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Abstract

Background: Neuroendoscopy is an innovative technique for neurosurgery that can nonetheless result in traumatic
brain injury. The accompanying neuroinflammation may lead to secondary tissue damage, which is the major cause of
delayed neuronal death after surgery. The present study investigated the capacity of osthole to prevent secondary brain
injury and the underlying mechanism of action in a mouse model of stab wound injury.

Methods: A mouse model of cortical stab wound injury was established by inserting a needle into the cerebral cortex
for 20 min to mimic neuroendoscopy. Mice received an intraperitoneal injection of osthole 30 min after surgery and
continued for 14 days. Neurological severity was evaluated 12 h and up to 21 days after the trauma. Brains were
collected 3-21 days post-injury for histological analysis, immunocytochemistry, quantitative real-time PCR, and terminal
deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and enzyme-linked immunosorbent assays.

Results: Neurological function improved in mice treated with osthole and was accompanied by reduced brain water
content and accelerated wound closure relative to untreated mice. Osthole treatment reduced the number of
macrophages/microglia and peripheral infiltrating of neutrophils and lowered the level of the proinflammatory
cytokines interleukin-6 and tumor necrosis factor a in the lesioned cortex. Osthole-treated mice had fewer TUNEL
+ apoptotic neurons surrounding the lesion than controls, indicating increased neuronal survival.

Conclusions: Osthole reduced secondary brain damage by suppressing inflammation and apoptosis in a mouse
model of stab wound injury. These results suggest a new strategy for promoting neuronal survival and function
after neurosurgery to improve long-term patient outcome.
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Background

Neuroendoscopy is a widely used neurosurgical option
that employs a cylindrical retractor to access deep intra-
cranial lesions [1]. Both retractors and surgical procedures
have been improved to facilitate and reduce the invasive-
ness of the procedure [2—4]; in recent years, commercial
products such as BrainPath (NICO Corporation, 2014) [5]
have been adopted to treat hard-to-reach areas. Nonethe-
less, while it is superior to traditional methods such as
craniotomy, neuroendoscopy can nonetheless inflict dam-
age to brain tissue.
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During a typical neuroendoscopy procedure, mechanical
trauma is caused by retractor insertion and includes the
severance of capillaries, extracellular matrix, and glial and
neuronal processes, leading to increased pressure region
surrounding the retractor [6]. Moreover, given that the
retractor rests inside the brain for the duration of the
surgery, brain pulsation can cause healthy tissue to beat
against the rigid surface for up to several hours, inducing
further injury [7]. Finally, secondary brain injury may
develop hours or even days later and is the main cause of
delayed neuronal death after surgery [8, 9] and includes
brain edema, reduction of regional blood flow, inflamma-
tion, apoptotic cell death, oxidative stress, and gliosis [10].
Since primary brain injury caused by retractor insertion
is irreversible, the main objective of medical treatment
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concerns the prevention and treatment of secondary
brain injury [11].

The inflammatory response is a key factor in second-
ary injury following brain trauma and is induced by the
release of proinflammatory cytokines [12, 13] that lead
to the recruitment of peripheral leukocytes to the cere-
bral parenchyma and activation of resident immune cells
[14, 15]. Neutrophils, monocytes, and lymphocytes
modulate neuronal survival and death at the site of in-
jury [14—17], while activated microglia release cytokines,
reactive oxygen species, and other cytotoxic factors, fur-
ther inducing neuronal death [16-18]. This response
may be mitigated by suppressing inflammation with
anti-inflammatory drugs. For example, the non-steroidal
anti-inflammatory drug ibuprofen inhibits inflammation
in mice following brain trauma by suppressing prosta-
glandin synthesis via cyclooxygenase 2 [8]. Some herbs
used in traditional medicine exert similar effects. Tripto-
lide, an active ingredient of Tripterygium wilfordii Hook
E, promotes the repair of injured spinal cord by inhibit-
ing astrogliosis and inflammation [19], whereas the root
of Panax ginseng C.A. Meyer (Araliaceae), also known as
ginseng, inhibits interleukin (IL)-1p and IL-6, tumor
necrosis factor (TNF)-a, and caspase-3 and B cell
lymphoma (Bcl)-2-associated X protein (Bax) expression
and stimulates IL-10, thereby suppressing inflammation
and apoptotic cell death after traumatic brain injury [11].

