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Abstract

Discovering drug–target (protein) interactions (DTIs) is of great significance for researching and developing novel drugs,
having a tremendous advantage to pharmaceutical industries and patients. However, the prediction of DTIs using wet-lab
experimental methods is generally expensive and time-consuming. Therefore, different machine learning-based methods
have been developed for this purpose, but there are still substantial unknown interactions needed to discover. Furthermore,
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data imbalance and feature dimensionality problems are a critical challenge in drug-target datasets, which can decrease the
classifier performances that have not been significantly addressed yet. This paper proposed a novel drug–target interaction
prediction method called PreDTIs. First, the feature vectors of the protein sequence are extracted by the
pseudo-position-specific scoring matrix (PsePSSM), dipeptide composition (DC) and pseudo amino acid composition
(PseAAC); and the drug is encoded with MACCS substructure fingerings. Besides, we propose a FastUS algorithm to handle
the class imbalance problem and also develop a MoIFS algorithm to remove the irrelevant and redundant features for
getting the best optimal features. Finally, balanced and optimal features are provided to the LightGBM Classifier to identify
DTIs, and the 5-fold CV validation test method was applied to evaluate the prediction ability of the proposed method.
Prediction results indicate that the proposed model PreDTIs is significantly superior to other existing methods in predicting
DTIs, and our model could be used to discover new drugs for unknown disorders or infections, such as for the coronavirus
disease 2019 using existing drugs compounds and severe acute respiratory syndrome coronavirus 2 protein sequences.

Key words: drug–target interaction; drug chemical structure; protein sequence; data imbalance; feature selection;
SARS-CoV-2

Introduction
Prediction of new drug–target (protein) interactions (DTIs) is
a fundamental stage in the drug development and drug dis-
covery pipeline [1–3]. Drug repurposing is a growing trend in
pharmaceutical science for drug discovery giving emphasis on
identifying the unknown interactions between existing drugs
and new target proteins. The development of the human genome
and the expansion of the molecular medicine project are use-
ful to predict the new target of drugs. In the past years, lots
of efforts have been imposed on discovering unknown drugs,
but very few new drugs got approvals by the Food and Drug
Administrations (FDA) and reached people [4], whereas a huge
number of drugs got a rejection in the clinical tests because
of the unacceptable toxicity [5]. The wet-lab experiments of
DTIs are usually time-consuming, labor-intensive and costly [6];
therefore, such failures are not easy to accept and wasted a lot
of money. Generally, the cost of novel drugs is about $1.8 billion,
and it takes approximately 13 years to develop [7]. Therefore,
researchers are highly motivated to build machine learning (ML)-
based techniques to detect DTIs, which can successfully reduce
the search space of the drug–target candidates to be examined
by wet-lab experiments to minimize the effort and cost. Recently,
ML-based computational methods become more beneficial due
to large heterogeneous drugs and protein data. Various online
databases are available to use for the application in the predic-
tion of the drug–target interactions (DTIs) [8], such as KEGG [9,
10], DrugBank [11], TTD [12,13] and STITCH [14].

Different ML methods have recently been applied to predict
DTIs based on the various types of datasets [15, 16]. The
computational drug–target methods can be divided into three
groups: ligand-based methods [17,18], docking-based methods
[19,20] and chemogenomic methods [21]. The ligand-based
methods discover DTIs based on the similarity of the proteins’
ligands. The docking-based methods exploit three-dimensional
(3D) structure data of a protein and then execute models
to evaluate the prediction probability that it binds with a
specific drug through binding affinity and energy. Finally,
chemogenomic methods [22] generally use the genomic and
chemical information of target proteins and drugs. However,
the first and second categories methods have some limitations
due to the insufficiently known ligands and 3D structures of
proteins. Therefore, chemogenomics methods are more popular
to identify DTIs. The prediction task of the chemogenomic
model could be solved by using sophisticated ML algorithms
[23]. Here, the model takes known interaction data together

with information (chemical and sequence) of the drugs–proteins
involved to train the algorithm and consequently detect new
interactions from the trained algorithm. According to the current
review paper [24], the ML methods can be classified as similarity-
based approaches or feature-based approaches [21,22,25].
Similarity-based approaches include matrix factorization [27–
30], kernel-based approaches and graph-based approaches [31].
Different ML classifiers [32] such as XGBoost [33], deep learning
[34], SVM [35], fuzzy logic [36,37] and nearest neighbor [1] have
been effectively applied on these types of prediction purposes.
Whereas feature-based approaches consider drug chemical and
protein sequence feature vectors as input and represent the
class label by binary value (1 and 0), indicating the interacted
and non-interacted pairs in the datasets. These methods can
discover possible interactions from features that are more
effective. Yamanishi et al. [38] combined chemical structures of
drug compounds and sequences information of target proteins
in a unified space to contract the drug-protein interactions
network. Furthermore, the same author proposed an integrated
model to detect the pharmacological similarity of molecular
compounds in a bipartite graph (BG) inference [39]. This model
combined chemical and pharmacological information with the
topological network and used a distance learning classifier to
train the model. The primary purpose of this model was to
discover potential similar DTIs using pharmacological effect.
Based on the similarity-based network of genomics data, Hao
et al. [40] introduced a robust regularized least squares with
kernel fusion (RLS-KF) classifier that utilizes nonlinear kernel
fusion (KF) technique with different kernel matrices to obtain
the shared and complementary information for identifying
new DTIs. Another approach, called KBMF2K, was introduced
in [27] that integrates dimensionality reduction (DR), matrix
factorization and binary classifiers. This method provides full
derivation using variational approximation.

