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Background: Histopathological diagnosis of bone tumors is challenging for pathologists.
We aim to classify bone tumors histopathologically in terms of aggressiveness using deep
learning (DL) and compare performance with pathologists.

Methods: A total of 427 pathological slides of bone tumors were produced and scanned
as whole slide imaging (WSI). Tumor area of WSI was annotated by pathologists and
cropped into 716,838 image patches of 256 × 256 pixels for training. After six DL models
were trained and validated in patch level, performance was evaluated on testing dataset
for binary classification (benign vs. non-benign) and ternary classification (benign vs.
intermediate vs. malignant) in patch-level and slide-level prediction. The performance of
four pathologists with different experiences was compared to the best-performing
models. The gradient-weighted class activation mapping was used to visualize patch’s
important area.

Results: VGG-16 and Inception V3 performed better than other models in patch-level
binary and ternary classification. For slide-level prediction, VGG-16 and Inception V3 had
area under curve of 0.962 and 0.971 for binary classification and Cohen’s kappa score
(CKS) of 0.731 and 0.802 for ternary classification. The senior pathologist had CKS of
0.685 comparable to both models (p = 0.688 and p = 0.287) while attending and junior
pathologists showed lower CKS than the best model (each p < 0.05). Visualization
showed that the DL model depended on pathological features to make predictions.

Conclusion: DL can effectively classify bone tumors histopathologically in terms of
aggressiveness with performance similar to senior pathologists. Our results are
October 2021 | Volume 11 | Article 7357391

https://www.frontiersin.org/articles/10.3389/fonc.2021.735739/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.735739/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.735739/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.735739/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:zhangjian@hospital.cqmu.edu.cn
mailto:luosicheng945@gmail.com
https://doi.org/10.3389/fonc.2021.735739
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2021.735739
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2021.735739&domain=pdf&date_stamp=2021-10-06


Tao et al. Deep Learning Classifies Bone Tumors

Frontiers in Oncology | www.frontiersin.org
promising and would help expedite the future application of DL-assisted histopathological
diagnosis for bone tumors.
Keywords: primary bone tumors, deep learning, histopathological classification, convolutional neural network
(CNN), diagnosis
1 INTRODUCTION

Primary bone tumors are a variety of neoplasms formed from the
bone tissue (1). Although the incidence is relatively low, primary
bones and joints’ malignancy is ranked the third and fourth
leading cause of death for males and females under 20 years of
age in the United States (2). The biological behavior of bone
tumors varies greatly among different classes (3). However, their
clinical management is mainly determined by the extent of the
tumor’s aggressiveness, which is usually graded as benign,
intermediate, and malignant (4). While the bone tumor’s
clinical characteristics and radiological information may help
physicians reach an initial diagnosis, histopathological
assessment of biopsy tissue remains decisive in determining
the bone tumor’s biological nature and confirming its
aggressiveness (5). Therefore, an accurate and reliable
histopathological differentiation is imperative to ensure a
satisfactory patient outcome.

Unlike tumors of epithelial origin that are more prevalent,
pathologists’ experience in diagnosing bone tumors usually lacks
due to the relatively low incidence and various histological
morphology. Additionally, some bone tumors of different kinds
may share similar histologic morphology because of
mesenchymal origin, thus introducing confounding factors in
classification. Moreover, the pathologist’s prediction of bone
tumor’s histopathological classification, which is prone to
subjectivity, could not be adequately quantified for the moment.

Considering the drawbacks of traditional histopathological
analysis mentioned above, diagnostic approaches based on
artificial intelligence gradually come into existence, along with
the accelerated development of computational power and deep
learning (DL) (6). The convolutional neural network (CNN), a
network composed of deep layers, can be trained to extract
specific features from an image dataset to output a quantitative
probability and build a classifier (7). In addition, the emergence
of whole slide imaging (WSI) enables slides digitalized as macro
data without information loss (8), which is suitable for neural
networks to process and learn. Utilizing WSI over the last few
years, the CNN has been verified efficient in the histopathological
classification of numerous tumors of epithelial origin, such as
breast cancer (9), lung cancer (10), gastric cancer (11), prostate
cancer (12), and nasopharyngeal cancer (13). In comparison to
tumors of epithelial origin, bone tumors are mostly of
mesenchymal origin, showing remarkably different and diverse
microscopic morphology. However, there lacks relevant evidence
regarding the performance of DL-based histopathological
classification for bone tumors so far.

Accurate DL-assisted differentiation of primary bone tumors
microscopically and qualitatively as benign, intermediate, and
malignant would not only compensate for the limited experience
2

and biased interpretation of physicians, but also provide a
quantitative approach to assess the biological nature of bone
tumors, potentially leading to a better treatment decision. In this
study, we evaluate the feasibility of using DL in qualitative
histopathological differentiation of primary bone tumors and
compare the performance of the best model with pathologists of
different levels of experience.
2 MATERIALS AND METHODS

2.1 Specimen Information
According to the 1964 Helsinki declaration and its later
amendments, this study was approved by the ethics committee
of the First Affiliated Hospital of Chongqing Medical University
(No. 2020-287). After ensuring that informed consents were
obtained from relevant patients, all specimens of primary bone
tumor resected in the hospital between July 2014 and October
2020 were retrieved from the Department of Pathology,
Chongqing Medical University. Based on the histopathological,
clinical, and radiological information, the collected samples’
diagnoses were confirmed by at least one senior pathologist in
accordance with the 2013 World Health Organization (WHO)
classification (4). A total of 458 specimens were finally
determined and classified into three groups, in which 206 were
benign, 96 were intermediate, 156 were malignant.