The natural coumarin derivative 7-methoxy-8-isopen-
tenoxycoumarin, also known as osthole (Fig. 1), was iso-
lated from medicinal plants such as Cuidium monnieri
(L.) Cusson and has anti-inflammatory, anti-apoptotic,
anti-oxidative stress, and neurotrophic properties that
make it promising for therapeutic applications [20-23].
Osthole exerts neuroprotective effects in experimental
models of cerebral ischemia/reperfusion injury via anti-
oxidative and -inflammatory activities [24], inhibits immune
diseases such as arthritis and hepatitis via modulation
of inflammatory cytokines [25-27], and attenuates central
nervous system inflammation and demyelination in
experimental autoimmune encephalomyelitis (EAE) by
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preventing the reduction in nerve growth factor while
suppressing interferon (IFN)-y level [28]. Our previous
studies have shown that osthole (30 mg/kg by intraperito-
neal (i.p.) injection for 50 days) protects neurons and oli-
godendrocytes from inflammation-induced damage and
promotes their survival and also improves the survival of
engrafted neural stem cells and induces remyelination and
axonal growth in EAE mice [20].

Based on the above findings, we hypothesized that
osthole can confer neuroprotection and attenuate the
inflammatory response and reduce secondary damage
in a mouse model of neuroendoscopy-induced brain in-
jury. We investigated neurological function and inflam-
mation following a 2-week treatment with osthole. The
results suggest a new strategy for restoring neuronal
function and improving long-term patient outcome
after neuroendoscopy.

Materials and methods

Preparation of osthole

Osthole (catalog no. 110822-200305, purity >98 %
(Fig. 1a) was purchased from the National Institute for
the Control of Pharmaceutical and Biological Products
(Beijing, China) and dissolved in dimethyl sulfoxide
(DMSO; <0.1 %), and stored at 4 °C [20, 21].

Animals, surgical procedures, and osthole administration

Adult C57BL/6] mice aged 3—4 months were housed
under a 12:12-h light/dark cycle, with free access to food
and water. Animal procedures conformed to guidelines
set by Liaoning University of Traditional Chinese
Medicine Institutional Animal Care and Use Commit-
tee, which are in accordance with those set by the
National Institutes of Health (Bethesda, MD, USA). A
mouse model of stab wound injury, as previously de-
scribed in [29-31] with slight modifications, is created
to mimic the neuroendoscopy procedure. Briefly, mice
were anesthetized with ketamine/xylazine solution
(50 mg/kg ketamine and 7.5 mg/kg xylazine in 0.9 %
NaCl solution) and placed in a stereotaxic frame (ST-

Fig. 1 Structure of osthole and schematic illustration of a coronal brain section. a Chemical structure of osthole. b Schematic illustration of a
coronal section of the mouse brain showing the relationship between the lesion cavity (arrow) and imaged areas (in boxes). Regions (500 um?)
immediately surrounding the cavity were selected for histopathological and immunohistochemical analyses
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5ND-B, Chengdu, China). The head was shaved and
the skin was disinfected with iodine/alcohol; body
temperature was maintained at 37 °C throughout the
surgical procedure using a heating pad [32]. A mid-
line incision was made through the scalp and the skin
was retracted. A hole was made over the left cerebral
hemisphere using a dental drill until the dura was ex-
posed. A 20-gauge, 1.1-mm-diameter needle with a rigid
core (BD Nexiva Closed IV Catheter System; BD Biosci-
ences, Franklin Lakes, NJ, USA) was inserted at 2.5 mm
lateral to the midline, 2.5 mm posterior to the lambdoidal
suture, and at a depth of 2.5 mm from the surface of the
brain (Fig. 1b). A blunt catheter needle with a sharp core
was inserted into the mouse brain. Upon reaching the
target area, the needle was left in place for 20 min
while the core was removed immediately. This proced-
ure was designed to mimic neuroendoscopy. The injury
site was then covered with sterile bone wax, the skin
incision was closed with sutures, and the mouse was
allowed to recover in its cage [33].

