR domains and recruits adaptor
protein MyD88, which then activates of TNF receptor associated
factor 6 (TRAF6). This pathway induces the activation of NF-кB
pathway leading to production and secretion of pro-inflammatory
cytokines

Cell Biol Toxicol (2017) 33:429–455 437



Viruses generally enter cells through one of two basic
mechanisms: (1) enveloped RNA viruses from the
Rhabdoviridae, Flaviviridae, Orthomyxoviridae, and
Togaviridae families and enveloped DNA viruses from
the Papovaviridae and Adenoviridae families enter
through endocytic vesicles and (2) through translocation
or penetration of viral particles directly into the cytoplasm,
by fusion of the viral envelope at the plasmamembrane, or
through destruction of the viral capsid as in the case of
viruses from the Paramyxoviridae family (Takahashi and
Suzuki 2011a). In contrast, viruses from theHerpesviridae
family utilize both pathways (Takahashi and Suzuki
2011a). Moreover, most viral genomes of enveloped
RNA viruses replicate and are transcribed in the cytosol,
while those of enveloped DNA viruses replicate in the
nucleus. Progeny viruses subsequently bud and are re-
leased from the cell membrane.

Involvement of surface receptors in viral entry There is
plethora of information regarding the involvement of
cell-surface receptors localized within lipid rafts in facil-
itating viral entry. In brief, facilitation of HIV-1 entry into

the cell by binding to the CD4 receptor causes confor-
mational changes in the surface glycoprotein gp120
resulting in its interaction with CXCR4 or CCR5. These
events lead to conformational changes in the transmem-
brane glycoprotein gp41 leading to unmasking of its
fusogenic domain (Fantini et al. 1997; Hammache et al.
1998; Hug et al. 2000). While glycosyl phos-
phatidylinositol (GPI) anchored folate receptor-α (FRα)
localized in membrane rafts is required for the entry of
ebola and marburg viruses to enter host cells. The EBV
human herpes virus infects B lymphocytes via the human
complement receptor type 2 (CR2 aka CD21), which
exists as a complex with CD19 and palmitoylated
CD81 in lipid rafts. This CD19/21/81 complex functions
to prolong the stability of, and signaling via, the B cell
antigen receptor (Fingeroth et al. 1984; Cherukuri et al.
2004; Birkenbach et al. 1992).While discussion about all
the related studies is beyond the scope of this article, most
of the work in this area is referenced in Table 3.

Mechanisms of viral entry in cells Following the attach-
ment of non-enveloped viruses to cell-surface receptors,

Fig. 3 Entry of virus through lipid rafts. Enveloped viruses enter
the cells through direct fusion between the viral membrane and
cell-surface receptor or through endocytic-mediated pathway,
whereas in non-enveloped viruses are translocated directly into
cytoplasm by destruction of the viral capsid. Transcription and
replication process of viral genome in non-enveloped viruses takes

place in the nucleus but for enveloped viruses it takes place both in
nucleus and cytoplasm. After assembly the viral proteins, viral
glycoprotein’s and infectious particles of viruses are released from
cells via budding process at intracellular membranes (e.g., the ER)
and at the plasma membrane which disrupts the humoral and
cellular responses of the cell
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the bound virions can be internalized through a process
mediated by rafts involving membrane invaginations
and intracytoplasmic vesiculation (Ono and Freed
2005; Takahashi and Suzuki 2011a; Suzuki and Suzuki
2006). This type of viral entry, also termed atypical
endocytosis, has been observed for the SV40
(Papovaviridae family) virus. Entry of SV40 into target
cells is mediated through an association of major histo-
compatibility complex-1 (MHC-1) with caveolae (Stang
et al. 1997; Anderson et al. 1998a; Norkin et al. 2002a;
Pelkmans et al. 2001) or the GM1 ganglioside receptor
in lipid rafts (Tsai et al. 2003a; Pelkmans 2005). Virus-
incorporated caveolae then undergo budding, and the
caveolae carries the virus to the endoplasmic reticulum
(ER) along cellular microtubules.