2.2 Data Preparation
2.2.1 Section and Staining
The collected paraffin-embedded specimens were sectioned and
stained under a standardized protocol, producing one
corresponding hematoxylin and eosin (H&E) slide for each
specimen. All slides were de-identified and only labeled with
diagnosis. The quality control of all slides was done by a senior
pathologist, and 31 slides (8 benign, 10 intermediate, and 13
malignant cases) were excluded from the study. The remaining
427 slides were finally chosen for scanning. Supplementary
Table S1 shows the detailed number of cases with definitive
diagnoses in each group. The average age of the included cases
was 38.06 years (from 7 to 89 years), while males and females
accounted for 53.62% and 46.37%, respectively.

2.2.2 WSI Scanning and Storage
The selected slides were scanned using a digital slide scanner
(Chongqing Defang Information Technology Co., Ltd,
Chongqing, China) to produce ultra-high-resolution whole
slide images at the default 40× objective magnification
(Figures 1A–C), which then were stored as svs format. The
average memory size of all WSIs was 5.76 GB, and the width and
height of WSIs were at least 149,520 and 150,420 pixels.
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2.2.3 Annotation
WSIs were analyzed by pathologists using Qupath (14) (version
0.2.3, Queens University). Areas constituted of tumor-related
cells and structures were considered as viable tumor areas, while
other non-specific normal connective tissues and white space
were regarded as non-tumor areas. Two junior pathologists
examined all WSIs under 1× to 40× objective magnification
before determining and annotating viable tumor areas as regions
of interest (ROIs) using Qupath built-in annotation tools
(Figure 1D). WSIs were subsequently rechecked by another
senior pathologist to ensure the accuracy of annotation.

2.2.4 Dataset Allocation
All WSIs under each group were randomly split into training,
validation, and testing datasets in a proportion of 70:15:15. Slide
dataset information for each group is shown in Supplementary
Table S2.

2.2.5 Image Patch Extraction
WSIs are images with more than hundreds of millions of pixels
(8), which are too huge to be used as input in training DLmodels.
Moreover, the discriminative information of histopathology is
Frontiers in Oncology | www.frontiersin.org 3
usually retained at the cellular level (15). Therefore, ROIs of
WSIs are usually cropped into plenty of image patches with fixed
dimensions (typically from 32 × 32 to 10,000 × 10,000 pixels,
where 256 × 256 is the most widely used) as input, making the
training possible and efficient (16). As a result, we used the
Qupath script editor to continuously crop the annotated viable
tumor areas into square image patches of 256 × 256 pixels
without overlapping (Figure 1E). In this study, we used a
down-sampling factor of four when cropping the ROIs because
the image patch of 256 × 256 pixels generated from the original
40× scanning magnification was insufficient to include a
satisfactory tumor area. Image patches with background
constituting more than 50% of their areas were abandoned.
The cropped patches share the same group label as the slides
from which they were generated. A total of 716,838 patches were
finally generated, and detailed information of image patches for
each group is shown in Supplementary Table S3.

2.3 Network Training and Performance
Evaluation
Several widely tested convolutional neural network architectures,
including AlexNet (17), VGG-16 (18), Inception V3 (19),
A B C
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FIGURE 1 | The workflow for deep learning training. (A) The pathological slide prepared from bone tumor specimens. (B) Whole slide imaging (WSI) scanning.
(C) Whole slide images with ultra-high resolution. (D) Tumor areas annotated by pathologists as regions of interest (ROIs). (E) Regions of interest were exported as
numerous square image patches of the same size. (F) Three-channel RGB image patches of 256 × 256 pixels were used as training input. (G) Data augmentation and
image preprocessing before training. (H) Image patches in the training dataset were fed into the convolutional neural network for training. (I) Models were trained for the
patch-level binary and ternary classification. (J) Predictions of all patches from one slide were averaged to obtain (K) the slide-level binary and ternary prediction.
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DenseNet-121 (20), ResNet-50 (21), and MnasNet (22) were
chosen for training the patch-level classification. All image
patches extracted were saved in 8-bit JPEG format (Figure 1F).
We performed the data augmentation and preprocessing by
random rotation, random horizontal flip, and normalization of
the original image (Figure 1G). The angle of random rotation
ranged from −45° to 45°. The probability of images being flipped
was 0.5. Pixel values of three-channel images were normalized by
scaling their values into the range from zero to one, then
subtracting [0.485, 0.456, 0.406] and dividing by [0.229, 0.224,
0.225] channel-wise. Random resized cropping was used such
that a crop of random size (0.08 to 1.0) of the original size and a
random aspect ratio (of 3/4 to 4/3) of the original aspect ratio was
made, finally resizing the image to a given size (224 × 224 or 299 ×
299, according to the model’s pre-trained dataset, shown in
Supplementary Figures S1–S6) as training input.