Mice were randomly divided into five groups: groups
1-3 (SWI+Ost) were administered osthole by i.p. injec-
tion 30 min after surgery at 10, 20, and 30 mg/kg,
respectively, dissolved in 0.1 % DMSO and phosphate
buffered saline (PBS) [11, 27] followed by once daily
injections for the next 14 days (n =30, 30, and 54 for
groups 1, 2, and 3, respectively); mice in the SWI con-
trol group were given 0.1 % DMSO in PBS by i.p. injec-
tion (200 pl) each day for 14 days (n=54), and naive
C57BL/6] mice were used as controls (z=54). Mice
were sacrificed between 3 and 21 days post-injury (dpi)
for analyses.

Assessment of neurological function

Neurological function was assessed with a modified
neurological severity score (NSS) at 12 h and 3, 7, 14,
and 21 dpi, as previously described (1 = 6 per group for
each time point) [29, 34, 35]. The evaluation consisted
of motor (muscle status and abnormal movement),
sensory (visual, tactile, and proprioceptive), reflex, and
balance tests, with results measured on a scale of 0-18
(0 =normal, 1-6 =mild injury, 7-12 = mean-moderate
injury; 13—18 = severe injury, and 18 = maximal deficit)
and the total score representing the sum of all test
scores. One point was awarded for the inability to per-
form a test or lack of a tested reflex; therefore, a higher
score indicated a greater degree of injury. The test was
administered by blinded, trained investigators, and mice
were familiarized with the testing environment before
being subjected to brain injury.

Measurement of brain water content
Brain water content was measured 72 h after SWI (n=6
per group). Following anesthesia and decapitation, brains
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were dissected, separated along the midline, and the cere-
bellum was removed. Ipsilateral hemisphere wet weight
was obtained on a pre-weighed piece of aluminum foil;
after drying in an electric oven at 100 °C for 24 h, the per-
cent water was calculated as (wet weight — dry weight)/
(wet weight) [11, 36, 37].

Hematoxylin and eosin staining and measurement of
lesion size

At 3, 7, 14, and 21 dpi, mice were anesthetized and
transcardially perfused with 4 % paraformaldehyde in
cold phosphate buffer (n=6 per group for each time
point). Brains were immediately dissected and fixed in
10 % buffered formalin and embedded in paraffin. Serial
coronal section 10 um thick were cut in a direction paral-
lel to the needle penetration line at 100-um intervals so as
to cover the entire lesion site. Sections were mounted on
glass slides for hematoxylin and eosin (H & E) staining
[37, 38] and visualized on a Nikon Eclipse E800 micro-
scope (Tokyo, Japan) with a digital camera. Changes in
cytoarchitecture were analyzed, and the size of the wound
cavity was measured in each section by tracing a line
across the top and along the edge of the tissue lining the
lesion with Image] software (National Institutes of Health)
[13, 18]. Measurements were taken from six sections per
mouse from six mice at each time point [30, 39, 40].

Immunocytochemistry

Brains were flash-frozen in cold isopentane on dry ice
immediately following perfusion and stored at —80 °C.
Serial frozen sections were cut at a thickness of 8 pm
on a cryostat microtome (Leica, Nussloch, Germany)
and fixed with 4 % paraformaldehyde in PBS for 30 min.
After washing twice in PBS, endogenous peroxidase activ-
ity was quenched by incubation in 3 % hydrogen perox-
ide/0.1 % Triton X-100 for 15 min at room temperature,
followed by two washes in PBS and blocking with 10 %
goat serum for 30 min. Sections were incubated at 4 °C
overnight with antibodies against the following proteins:
neurofilament (NF)-M, neuronal nuclei (NeuN), glial
fibrillary acidic protein (GFAP) (all at 1:150, from Stem-
Cell Technologies, Vancouver, Canada), ionized calcium-
binding adaptor molecule (Iba)-1 (1:100), caspase-3
(1:150), and myeloperoxidase (MPO) (1:150) (all from
Abcam, Cambridge, MA, USA). After three PBS washes,
sections were incubated with appropriate fluorescein
isothiocyanate- or Cy3-conjugated secondary antibodies
(1:200; Jackson ImmunoResearch Lab, West Grove, PA,
USA) for 60 min at room temperature and counterstained
with 4'6-diamidino-2-phenylindole (DAPI), followed by
three PBS washes. Sections were mounted with mounting
medium (Vector Laboratories, Burlingame, CA, USA) and
visualized using the Nikon Eclipse EB00 microscope.
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Cells expressing specific antigen were counted using
Image] software [20, 31, 41-45] in six non-adjacent brain
sections from six mice per group in five digital images of
each section acquired with the same exposure parameters.
The expression level was measured by pixel intensity as
previously reported [44, 45]. Pixel intensity was measured
from areas immediately surrounding the lesion (Fig. 1b).
The total number of DAPI+ nuclei was similar between
measured areas (# = 6 for each test).