Non-enveloped DNA viruses also enter into cells
through typical endocytosis utilizing clathrin-
dependent or clathrin-independent and caveolae/raft-
dependent pathways followed by release of their viral
DNA genomes into the cytoplasm by viral capsid de-
struct ion (Ono 2010). Reports suggest that
Coxsackievirus, which causes aseptic meningitis with
symptoms resembling a respiratory disease in addition
to flaccid paralysis and chronic myocarditis, utilizes the
cellular coxsackievirus and adenovirus receptor for its
entry via membrane rafts (Triantafilou and Triantafilou
2003; 2004). In addition, several enteroviruses, which
cause nerve paralysis, cerebral meningitis, anathema
and respiratory symptoms, also utilize caveolae-
dependent or raft-dependent endocytosis mechanisms
for cellular entry (Stuart et al. 2002a; Marjomaki et al.
2002; Upla et al. 2004; Pietiainen et al. 2005). In con-
trast, entry of rhinovirus is mediated by ceramide-rich
rafts (Grassme et al. 2005).

Enveloped viruses also use rafts during the internal-
ization and fusion process. The entry of enveloped
viruses involves virus attachment followed by close
apposition of the virus and plasma membranes. The
two membranes then fuse to deliver the virus’ genomic
RNA into the host cells, which requires conversion of
the virus-encoded envelope glycoprotein (Env) from its
native state to its fusion-activated form (Manes et al.
2003a; Fantini et al. 2002; Chazal and Gerlier 2003;
Brown et al. 2002a)

Virus assembly The later stages of the virus infection
cycle involve the assembly of viral components into
virions and maturation into infectious particles. Viruses
use lipid rafts as a platform because their structure offersT
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an efficient system for concentrating all the viral pro-
teins and glycoproteins required for the assembly of new
virions (Ono and Freed 2005; Suzuki and Suzuki 2006;
Das et al. 2010a). There is abundant evidence to support
the idea that membrane lipids are not randomly incor-
porated into the viral envelope. Further, it has also been
suggested that viral glycoproteins determine the site of
virus assembly and budding (Vieira et al. 2010; Garoff
and Simons 1974; Garoff et al. 1974; Allison et al. 1995;
Vennema et al. 1996; Bruss 2004). Moreover, in polar-
ized epithelial cells, the viral glycoproteins contain
sorting signals or motifs and are directed to the specific
site where assembly and budding will occur (Vieira et al.
2010; Nayak et al. 2004). Finally, the lipid composition
of the influenza virus family is affected by the affinity of
the haemagglutinin and neuraminidase glycoproteins
for these lipids, while some reports also suggest that
the influenza virus buds from raft domains (Vieira et al.
2010; Chazal and Gerlier 2003; Nayak et al. 2004).
HIV-1 is also enclosed in a lipid envelope enriched in
cholesterol and sphingolipids, suggesting specific mem-
brane localization is required for assembly (Vieira et al.
2010; Aloia et al. 1993; Campbell et al. 2001; Raulin
2002). With similar methods of assembly and budding
within membrane rafts, many other viruses, including
influenza virus, measles virus, Ebola virus, and possibly
Sendai virus, also use lipid rafts as assembly platforms
(Vieira et al. 2010; Luo et al. 2008). In this regard, it was
also suggested that the RSV (respiratory syncytial virus)
assembles within lipid rafts where viral proteins colo-
calize with caveolin-1 (Vieira et al. 2010; Brown et al.
2002a, b). Taken together, these structures then have the
ability to regulate budding; however, the mechanism by
which the lipid raft can favor the budding and/or fission
process has yet to be explored in detail (Vieira et al.
2010; Nayak et al. 2004; Luo et al. 2008).