All models were pre-trained on the ImageNet dataset to
initialize kernel weights. Stochastic gradient descent (SGD)
with a categorical cross-entropy loss was implemented to
update the model’s weights, accompanied by a cyclic learning
rate (23) (cLR) oscillating between 10-4 and 10-6 every quarter
epoch. The batch size of 64 was set for training. Models were
trained on patch level (Figures 1H, I) for binary classification
(benign vs. non-benign) and a ternary classification (benign vs.
intermediate vs. malignant). The architecture and specific hyper-
parameters of each model are shown in Supplementary Figures
S1–S6.

The model’s generalizability for each epoch during training
was evaluated with validation dataset using loss and accuracy for
binary classification or using loss, accuracy, and the Cohen’s
kappa score (CKS) for ternary classification. All models were
trained for 30 epochs, and parameters of the epoch with the
highest validation accuracy (binary task) or CKS (ternary task)
were used to predict the classification of the testing dataset. We
compared the patch-level diagnostic metrics on the testing
dataset between different models and determined the best
architecture, which was then used to predict the slide-
level classification.

The model’s predictions of all image patches generated from
one slide WSI were averaged to produce a slide-level prediction
(Figures 1J, K). Then, the true label of the slide was used to
assess the model’s slide-level classification performance on the
testing dataset.

Metrics of performance for binary classification included
accuracy, sensitivity, specificity, positive predictive value
(PPV), negative predictive value (NPV), F1-score, the receiver
operating characteristic (ROC) curve, and the area under the
curve (AUC), whereas accuracy, the Cohen’s kappa score,
precision, recall, and F1-score were used to evaluate the
model’s ternary classification performance.

2.4 Experiment Setup
Our DL experiments were performed on a server with 4×
NVIDIA GeForce RTX 2080 Ti graphics processing units (11
GB of memory for each). We developed the relevant DL
algorithms with Python 3.6 and PyTorch 1.7.1 on an
Ubuntu platform.
Frontiers in Oncology | www.frontiersin.org 4
2.5 Evaluation of Pathologist’s
Performance
All slides in the testing dataset were read by one senior pathologist
(pathologist #1, with more than 25 years of experience), two
attending pathologists (pathologist #2 and #3, with more than 10
years of experience), and one resident pathologist (pathologist #4,
with less than 5 years of experience) without knowing any slide’s
information beforehand. Then, they labeled each slide as benign,
intermediate, or malignant according to their own interpretations.
Their predictions of all slides were recorded and compared with the
slides’ corresponding ground-truth labels to calculate the
pathologist’s diagnostic performance. Metrics used in the model’s
slide-level performance evaluation were analyzed for pathologists
and finally compared between model and human.

2.6 Model Visualization and Case Review
Gradient-weighted class activation mapping (Grad-CAM) is an
approach that uses the gradients flowing into the last
convolutional layer to create a map localizing and highlighting
the important regions relevant to model prediction in an image
(24). Therefore, we used Grad-CAM to visualize the important
regions associated with discriminative histopathological features
that the DL model relies on, thus revealing the underlying
mechanism of the model’s prediction. In the slide-level
classification, we identified the slide cases that the model, or
pathologist, or both wrongly classified. Then, the senior
pathologist was asked to determine the potential causes of such
misclassifications by reviewing the representative image patches
of the corresponding slide, along with the model visualization.

2.7 Statistical Analysis
Data used in this study were analyzed with SPSS software (version
26.0; IBM, Chicago, IL) and SAS 9.4 (SAS Institute, Cary, NC, USA).
The metrics of performance for slide-level binary classification
between models and pathologists were compared using
McNemar’s test. The 95% confidence intervals (CIs) of AUCs
were calculated and compared between groups using the Delong
methods (25), and the 95% CIs of the Cohen’s kappa scores were
acquired by the bootstrap method (26) with 10,000 replications and
compared between the model and the pathologist using the
permutation test with 10,000 iterations. The AUC in different
ranges represented the following predictive performance: poor
(0.5 ≤ AUC < 0.7), fair (0.7 ≤ AUC < 0.8), good (0.8 ≤ AUC <
0.9), and excellent (0.9 ≤ AUC). We characterize the Cohen’s kappa
score of 0–0.20, 0.21–0.41, 0.41–0.60, 0.61–0.80, and 0.81–1 as
slight, fair, moderate, substantial, excellent agreement with the
ground truth label, respectively. A p-value of less than 0.05 was
considered statistically significant.
3 RESULT

3.1 Patch-Level Performance of Models
3.1.1 Binary Classification
All generated patches from the training dataset were fed into six
pre-trained CNN models to build a binary classifier (benign vs.
October 2021 | Volume 11 | Article 735739

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Tao et al. Deep Learning Classifies Bone Tumors
non-benign). The learning curves for 30 epochs of all models are
shown in Figure 2. The validation loss of most models reached
the lowest level in the first 15 epochs before rising slowly
afterwards, indicating that the models gained the high level of
generalizability in the initial training process.