Terminal deoxynucleotidyl transferase dUTP nick end
labeling (TUNEL)

Brain sections from mice at 7 dpi were analyzed for apop-
totic cells using the Fluorescence In Situ Cell Death
Detection kit (Roche, Chicago, IL, USA) according to the
manufacturer’s instructions (# = 6 per group). The number
of TUNEL-positive cells in each section in areas sur-
rounding the lesion was counted in six sections per mouse
and six mice per group using Image] software [9, 29, 39].

Quantitative real-time (RT-) PCR

Brains were collected at 3 and 7 dpi (n =6 per group for
each time point), and punch biopsies (diameter: 5 mm) of
the injured cortex were obtained. Tissue samples were
rinsed with diethylpyrocarbonate-treated water, placed in
2-ml Eppendorf tubes, and stored at —-80 °C for RT-PCR.
Total RNA was extracted from the tissue with TRIzol re-
agent and reverse transcribed to cDNA using a RevertAid
First Strand cDNA Synthesis kit (Thermo Scientific,
Vilnius, Lithuania) [46]. The PCR reaction (35 cycles) was
carried out using a DreamTaq Green PCR Master Mix Kit
(Thermo Scientific). Quantitative RT-PCR was performed
using the following forward and reverse primer sets de-
signed using Premier Biosoft 5 (Palo Alto, CA, USA): Bax,
5'-CTG ACA TGT TTT CTG ACG GC-3" and 5'-TCA
GCC CAT CTT CTT CCA GA-3’; Bcl-2, 5'-CGC TGG
GAG AAC AGG GTA-3" and 5'-GGG CTG GGA GGA
GAA GAT-3’; caspase-3, 5'-AGA TAC CGG TGG AGG
CTG ACT-3" and 5'-TCT TTC GTG AGC ATG GAC
ACA-3'; IL-6, 5'-AGC CAG AGT CCT TCA GAG AG-
3" and 5'-TCC TTA GCC ACT CCT TCT GT-3’; and -
actin (control), 5'-GGG AAA TCG TGC GTG ACA T-3’
and 5'-TCA GGA GGA GCA ATG ATC TTG-3'. Prod-
ucts were resolved by 1.5 % agarose gel electrophoresis
with ethidium bromide staining. The mRNA level of IL-6
was detected at 3 dpi, and those of Bax, Bcl-2, and
caspase-3 were detected at 7 dpi. Quantitative analysis
was performed using a Tanon 4100 Gel Imaging System
(Tanon Science & Technology Co., Shanghai, China).

Analysis of cytokine levels by enzyme-linked immunosorbent
assay (ELISA)

Brains were collected at 3 dpi, and punch biopsies
(diameter: 5 mm) of the injured cortex were obtained
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and stored at —80 °C until use (n = 6). Brain homogenates
were centrifuged at 4 °C and 15,000 rpm for 20 min, and
the supernatant was transferred to an Eppendorf tube. IL-
6 and TNF-a levels in each sample were measured using
ELISA kits (R&D Systems, Minneapolis, MN, USA)
following the manufacturer’s instructions on a fluorescent
plate reader at 450 nm [11].

Statistical analysis

Data were analyzed using SPSS version 13.0 (SPSS, Chi-
cago, IL, USA) and are presented as mean + standard
deviation. Differences between groups were assessed by
one-way analysis of variance, and post-hoc multiple com-
parisons were carried out with the Student-Newman-
Keuls test. P < 0.05 was considered statistically significant.

Results

In this study, we used naive (uninjured) mice as controls
rather than those subjected to craniotomy. It was previ-
ously shown that craniotomy is equivalent to a minor in-
jury in terms of the acute inflammatory response that is
induced [9, 47]; mice that underwent craniotomy had
similar numbers of GFAP-positive astrocytes to those
that experienced moderate cortical impact injury [48].