For enveloped viruses, the infectious particles are
released from the cell via the budding process. Further-
more, the budding of new virions from the raft allows
the exclusion or inclusion of specific host cell mem-
brane proteins in the virus particle, which can disrupt
cellular and/or humoral immune responses to the virus
(Suzuki and Suzuki 2006; Das et al. 2010a). Non-
enveloped viruses are released from the infected cell
by disrupting the plasma membrane, whereas enveloped
viruses contain a host cell-derived lipid bilayer, which is
acquired during budding. Only cytolytic viruses lead to
disruption of cell integrity, while other viruses are re-
leased in a non-destructive manner. In this context,

studies demonstrated that ebola and marburg viruses
use viral glycoprotein-bearing rafts for budding from
host cells. Specifically, VP40 (ebola virus matrix pro-
tein) oligomerizes with rafts and plays an important role
in assembly and budding(Bavari et al. 2002a), while
glycoprotein complexes composed of gp120 and gp41
along with membrane rafts are used for HIV-1 assembly
(Bhattacharya et al. 2004; Ono et al. 2005; Ono et al.
2007; Leung et al. 2008a). Koshizuka’s group demon-
strated the association of HSV-1 UL11 (protein involved
in virion maturation) with lipid rafts (Koshizuka et al.
2007). Among non-enveloped viruses, the association of
viral protein VP4 and NSP4-purified virions with lipid
rafts have been studied for rotavirus (Sapin et al. 2002;
Cuadras and Greenberg 2003) while an outer capsid
protein important for virus assembly, VP5, was observed
to co-purify with lipid raft entities during bluetongue
virus infection. The association of VP5 with rafts was
shown to depend on membrane docking domain similar
to what occurs with the soluble N-ethylmaleimide-
sensitive fusion attachment protein receptor (SNARE)
family (Bhattacharya and Roy 2008a). Although rafts
are involved in virus assembly, we have to keep in mind
that only a fraction of viral proteins are found associated
with rafts. However, this could be due to the poor bio-
chemical characterization of raft subsets or to the tran-
sient nature of the association (Vieira et al. 2010).

Signal ing pathways regulated during viral
infections Since membrane rafts are involved in the
entry, assembly, and budding processes of several virus-
es, it is not surprising that cellular signaling pathways
are also affected during viral infections. Lee et al. re-
ported the anti-apoptotic role of PI3K signaling in re-
sponse to dengue and japanese encephalitis virus (JEV)
infections in human lung carcinoma and murine neuro-
blastoma cell lines (Lee et al. 2005). However, using
microglial cells, Chen and coworkers demonstrated the
induction of the Src/Ras±/Raf/ERK/NF-кB pathways
leading to induction of TNF-α and IL-1β in response
to challenge with JEV (Chen et al. 2011). This is im-
portant because Src-mediated signaling induced by JEV
is known to play a critical role in neuronal cell death.
Earlier studies revealed the role of lipid rafts in the
activation of Src, Ras, Raf, ERK, and NF-кB, which
all contribute to JEV-induced TNF-α and IL-1β pro-
duction (McCubrey et al. 2007; Wu et al. 2015). Fur-
thermore, involvement of lipid rafts in Src-mediated
signaling pathways upstream of the activation of Raf/
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ERK/NF-кB has been reported in response to several
stimuli (Roux and Blenis 2004). These studies provide
substantial evidence that lipid rafts play an important
role in Src/Ras/Raf/ERK/ NF-кB signaling during JEV
infection, thereby influencing host immune responses.
In addition, Bentley and coworkers (Bentley et al.
2007a) also demonstrated that rhinovirus (RV) activates
PI3K and Akt, which leads to IL-8 expression. Further,
they observed that RV colocalizes with Src, PI3K, and
Akt in membrane rafts. These and several related find-
ings demonstrate that lipid raft-mediated signaling path-
ways are regulated during viral infections and play
critical role in disease pathogenesis (Bentley et al.
2007a; Silva et al. 2011; Ebihara et al. 2008; Huang
et al. 2009b; Fang et al. 2010) (Fig. 2).

Lipid rafts and fungal infections

Information regarding the role of lipid rafts in fungal
infections is evolving; however, initial studies suggest
that rafts facilitate fungal infections by regulating hy-
phal growth and biofilm formation, and by concentrat-
ing virulance factors (VFs) (Vieira et al. 2010; Farnoud
et al. 2015).