After determining models’ best-performing parameters using
validation accuracy, we assessed the performance of models’ patch-
level binary classification on the testing dataset. Figure 3 depicts the
ROC curves for each model, where the VGG-16 showed the best
predictive value with an AUC of 0.940 (95% CI, 0.939–0.941), while
the AlexNet had the smallest AUC of 0.902 (95% CI, 0.939–0.941)
among six models. For other diagnostic metrics, the VGG-16 also
had the highest accuracy (85.96%), sensitivity (83.66%), NPV
(77.78%), and F1-score (87.91%) compared with other network
architectures, whereas the Inception V3 showed the greatest
specificity (91.34%) and PPV (93.56%). The detailed information
of performance metrics for patch-level binary classification is
demonstrated in Table 1. Therefore, we chose the VGG-16 and
the Inception V3 for slide-level binary prediction.

3.1.2 Ternary Classification
Similar to the training for binary classification, six models were
fed with patches that were labeled as benign, or intermediate, or
Frontiers in Oncology | www.frontiersin.org 5
malignant to train a ternary classifier. However, we utilized the
CKS, rather than accuracy, to decide the best parameters in the
training process because of the relative imbalance of the patch
number between each class in ternary classification. Figure 4
illustrates the learning curves for 30 epochs of each model. As the
epoch increased, the validation loss of VGG-16 and Inception V3
was fairly stable at a low level compared with the other four
models, showing less chance of overfitting for these two models.

For the model’s performance in patch-level ternary classification
on testing dataset, the VGG-16 triumphed over others on accuracy
(74.78%), CKS (0.601, 95% CI 0.597–0.605), weighted average recall
(0.75), and weighted average F1-score (0.75), while sharing the
highest weighted average precision (0.79) with the Inception V3.
Table 2 summarizes the performance metrics of six models, and the
detailed classification report for each class is shown in
Supplementary Table S4. As a result, the VGG-16 and the
Inception V3 were finally selected for slide-level ternary prediction.

3.2 Slide-Level Performance of Models
and Pathologists
3.2.1 Binary Classification
The predictive probabilities of all patches generated from one
slide were averaged to obtain the model’s slide-level prediction.
FIGURE 2 | Learning curves for patch-level binary classification of six models showing the loss and accuracy in training and validation. Train, training; Val, validation;
acc, accuracy.
October 2021 | Volume 11 | Article 735739

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Tao et al. Deep Learning Classifies Bone Tumors
For the differentiation of benign from non-benign bone tumors
on the testing dataset, the VGG-16 and the Inception V3 both
showed excellent predictive capability on slide-level with the
AUC of 0.962 (95% CI, 0.882–0.994) and 0.971 (95% CI, 0.897–
0.997), respectively. In addition, there was no statistically
significant difference between the AUCs of both models (p =
0.304). The ROC curves for slide-level binary classification of
models are demonstrated in Figure 5, along with the results of
pathologists’ assessments. Table 3 summarizes the detailed
performance metrics for models and pathologists. Among
models and pathologists, the VGG-16 had the highest accuracy
(90.77%) and F1-score (90.91%), and the Inception V3 showed
the greatest specificity (100.00%) and PPV (100.00%). Senior
pathologist #1 had the best accuracy (84.62%) among
pathologists, while owning better sensitivity (91.43%) and NPV
(88.46%) compared with models. However, the heterogeneity of
predictive performance among pathologists was significant that
their sensitivities and specificity ranged from 57.14% and 76.67%
to 91.43% and 93.33%, respectively. The p-values for comparison
Frontiers in Oncology | www.frontiersin.org 6
of accuracy, sensitivity, and specificity between VGG-16 and
pathologists are shown in Table 3.

3.2.2 Ternary Classification
Slide-level ternary classification performances of models and
pathologists are outlined in Table 4. The Inception V3 had the
greatest value in each metric. Both the VGG-16 and the
Inception V3 showed substantial predictive value with the CKS
of 0.731 (95% CI, 0.573–0.860) and 0.802 (95% CI 0.662–0.920),
whereas pathologists of all levels had the CKSs of less than 0.7.
However, after pairwise comparison of CKS, we found that there
were no significant differences between the VGG-16 and the
Inception V3 (p = 0.182), the VGG-16 and pathologist #1 (p =
0.689), and the Inception V3 and pathologist #1 (p = 0.288). The
CKSs of pathologists #2–4 were significantly lower than
the Inception V3 (see Table 4 for the detailed p-values).
The detailed classification report for each class is shown in
Supplementary Table S5.

3.3 Model Visualization
We located the slides that were correctly classified by both
models (VGG-16 and Inception V3) and the senior pathologist
#1 in binary and ternary classification, then chose the
representative patches of selected slides for Grad-CAM
visualization. The model VGG-16 was used for visualization
because it showed the best binary and ternary patch-level
predictive performances.