Osthole treatment improves neurological function after
Swi

Various concentrations of osthole (10, 20, or 30 mg/kg/
day) were tested to determine whether it can reduce in-
flammation and promote neurological recovery after
SWI. NSS was evaluated from 12 h to 21 dpi. SWI mice
had impaired neurological function as compared to
naive control mice, as evidenced by the increased NSS.
Osthole treatment lowered the NSS from 3 to 21 days
in a dose-dependent manner; the most significant de-
crease was observed with 30 mg/kg osthole (0.77 + 0.15
vs. 3.67 £1.28 in SWI controls at 21 dpi; P<0.01)
(Fig. 2a).

Increase in brain water content caused by injury is
reversed by osthole treatment

Cerebral edema is caused by damage to the blood-brain
barrier (BBB) after traumatic injury, and the resultant
increase in brain water content is a marker of brain
damage [12]. Brain edema worsened over time, peaking
at 72 h before declining thereafter [49]. At 3 dpi, brain
water content was higher in the SWI than in the naive
control group (85.27 % +4.32 % vs. 57.56 % t 6.45 %)
(Fig. 2b); this was reduced in a dose-dependent manner
by treatment with osthole (69.45 + 9.26; P < 0.01 vs. SWI
control).
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Fig. 2 Effect of osthole on NSS and brain water content. a Neurological function was assigned an NSS at 12 h, 3, 7, 14, and 21 dpi. Treatment with osthole
(20 or 30 mg/kg/day) lowered NSS from 3 to 21 dpi relative to untreated controls. There was no difference in the scores between the two groups at a
concentration of 10 mg/kg/day. b Brain water content of injured hemispheres measured at 3 dpi. Water content was higher in the untreated SWI group
than in naive controls. Osthole treatment reduced water content in a dose-dependent manner (n =6 per group). Data represent mean + SD. P < 001 vs.
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Osthole accelerates the closure of the brain cavity resulting
from injury

H & E staining revealed damage to cortical tissue due to
needle penetration. Figure 3a shows representative brain
sections at different time points after injury. The cavity
was largest at 3 dpi and shrank over time as the tissue
healed: in osthole-treated and untreated mice, cavity size
was smaller at 21 than at 3 dpi. In mice treated with
osthole (30 mg/kg), the rate of cavity closure was accel-
erated, with a significant reduction in cavity size at each
time point after injury (P<0.01) (Fig. 3a, b). By 21 dpi,
the lesion had closed in 4/6 osthole-treated mice vs. 2/6
untreated controls.

Osthole attenuates the inflammatory response in the
injured brain

Neuroinflammation following brain injury is characterized
by macrophage and neutrophil infiltration and microglia
activation [30, 50]. Proinflammatory cytokines such as
TNEF-a and IL-6 are mainly produced by microglia, which
in turn activate glia, further stimulating cytokine produc-
tion and astrogliosis [11, 14, 51]. Suppressing microglia
activation can therefore reduce inflammation and improve
recovery from injury [17]. To assess the role of osthole in
the inflammatory response, we quantified the numbers of
Iba-1+ macrophages/microglia, MPO+ neutrophils, and
the fluorescence intensity of GFAP+ astrocytes in the
lesioned cortex and measured the levels of inflammation-
associated cytokines in cortical tissue homogenates by
ELISA at 3 dpi. Inflammation-associated cells were pre-
dominantly localized around the lesion following injury
(Fig. 4a); however, there were fewer neutrophils and
macrophages/microglia in osthole-treated as compared to

SWI control mice (Iba-1+: 115.33 +47.96 vs. 247.83 +
52.29 cells/mm?% MPO+: 176.00 + 45. 4 vs. 290.67 + 34.89
cells/mm?, P<0.01) (Fig. 4b, ¢, e, f). In contrast, GFAP
immunoreactivity in astrocytes was unaltered by osthole
treatment (Fig. 4d, g). Additionally, levels of the proin-
flammatory cytokines IL-6 and TNF-a were reduced in
osthole-treated relative to untreated control animals (IL-6:
70.73 £ 15.59 vs. 160.09 + 19.59 pg/100 mg; TNF-a: 80.93 +
9.90 vs. 127.08 +15.36 pg/100 mg; P<0.01) (Fig. 4h, i).
These results suggest that osthole suppresses trauma-
induced inflammation by inhibiting microglia activation
and neutrophil infiltration as well as the release of proin-
flammatory cytokines that can cause secondary damage to
the brain after injury.