Role of the host rafts during fungal infection and mod-
ulation of host signaling The connection of fungal in-
fection with lipid rafts has not been extensively ex-
plored; however, evidences for modulation in host cell
signaling pathways by mycopathogens has been dem-
onstrated. Paracoccidioidomycosis is one of common
fungal disease with high prevalence in South and Cen-
tral America and is caused by Paracoccidioides
brasiliensis. Infection with P. brasiliensis promotes the
aggregation of lipid rafts in epithelial cells, which then
support fungal adhesion and activation of Src kinases
(Fig. 4). Localization of Ganglioside (GM1) in the host
membrane microdomains allows P. brasiliensis-epithe-
lial cell contact and fugal adhesion, which was found to
be inhibited by methyl-β-cyclodextrin (MβCD) (Maza
et al. 2008). Moreover, invasion byCandida albicans or
P. brasiliensis leads to the activation of host cell tyrosine
kinases which can be regulated by tyrosine kinase in-
hibitors (Belanger et al. 2002; Monteiro da Silva et al.
2007). Further, hyphal growth and biofilm formation
facilitate invasive growth of Cryptococcus neoformans
into the central nervous system; for which the pathogen

needs to travel across the blood-brain barrier composed
of human brain microvascular endothelial cells
(HBMECs). CD44 is the C. neoformans receptor be-
lieved to be anchored in lipid rafts on the surface of
HBMECs during infection. It is known that in caveolin-
1 knockdown HBMECs, GM1 and CD44 protein be-
come randomly distributed and clustered into irregular-
islands on the cell surface (Long et al. 2012). This
suggests an important structural role of caveolin-1 in
C. neoformans invasion. Activated PKCα, can directly
interact with caveolin-1, on the plasma membrane, and
is required for C. neoformans invasion into HBMEC
(Jong et al. 2008; Oka et al. 1997). Finally, the
microsporidiam parasite, Encephalitozoon cuniculi,
which affects the nervous system, as well as the respi-
ratory and digestive tracts, has been shown to localize to
lipid rafts. While residing in a parasitophorous vacuole,
this pathogen is surrounded by host cell lipids; which
could be labeled with DilC16 (1,1′-dihexadecyl-
3,3,3′,3′-tetramethylindocarbocyanine), a marker for
lipid rafts, and DiO (3,3′-dilinoleyloxacarbocyanine), a
marker for non-raft membrane domains. These results
suggest that rafts contribute to the formation of
parasitophorous vacuole membrane (Ronnebaumer
et al. 2008) and also that mycopathogens may also infect
cells in a raft-dependent manner (Vieira et al. 2010).

Role of fungal rafts in virulence and drug resistance The
primary raft-forming lipids in C. albicans, a dimorphic
opportunistic pathogen, include ergosterol and
glycosphingolipids, while the transporter of N-
acetylglucosamine protein (Ngt1), an efflux pump and
drug transporter protein (CaCdr1p), GPI-anchored pro-
tein (Gas1p), and proton pump protein (Pma 1) are the
major proteins associated with these rafts (Martin and
Konopka 2004; Simonetti et al. 1974; Pasrija et al.
2008). C. albicans rafts are capable of forming biofilms
creating a protected niche for microorganism against
antibiotics and a source of persistent infection. The
efficiency of biofilm formation can be significantly re-
duced after treatment with myriocin and aureobacidin
suggesting an important role of sphingolipids (lipid
rafts) in biofilms formation (Martin and Konopka
2004; Lattif et al. 2011). Furthermore, displacement of
these proteins from membrane by disruption of ergos-
terol or the sphingolipid biosynthesis pathway negative-
ly influences the drug resistance of fungi and suggests
the importance of raft assembly for localization of these
proteins (Wang et al. 2012). Similarly, when CaCdr1p is
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depleted from DRMs, Saccharomyces cerevisiae be-
comes prone to methotrexate and fluconazole (Pasrija
et al. 2008). Furthermore, ergosterol depletion has also
been shown to impair phagocytosis of Histoplama
capsulatum, which may result from the release of pro-
teins with anti-phagocytic function (Tagliari et al. 2012).
Although, secretion of anti-phagocytic proteins has been
demonstrated in case of C. neoformans, the direct link
with ergosterol depletion and secretion of these proteins
during H. capsulatum infection has not yet been
established (Tagliari et al. 2012; Luberto et al. 2003).
While studying chitosan-resistant and chitosan-sensitive
filamentous fungi, Palma-Guerrero and coworkers dem-
onstrated the importance of fungal rafts in drug resis-
tance. They identified an Neisseria crassa desaturase
mutant with chitosan resistance and high membrane
rigidity. The polymeric compound chitosan exerts its
fungicial effect by permeabilizing plasma membrane
of filamentous fungi (Palma-Guerrero et al. 2010). Ad-
ditionally, the role of detergent-resistant membranes in
fungi for concentrating VFs-phospholipase B1 and Cu/
Zn superoxide dismutase; and proton pump protein
Pma1 was demonstrated by Siafakas et al. and Holyoak
groups, respectively (Siafakas et al. 2006; Holyoak et al.
1996). Several reports have demonstrated the functional