Figure 6 illustrates the heatmaps of Grad-CAM results for
binary classification. For most benign cases, the model identified
the widespread stromal area without cells (Figure 6A) or stromal
areas with scattered benign cells (Figure 6C) as essential regions
for benign prediction. In some particular cases of benign tumors
that share highly similar “dense-cell” microscopic morphology
with non-benign tumors, the model effectively differentiated the
confusing area as the benign region (Figure 6B). Visualization
for non-benign patches showed that the different arrangements
of atypical cells were deemed by the model as discriminative
features for non-benign prediction (Figures 6D–F).

Visualization of representative patches for ternary
classification is shown in Figure 7. The mechanism for benign
prediction of ternary classification (Figures 7A–D) was similar
to that of binary classification. Intriguingly, the model could
accurately identify the specific structures, such as giant cells
(Figures 7E–G) and chondroblasts (Figure 7H), as important
regions for intermediate classification. Furthermore, the highly
TABLE 1 | Performance of patch-level binary classification on testing dataset.

Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) F1-score (%) AUC (95% CI)

AlexNet 81.13 78.77 84.83 89.05 71.85 83.59 0.902 (0.900, 0.904)
VGG-16 85.96 83.66 89.58 92.63 77.78 87.91 0.940 (0.939, 0.941)
Inception V3 84.62 80.32 91.34 93.56 74.78 86.44 0.930 (0.929, 0.932)
DenseNet-121 83.02 81.02 86.16 90.16 74.35 85.34 0.922 (0.920, 0.923)
ResNet-50 84.73 83.58 86.54 90.67 77.09 86.98 0.930 (0.929, 0.932)
MnasNet 83.32 80.68 87.46 90.97 74.31 85.52 0.918 (0.916, 0.919)
O
ctober 2021 | Volume
Metric with the greatest value among different models is bolded. PPV, positive predictive value; NPV, negative predictive value; AUC, area under the curve; CI, confidence interval.
FIGURE 3 | Receiver operating characteristic curves in the patch-level binary
classification of each model.
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dense organization of atypical cells (Figures 7I, J) and the
combination of stroma and scattered malignant cells
(Figures 7K, L) were regarded by the model as morphological
features for malignant prediction.

3.4 Case Review
We examined the slides that pathologist #1 correctly predicted,
whereas both models wrongly classified. Interestingly, all six
malignant slides that were classified as benign by models
belonged to chondrosarcoma. After visualizing some of the
patches for these six slides, we found that the model could
favorably recognize atypical cells for chondrosarcoma in the
patch level (Figures 8B, C). However, there were numerous
patches of the normal interterritorial matrix (Figures 8A, D),
which were unintentionally cropped by pathologists as ROI, for
one chondrosarcoma slide. This kind of patch-level annotation
noise was remarkable in chondrosarcoma, causing the number of
noise patches to overcome that of the true malignant patches in
Frontiers in Oncology | www.frontiersin.org 7
the averaging process of slide-level prediction. In addition, both
models classified one malignant slide as intermediate, and this
slide turned out to be a malignant giant cell tumor (GCT). The
mechanism of such erroneous slide-level prediction was also
associated with the annotation noise (similar to that of
chondrosarcoma), although the patch-level discriminative
features were successfully identified by the model (Figure 8F).
This malignant GCT was mainly composed of the normal GCT
area that was characteristic of giant cells (Figure 8E), whereas
malignant cells only constituted a small part of the
annotated ROI.

Figure 9 depicts the representative patches of slides that
pathologist #1 incorrectly classified but both models correctly
predicted. For the benign bone tumor that has seemingly
malignant microscopic structures, the model could effectively
differentiate the associated patches as benign classification
(Figure 9A). In addition, the model also showed favorable
performance in identifying specific features of the intermediate
TABLE 2 | Performance of patch-level ternary classification on testing dataset.

Accuracy (%) Cohen’s kappa score (95% CI) WA precision WA recall WAF1-score

AlexNet 68.62 0.505 (0.501, 0.509) 0.73 0.69 0.69
VGG-16 74.78 0.601 (0.597, 0.605) 0.79 0.75 0.75
Inception V3 74.17 0.591 (0.587, 0.595) 0.79 0.74 0.74
DenseNet-121 72.48 0.570 (0.566, 0.574) 0.78 0.72 0.73
ResNet-50 70.02 0.527 (0.523, 0.531) 0.74 0.70 0.70
MnasNet 73.39 0.575 (0.571, 0.579) 0.76 0.73 0.73
Octobe
r 2021 | Volume 11 |
Metric with the greatest value among different models is bolded. CI, confidence interval; WA, weighted average.
FIGURE 4 | Learning curves for patch-level ternary classification of six models showing the loss, accuracy, and the Cohen’s kappa score in training and validation.
Train, training; Val, validation; acc, accuracy; CKS, the Cohen’s kappa score.
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slides that the pathologist was unsure of diagnosing solely based
on the microscopic assessment (Figures 9B–D). Furthermore,
for patches of malignant slides that share similar cell
arrangements with intermediate cases, the model could easily
and correctly distinguish the corresponding area with high
predictive probability (Figures 9E, F).
Frontiers in Oncology | www.frontiersin.org 8
4 DISCUSSION