Osthole promotes neuronal survival and reduces
apoptosis in the injured brain

To evaluate the effects of osthole treatment at a cellular
level, brain sections at 7 dpi were examined for NF-M
expression (Fig. 5a, d) and apoptotic neurons were
detected by the TUNEL assay (Fig. 5b, e) and by double
labeling with antibodies against caspase-3 and NeuN
(Fig. 5¢, e). SWI resulted in decreased expression of NF-
M, representing a loss of axons. On the other hand, ost-
hole treatment increased NF-M immunoreactivity in the
lesion area as compared to untreated controls (fluorescence
intensity: 78.5+8.36 vs. 69.45 + 7.93; P<0.05) (Fig. 5a, d)
and decreased the number of TUNEL+ and NeuN+/cas-
pase-3+ apoptotic neurons (TUNEL+: 65.00 +15.56 vs.
108.00 +£9.90 cells/mm? caspase-3+/NeuN+: 64 +4.58
vs. 115.33 +17.63 cells/mm?% P<0.05) (Fig. 5b, c, e).
Thus, osthole promotes neuronal recovery by inhibiting
apoptosis after SWI.
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To clarify the mechanisms underlying the anti-
inflammatory and -apoptotic functions of osthole, we
examined the levels of mRNA expression of the proin-
flammtory cytokine IL-6 and apoptotic factors Bax, Bcl-
2 and caspase-3 by RT-PCR. SWI induced an increase
in IL-6, Bax, and caspase-3 and a decrease in Bcl-2
transcript. Osthole treatment resulted in the downregula-
tion of IL-6 and caspase-3 and reduced the ratio of Bax to
Bcl-2 as compared to the untreated SWI group (IL-6: 0.40
+0.07 vs. 0.73 £ 0.12; caspase-3:0.34 + 0.03 vs. 0.51 + 0.06;
Bax to Bdl-2 ratio: 0.62+0.18 vs. 1.64+0.20; P<0.01)
(Fig. 6a—d). These results suggest that osthole exerts anti-
inflammatory effects by inhibiting IL-6 expression and
suppresses apoptosis by reducing the Bax to Bcl-2 ratio
and downregulating caspase-3 expression.

Discussion

In this study, we mimicked the procedure of neuroendo-
scopy by using a needle to create a stab wound in the
mouse brain and investigated whether osthole treatment
can protect against secondary brain damage. Osthole
treatment (30 mg/kg i.p. once daily for 14 days) reduced
the number of microglia/macrophages in the brain par-
enchyma, decreased the number of peripheral infiltrating

leukocytes at the lesion, reduced proinflammatory cyto-
kine level, and inhibited apoptosis. These effects were
exerted via downregulation of IL-6, TNF-a, and caspase-3
expression and a reduction in the ratio of Bax to Bcl-2.
Thus, osthole can prevent secondary brain damage through
anti-inflammatory as well as anti-apoptotic mechanisms.

Traumatic injury to the brain triggers an inflammatory
response characterized by activation of microglia and
invasion of peripheral macrophages, resulting in second-
ary tissue damage at the injury site [19, 52]. The lack of
spontaneous tissue repair is due not only to the inability
of neurons to proliferate but also to the lesion microenvir-
onment, which contains many toxic factors [53, 54].
Accordingly, the goal of treatment is to suppress inflam-
mation during the acute phase so as to improve the envir-
onment for and prevent secondary damage to surviving
neurons.

Osthole has anti-inflammatory, anti-immunomodulatory,
anti-apoptotic, and anti-oxidative stress as well as neuro-
trophic effects [20-24]. It also protects against cerebral
ischemic injury by reducing oxidative stress injury and pre-
serving the integrity of the BBB [55]. Our previous study
showed that osthole treatment reduced clinical severity
in EAE mice by suppressing the autoimmune response,
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(See figure on previous page.)