role of these VFs in evading hosts immune responses
and Pma1 in the pathogenicity of C. neoformans
(Farnoud et al. 2014).

Perspectives

There is abundance of literature defining the role of lipid
rafts in several pathological conditions including
Alzheimer’s disease, Prion disease (Campbell et al.
2001; Peters et al. 2003; Liao et al. 2001a; Nguyen and
Taub 2002a; Liao et al. 2003), abnormalities associated
with the cardiovascular system such as hypertension and
cardiac hypertrophy (Fantini et al. 2002; Peters et al.
2003; Liao et al. 2001a; Golde and Eckman 2001) and
during bacterial and viral infections. Therefore, under-
standing the regulation and formation/composition of
rafts is imperative for the design of therapeutic strategies
for prevention and cure of related pathologies, as well as
to aid in patient management. For example, the use of
statins in cancer chemotherapy has been suggested as
these drugs have been shown to alter endothelial cell
function and inflammatory responses (Mo and Elson
2004). However, the effect of statins is not directly

Fig. 4 Fungal infection in association with lipid rafts and host cell
signaling. Fungal infection promotes the aggregation of lipid rafts
in epithelial cells. Localization of ganglioside (GM1) in the host
membrane microdomains allows cell contact and fugal adhesion.
Fungal adhesion leads to activation of PKCα and Src protein

tyrosine kinases leading to downstream signaling events in the
host cells. Lipid rafts facilitate fungal infections by regulating
hyphal growth, biofilm formation, concentrating virulance factors,
and drug resistance
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mediated through cholesterol, but is rather through their
effect on isoprenoids, which share initial biochemical
synthetic steps with cholesterol and play important roles
in anchoring several GTPases in themembrane (Vaughan
2003). Similar effects including the activation of GTPase
were reported in cholesterol depletion and repletion
models used to study the raft function in cell culture
models (Pierini et al. 2003; Nagao et al. 2007). In this
regard, a membrane-tethering inhibitor of β-secretase
that targets endosomes was designed for treatment of
Alzheimer’s disease (Rajendran et al. 2008). This same
idea may be employed for development of small lipo-
philic inhibitors to target raft-anchored proteins that are
activated in membrane compartments.

Earlier reports have also demonstrated that modulat-
ing the structure/composition of rafts can lead to inhibi-
tion of the infection cycle of HIV-1, which enters the
host cell through rafts, and can regulate raft-mediated
signaling pathways. SP01A, a widely used inhibitor of
HIV-1 infection, affects cholesterol synthesis and regu-
lates the cholesterol content of rafts thereby preventing
HIV-1 fusion with CD4+ cells. Likewise, the use of anti-
raft drugs shows clear promise as an alternative to
antibiotics to help reduce the threat of drug-resistant
bacteria. Further, targeting lipid raft formation in bacte-
ria using small molecules has also been shown to reduce
their virulence by regulating diverse processes including
exoprotease production, biofilm formation, and attach-
ment (Kong et al. 2006; Liu et al. 2008). However,
careful assessment of the strategies utilized should be
made while targeting cholesterol in the rodent models,
as there exists quantitative and qualitative difference in
its balance as compared to humans. Further, high con-
centrations of cholesterol at several anatomical sites
would also impair the ability to uniformly target choles-
terol for pathological conditions that effect various
tissues/organs (Dietschy and Turley 2002).