In this preliminary study, we found that several widely proved
DL models trained with limited pathological slides could
effectively classify bone tumors histopathologically in terms of
aggressiveness. The VGG-16 and Inception V3, which defeated
other models in patch-level performance, showed comparable
diagnostic abilities with the senior pathologist and triumphed
over attending and resident pathologists in slide-level predictive
performance. Moreover, we discovered that the DL model could
extract specific visual features of each classification and relied on
them to make favorable predictions.

In the conventional clinical setting, a patient who is suspected
of bone tumor usually undergoes clinical and radiological
examinations for an initial assessment. However, many cases
are challenging for physicians to give definitive or qualitative
diagnoses solely based on patient history or plain radiographs.
Therefore, a tissue biopsy is needed under such circumstances to
determine the tumor’s biological nature, thus directing more
appropriate treatment (5). The qualitative classification for bone
tumor after biopsy is usually divided into benign, intermediate,
and malignant tumor according to the aggressiveness evaluated
under microscopy. Intermediate and malignant cases can be
grouped as non-benign tumors because they normally require
subsequent interventions. Patients diagnosed with benign bone
tumors are generally requested for regular follow-up after one-
stage resection during biopsy surgery. In comparison, secondary
surgery that includes extensive resection and structural fixation is
commonly required for intermediate bone tumors owing to the
moderate recurrence rate and the local aggressiveness. For
malignant bone tumors, extensive resection with implant support
TABLE 3 | Performance of slide-level binary classification on testing dataset.

Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) F1-score (%) AUC (95% CI)

VGG-16 90.77 85.71 96.67 96.77 85.29 90.91 0.962 (0.882, 0.994)
Inception V3 87.69 77.14 100.00 100.00 78.95 87.10 0.971 (0.897, 0.997)
Pathologist #1 84.62a1 91.43b1 76.67c1 82.05 88.46 86.49 –

Pathologist #2 83.08a2 74.29b2 93.33c2 92.86 75.68 82.54 –

Pathologist #3 75.38a3 62.86b3 90.00c3 88.00 67.50 73.33 –

Pathologist #4 73.85a4 57.14b4 93.33c4 90.91 65.12 70.18 –
O
ctober 2021 | Volume
Metric with the greatest value among different groups is bolded. a1-4,b1-4,c1-4indicate the p-values compared with the VGG-16 in accuracy, sensitivity, and specificity, respectively. a1, p =
0.317; a2, p = 0.096; a3, p = 0.012; a4, p = 0.008; b1, p = 0.480; b2, p = 0.103; b3, p = 0.021; b4, p = 0.008; c1, p = 0.034; c2, p = 0.564; c3, p = 0.317; c4, p = 0.564. PPV, positive
predictive value; NPV, negative predictive value; AUC, area under the curve; CI, confidence interval.
TABLE 4 | Performance of slide-level ternary classification on testing dataset.

Accuracy (%) Cohen’s kappa score (95% CI) WA precision WA recall WAF1-score

VGG-16 83.10 0.732 (0.574, 0.867) 0.83 0.83 0.82
Inception V3 87.70 0.803 (0.664, 0.922) 0.90 0.88 0.87
Pathologist #1 80.00 0.686 (0.526, 0.829) a1,b1 0.81 0.80 0.80
Pathologist #2 72.31 0.543 (0.376, 0.703) a2,b2 0.70 0.72 0.70
Pathologist #3 69.23 0.490 (0.307, 0.664) a3,b4 0.70 0.69 0.68
Pathologist #4 70.77 0.507 (0.335, 0.679) a4,b4 0.74 0.71 0.69
11 |
Metric with the greatest value among different groups is bolded. a1-4indicates the p-value compared with the VGG-16 and b1-4indicates the p-value compared with the Inception V3. a1, p =
0.689; a2, p = 0.060; a3, p = 0.036; a4, p = 0.048; b1, p = 0.288; b2, p = 0.004; b3, p = 0.002; b4, p = 0.003. CI, confidence interval; WA, weighted average.
FIGURE 5 | Receiver operating characteristic curves in the slide-level binary
classification of VGG-16 and Inception V3, along with results of pathologists’
assessments.
Article 735739

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Tao et al. Deep Learning Classifies Bone Tumors
is combined with chemotherapy or radiotherapy for cases without
metastasis, whereas palliative therapy is needed for metastatic cases
(1). Given that it is difficult for general pathologists to accurately
classify bone tumors histopathologically because of the low
incidence and tumor heterogeneity, the expected goal of the
current study was to build a DL-based classifier that reaches the
diagnostic level of pathologists from the academic medical center.