Fig. 4 Osthole treatment reduces inflammatory cell infiltration and proinflammtory cytokines levels. a Spatial distribution of inflammatory cells around the
lesion at 3 dpi. b—-d MPO+, Iba-1+, and GFAP+ cells, as detected by immunohistochemistry within a single field (box) in the lesioned cortex. Macrophages/
microglia (Iba-1+, green), neutrophils (MPO+, red), and astrocytes (GFAP+, red) are shown along with nuclear DAPI staining (blue). e, f Quantitative analysis
of inflammatory cells as a function of total cell number (DAPI). g Quantitative analysis of GFAP expression, as determined by measuring GFAP
immunoreactivity pixel intensity. Regions immediately surrounding the lesion (as shown in panel a) were examined using ImageJ software.
Scale bar, 50 pm in B-D. h, i IL-6 and TNF-a levels, as assessed by ELISA. Data represent mean +SD (n =6 per group). "P<0.01 vs. naive
control; *P < 0.05, **P <0.01, vs. SWI control
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Fig. 5 Osthole treatment promotes neuronal survival and inhibits apoptosis in the lesioned brain. a, d Neuronal survival in the lesioned cortex of mice was
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decreasing IL-17 and IFN-y production, and increasing
neurotrophic support, thereby creating an environment
favorable to neuronal survival, protecting the myelin
sheath from demyelination, and promoting the repair
of myelin/axons [20], as reported by others [24]. In the
present study, mice treated with osthole exhibited a
low NSS, which was accompanied by a significant re-
duction in brain water content and accelerated closure
of the wound cavity as compared to untreated control
animals. Moreover, osthole treatment following injury
was also associated with a lower number of microglia/
macrophages and neutrophils at the injury site and re-
duced levels of the proinflammatory cytokines IL-6 and
TNE-a. The effects of osthole also included inhibition
of apoptosis, which is mediated in part by caspase-3 ac-
tivation [56—58]. Thus, our results suggest that osthole
can prevent post-injury inflammation and apoptosis to
reduce secondary injury to brain tissue, creating an en-
vironment conducive to functional recovery.

A previous study has shown that initial needle pene-
tration results in an immediate loss of tissue and the
formation of a cavity that gradually increases in size,
reaching a maximum size 3 days after injury, at which
time peak rates of apoptosis around the lesioned area
and robust astroglial reactivity are also observed [10].
The extent of brain tissue damage was dependent on the
mechanics of needle insertion; for example, high inser-
tion force and speed produced greater tissue damage

[32]. As expected, the cavity volume was larger than the
diameter of needle that was used. The cavity shrank over
time as the tissue healed, which was consistent with pre-
vious reports [59, 60].

NFs are the most abundant cytoskeletal protein in large
myelinated axons [40, 61]; specifically, NF-M is important
for the stabilization of mature axons [62]. We observed a
decrease in NF-M expression in injured animals, indicat-
ing axonal loss. In contrast, mice treated with osthole
showed increased NF-M expression, providing structural
evidence for the effects of osthole in promoting neuronal
restoration in the injured brain.

IL-6 is a major inducer of immune and inflammatory
responses under conditions of injury [63] and enhances
glutamate-mediated excitotoxicity in cerebellar granule
cells in vitro and causes damage to the BBB in vivo [64].
Transgenic mice overexpressing IL-6 display gliosis,
neuronal loss, and learning disabilities with prominent
neurodegeneration [65]. Hence, excessive IL-6-mediated
inflammation is likely involved in the unfavorable out-
comes associated with SWI. Osthole treatment partly
blocked the increase in IL-6 gene expression resulting
from injury, providing additional evidence that osthole
suppresses neuroinflammation via downregulation of IL-6.

The Bcl-2 family includes genes encoding the pro-
apoptotic protein Bax and the anti-apoptotic protein
Bcl-2 [66, 67]. Bcl-2 overexpression inhibits neuronal
apoptosis and stimulates the recovery of neurological
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function [68, 69], while overexpressing Bax induces apop-
tosis [70]. Bax upregulation and Bcl-2 downregulation
increases the Bax to Bcl-2 ratio; this may be directly asso-
ciated with cytochrome c release [71] and increased ex-
pression of caspase-3, which induces apoptosis [72]. In the
present study, osthole treatment reduced the Bax to Bcl-2
ratio and caspase-3 level that were elevated by SWI,
providing insight into the mechanism underlying the anti-
apoptotic effects of osthole.

Conclusions

Osthole treatment conferred neuroprotection and reduced
tissue damage in an experimental cortical SWI model, re-
ducing secondary brain damage via anti-inflammatory and
-apoptotic mechanisms. These findings demonstrate that
osthole has therapeutic potential for reducing injury-
induced neuroinflammation to improve long-term patient
outcome after neuroendoscopic surgery.
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