Given that there is a unique assembly of proteins and
lipids during the formation of signaling/raft domains in
response to infection with various pathogens, alteration
of the composition of lipid rafts through nutritional
intervention may be other interesting approach to com-
bat pathogens and modulate the inflammatory re-
sponses. This strategy has received wide acceptance in
the recent years and growing evidence suggests that
consumption of n-3 long-chain polyunsaturated fatty
acids (LCPUFAs) can reduce the risk of cardiovascular
disease and breast cancer. In this context, n-3 LCPUFA
has been shown to alter the partitioning of proteins and

composition of rafts including the reduction of choles-
terol (Hashimoto et al. 1999) and caveolae (Ma et al.
2004), and has been shown to regulate Akt and NF-кB
activation(Schley et al. 2007). In addition, n-3 LCPUFA
induces p38MAPK and EGFR phosphorylation, which
leads to increased apoptosis in tumor cells (Schley et al.
2007; Tikhomirov and Carpenter 2004). An extensive
report was published by Turk and Chapkin (Turk and
Chapkin 2013) describing the regulation of lipid raft
size, composition, and associated signaling mechanisms
by n-3 LCPUFA. These findings underscore the need to
further assess the therapeutic potential of n-3 LCPUFA
in disease states mediated by lipid raft-associated
processes.

Conclusions

With the majority of the scientific community focusing
on DNA, RNA, and proteins to understand the patho-
genesis of disease, the role of lipids has remained rela-
tively unexplored. However, recent advances in the field
of membrane microdomains/lipid rafts research has
opened new avenues to investigate alternative therapeu-
tic intervention strategies for many diseases. Although
there is abundant literature suggesting important role of
lipid rafts in bacterial, viral, and fungal infections, sev-
eral questions still remain to be answered in order to
define and target raft-mediated responses. Thus, impair-
ment of bacterial and viral entry and propagation in the
host in response to deviations/alterations in functional
membrane microdomains warrants further study in or-
der to better assess their role in bacterial and viral
infections. Further, the involvement of structural com-
ponents in terms of regulating rafts size, the concentra-
tion of lipids in microdomains, the specificity of protein
and lipid clustering, and rafts scaffolding during disease
pathogenesis are areas requiring additional focus and
potentially, even more sophisticated techniques. Ad-
dressing these particular aspects of functional mem-
brane microdomains will lead to a better understanding
of disease mechanisms and potentially more effective
treatment strategies including cell-based or personalized
medicine approaches. The former approach is based on
the concept of delivering therapeutic agents/drugs to
specific cell types using nano-particle based delivery
of drugs to the plasma membrane of cells for raft-
dependent intracellular trafficking (Partlow et al.
2008). With regard to personalized medicine
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approaches, lipidomics monitoring can provide a de-
scription of the concentration, structure, and function
of complete sets of lipids as well as information regard-
ing the interaction of lipids with proteins and other
metabolites. This information can be utilized to design
a personalized strategy to restore membrane balance
using lipids and cofactors from nutritional sources
(Escriba 2006). In addition, recent reports have sug-
gested increased individual disease susceptibility to sev-
eral diseases due to the limitations of several therapeutic
proteins like growth factors and antibodies to reach the
cytoplasm of diseased cells. These limitations can be
overcome through covalent modification with glycolip-
id structures (GPI anchors) resulting in directed lipid
raft-mediated signaling. Furthermore, research and clin-
ical studies using anticancer drugs that target lipid mes-
sengers or their carriers are ongoing. These drugs are
designed to disrupt crosstalk between cells within the
tumor microenvironment and cancer cells (Muller
2011). Future studies aiming to reduce the generation
and secretion of exosomes, which possess the bioactive
lipids found in the extracellular space in tumor environ-
ment, have also been proposed by the experts in cancer
research. These new approaches hold promise and the
potential to offer novel therapeutic targets with transla-
tion potential for future intervention studies.
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