The focus of AI-related research for bone tumor diagnosis is
mainly on the radiographic analysis for the moment (27, 28). Bao
et al. (29) have incorporated various features from radiographic
observations and demographic information to build a naïve
Bayesian-based model for ranking and classifying a wide range
of bone tumor diagnoses. Yu et al. (30) have established a DL
algorithm to classify bone tumors in terms of aggressiveness on
plain radiographs, finding the model has the ROC curve AUC of
0.877 for binary classification (benign vs. non-benign) and the
CKS of 0.560 for ternary classification on testing dataset.
However, the radiological information is relatively limited for
AI models to train and learn because only several radiographic
images can be obtained from one patient diagnosed with the
bone tumor. The bone tumor’s morphological information
presented on the radiograph can be inconsistent due to the
variabilities of radiation intensity, patient position, and film
magnification. Therefore, DL models may not grasp sufficient
discriminative features only from limited radiographs from one
patient, whereas a much more sample size per class is needed to
control the overfitting for a DL model with more than hundreds
of thousands of parameters (31). In contrast, the current study
rontiers in ncology | www.frontiersin.org
used WSI to scan almost all cell-level image data from the
pathological slide, which was then exported as hundreds of
thousands of image patches for training the DL model. Six
selected models showed satisfactory learning curves, but
models’ performances in differentiating the bone tumor’s
pathological data are different from that in distinguishing the
ImageNet dataset, where the VGG-16 and Inception V3 showed
better results in our dataset. The best models trained with more
than 400,000 histopathological image patches in this study also
showed relatively higher patient-level (slide-level) predictive
capabilities in binary and ternary classification for bone tumors
compared with that of models trained with limited radiological
data (30), reaching the diagnostic level of senior pathologists
while outperforming attending and junior pathologists.

The tumor area annotated by pathologists instead of the
whole tissue area on the pathological slide was used as ROI for
patch extraction in this study because of the following three
reasons. First, the histopathological component of bone tumors
is usually mixed with various normal connective tissues (bone,
cartilage, vascular tissue, fibrous tissue, and muscular tissue),
which would introduce a lot of noise data for DL models if the
normal area is used as training input. Second, the atypical tumor
areas that exclude normal connective tissue areas are relatively
easy for general pathologists to identify. Third, given the huge
morphological heterogeneity (various origins, such as osteogenic,
chondrogenic, and fibrous) among bone tumors from each
qualitative class and the moderate slide sample size of this
study, it is impractical to automate the ROI selection process
A
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F

FIGURE 6 | Gradient-weighted class activation mapping (Grad-CAM) in binary classification for representative patches of slides correctly classified by both models
and pathologist #1. The specific classification is shown under the original patch, and the predictive probability for CAM of each class is shown below the
corresponding Grad-CAM heatmap. (A–C) show the representative patches of benign bone tumors, whereas (D–F) show the representative patches of non-benign
bone tumors. CAM, class activation mapping; ABC, aneurysmal bone cyst.
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using algorithms for the moment. Some slides with suboptimal
stain quality were excluded before WSI scanning in this study,
making the pipeline workflow not clinically applicable enough.
An updated algorithm including stain normalization and
defective slide detection should be integrated into the model in
the future.

The patch-level Grad-CAM visualization showed that the DL
model could overcome the interference of histomorphological
heterogeneity among the same class, well-differentiating bone
tumors in terms of aggressiveness according to the diagnostic
feature. We speculate that the under-differentiated and non-
specific abstract features in non-benign bone tumors could be
effectively extracted and learned by the DL model to make the
correct patch-level binary prediction. However, for malignant
bone tumors with atypical cell components accounting for a
small proportion of the whole slide, the DL model gave wrong
Frontiers in Oncology | www.frontiersin.org 10
slide-level predictions because noise patches (patches of benign
structure) unintentionally produced in the ROI selection process
was used for slide-level probability calculation. Such label noise is
inevitable when the pathologist annotates an ROI area, and many
weakly supervised approaches have been attempted to address
this issue and reduce annotation workload (10, 32). Therefore,
given the histopathological diversity for bone tumors of the same
qualitative classification, future studies with more sample sizes
that have numerous cases of different origins in each class are
needed to build an annotation-free DL classifier with
high performance.

Most of the current DL-based histopathological diagnosis
system has been built as the assistant role for human pathologists
(11, 33) because of the related ethical issues of entirely relying on
DL models (8). It is usually devastating for pathologists to miss
the diagnosis of a non-benign bone tumor in adolescents that
A B

C D

E F

G H

I J

K L

FIGURE 7 | Grad-CAM in ternary classification for representative patches of slides correctly classified by both models and pathologist #1. The specific classification is
shown under the original patch, and the predictive probability for CAM of each class is shown below the corresponding Grad-CAM heatmap. (A–D), (E–H), and (I–L)
show the representative patches of benign, intermediate, and malignant bone tumors, respectively.
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FIGURE 8 | Representative patches of slides wrongly classified by models and the associated Grad-CAM results. The ground truth label of the original patch is
displayed on the upper left in white, and the predictive classification of the model is presented on the upper right in red (false prediction) or green (correct prediction).
The specific classification is shown under the original patch, and the predictive probability for CAM of each class is shown below the corresponding Grad-CAM
heatmap. (A–F) show the representative patches of chondrosarcoma and malignant giant cell tumor, respectively. B, benign; I, intermediate; M, malignant; CAM,
class activation mapping; GCT, giant cell tumor.
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FIGURE 9 | Representative patches of slides wrongly classified by pathologist #1 and the associated Grad-CAM results. The ground truth label of the original patch
is displayed on the upper left in white, and the predictive classification of pathologist #1 is presented on the upper right in red (false prediction). The specific
classification is shown under the original patch, and the predictive probability for CAM of each class is shown below the corresponding Grad-CAM heatmap.
(A–F) show the representative patches of benign, intermediate, and malignant bone tumors, respectively. B, benign; I, intermediate; M, malignant; CAM, class
activation mapping; ABC, aneurysmal bone cyst; GCT, giant cell tumor.
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could have been properly managed. Therefore, a screening tool
with high sensitivity would assist inexperienced pathologists in
general hospitals to confidently exclude non-benign bone tumors
and refer suspected aggressive cases to specialized hospitals for
further treatment. The best-performing DL model in this study
showed a comparable sensitivity and a higher specificity
compared with the senior pathologist in slide-level prediction,
indicating the promising value of DL in screening non-benign
bone tumors in the future. Besides histopathological features,
pathologists typically use radiological and demographic findings
as references to reach the final clinical diagnosis of the bone
tumor. However, when given the pathological information alone,
the evaluation results among pathologists seemed not consistent
in this study, which shows that the human’s classification of bone
tumors may be unreliable solely based on the histopathological
assessment. Later DL-related research should focus on
combining clinical, radiological, and histopathological data of
bone tumors, along with cutting-edge approaches like the
ensemble model (34), to raise the sensitivity to near 100%
while maintaining the high specificity of the model.

To our knowledge, this is the first study that verifies the
feasibility of using the DL-based model to classify bone tumors
histopathologically in terms of aggressiveness. In contrast,
previous related works only concentrated on the histologic
analysis of specific diagnoses of bone tumors and had small
numbers of WSI slides (35–37). Considering the low prevalence
of bone tumors and the relative difficulty to obtain biopsy tissues
compared with radiographs, the sample size of more than 700,000
patches generated from 427 slides was fairly adequate to train a DL
model. With the help of the Grad-CAM, we found that the model
could easily differentiate some cases that were confusing for
pathologists. The visualization also helped us partly interpret the
DL underlying mechanism of classifying bone tumors, which was
deemed a black box that was hard to explain before. These results
would provide a theoretical basis for the future application of DL-
assisted histopathological diagnosis for bone tumors.

There exist several limitations in our study. First, this is a
single-center study with a moderate number of pathological
slides. The variety in the process of slide preparation and WSI
scanning from different institutions may have an impact on the
image quality of training input. Therefore, the model’s
generalizability might be partially limited by the training
dataset of this study, and a multi-center research should assist
in achieving a more robust result in the future. Second, the label
noise (wrongly labeled patches) generated from manually
annotated ROIs would introduce information bias to some
degree for DL training, although such bias could be mostly
compensated in the averaging process of the slide-level
prediction. Third, due to the retrospective nature of the data
acquisition, the number of slides in each classification was not
well balanced, thus bringing in selection bias for training and
evaluation of the model. However, we used the average metric
weighted by each class to minimize this kind of bias. Moreover,
the subjectivity of pathologists in determining tumor areas would
also result in selection bias, and future studies are needed to
Frontiers in Oncology | www.frontiersin.org 12
address this problem with weakly supervised or unsupervised DL
models. Fourth, there were few specific cases with the rare
incidence in each qualitative classification (for example, fibrous
histiocytoma and fibrosarcoma). The DL model may not be
trained well to extract and learn morphological features specific
to these rare cases based on the limited number of representative
patches. Future studies should include more data about rare cases
to make the model more generalizable. Fifth, there exist some
non-neoplastic lesions mimicking bone tumors radiographically
or histopathologically, such as osteomyelitis and osteonecrosis.
Our DL models were only trained on the neoplastic lesions,
leading to inapplicability to differentiate such non-neoplastic
lesions, although these kinds of tumor mimics are relatively easy
for pathologists to distinguish from neoplastic lesions based on
the laboratory test and the histological absence of neoplastic cells.
Finally, histopathological results of bone tumors are more often
combined with clinical and radiological features of patients for
pathologists to predict the clinical classification, whereas we only
focused on the histopathological side in this study. In order to
make the model’s underlying prediction mechanism closer to the
human being, later research should consider integrating multiple
levels of data to train a comprehensive DL model.

In summary, the present study shows that the DL model can
effectively classify primary bone tumors histopathologically in
terms of aggressiveness, reaching the predictive performance
similar to the senior pathologist while higher than attending
and resident pathologists. These results are promising and
would help expedite the future application of DL-assisted
histopathological diagnosis for primary bone tumors.
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