Li et al. [41] extracted the PSSM features of proteins from
the amino acid sequence and the drug chemical structure
transferred to substructure fingerprints, where a discriminative
vector-based ML algorithm is developed. To minimize feature
dimensionality, principal component analysis (PCA) is applied
to make features into the low-dimensional space for protein and
drugs. Finally, the local binary pattern (LBP) technique is used to
evaluate the LBP histogram from the reduced features. Rayhan
et al. [42] developed a boosting classifier-based method to predict
potential DTIs from gold standard datasets using evolutionary
information and structural features of target proteins. In this
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work, the authors proposed a cluster undersampling technique
(CUS) to handle the data imbalance problem. Similarly, Wang
et al. [43] employed a rotation forest (RF) classifier with an auto-
covariance method to detect interactions from PSSM (protein
features) and fingerprint (drug features) vectors. In another
work, a DNN-deep learning method is proposed in [44], a LASSO-
random forest approach is introduced in [45] and an ensemble
method with a random projection is proposed in [46]. Recently,
our previous work [47] presented XGBoost based approach with
sequence, evolutionary and structural information to identify
DTIs. In this paper, a cluster-based undersampling technique
was proposed to manage the data imbalance issue, and also
a new feature selection method was developed to select the
optimal set of features. In another work [26], structural features
extracted from protein sequences, an oversampling-SMOTE,
are independently employed for balancing the drug-target
datasets. During the prediction of DTIs, the high-dimensionality
of features is a complex issue. Therefore, DR is an essential part
of the prediction task. There are different types of DR techniques,
such as linear discriminant analysis (LDA) [48], PCA [49], genetic
algorithm (GA) [50] and relief [51] have been applied to select
the suitable features from the datasets for accurate prediction.
Considering the advantages of related approaches, more related
approaches have also been proposed. Thafar et al. [52] introduced
a method DTiGEMS+ that predicts DTIs using graph mining
graph embedding and similarity techniques. Their method
combines feature-based and similarity-based approaches and
models the prediction of potential DTIs as a link identification
problem in a heterogeneous network. DTiGEMS+ uses the
heterogeneous network by enhancing the positive DTIs graph
using two more matching graphs: target–target similarity
and drug–drug similarity. DTiGEMS+ incorporates multiple
target–target similarities and drug–drug similarities into a
heterogeneous graph after utilizing a similarity selection
technique and a fusion algorithm. In most recent studies, ML
methods, similarity metrics and handcrafted features have been
proposed to discover DTIs. Manoochehr et al. [53] claimed that
these approaches could not learn the fundamental associations
between drugs and targets. Therefore, they proposed a novel
framework for identifying DTIs that acquire latent features from
DTI network. Another recent work was introduced in [54] that
uses a deep-walk embedding concept to predict DTIs from a
molecular association’s network. This network is constructed
by combining the associations among protein, drug, disease,
micro RNA and long non-coding RNA (lncRNA). Moreover, we
summarized some of the exiting methods related to DTI in
Table 1.

Since wet-lab experiments for predicting DTIs are expensive
($1.8 billion), time-consuming (around a decade) and laborious,
it completely motivated us to develop ML-based methods for
discovering potential interactions efficiently. However, estab-
lishing such ML approaches is not easy, but it is urgently needed,
as existing approaches that identify potential DTIs suffer from
high false-positive rates. Still, vast numbers of possible DTIs
interactions are undiscovered, which is also necessary to pre-
dict and help develop new drugs. Therefore, the novelty and
contributions of this research include: (i) predict the novel DTIs
from drug chemical structure and protein sequence; (ii) utilize
the multi-feature fusion for predicting novel DTIs; (iii) propose
a data balancing algorithm address to handle the imbalance
issue in datasets that did not effectively address in the existing
approaches; (iv) develop an effective feature selection algorithm
to remove the redundant and noisy information and (v) provide

satisfactory prediction performance for all the four benchmark
datasets.

In this study, we proposed a new ML-based model called
PreDTIs for DTIs prediction. Firstly, we use MACCS fingerprints,
PsePSSM, PseAAC and DC to extract the drug chemical structure
features and protein sequence features. Then these three types
of protein features integrate with drug features to make drug–
target datasets for accurate DTIs prediction. Secondly, since the
drug–target dataset is highly imbalanced, we propose a new
undersampling technique to manage the imbalance issue of
positive and negative datasets. Thirdly, Modified Incremental
Feature Selection (MoIFS) develops to select the optimal features,
removing noisy and redundant features and providing poten-
tial features for accurate prediction. Finally, after comparing
different ML classifiers, the LightGBM classifier is selected for
predicting DTIs from balanced and selected features. Five-fold
CV test is carried out on the datasets; different parameters are
chosen for the features to fix the best settings of the model.
Average area under the curve (AUC) values of PreDTIs on enzyme
(EN), ion channel (IC), GPCR and NR are 0.9656, 0.9612, 0.9249
and 0.8652, respectively. The results indicate that our proposed
model significantly improved the prediction performance of
DTIs compared to the other existing methods.

The rest part of the paper is structured as follows: Materials
and methods section describes the detail of the gold standard
datasets, feature extraction, data balancing, feature selection,
and classifiers we employed in this paper. In the Results and Dis-
cussion section, performances and experimental results are pro-
vided, and a comparison with the literature is made. In the next
section, our proposed model that can help discover new drugs to
treat coronavirus disease 2019 (COVID-19) infection is described,
and finally, a discussion and conclusion are drawn in this paper.

Materials and methods
A schematic diagram of our proposed PreDTIs model is shown
in Figure 1. At first, drug chemical structures (SMILE format) and
protein sequences (FASTA format) are collected from DrugBank
and KEGG databases using their specific access IDs. Different
feature generation methods were applied to the drug and protein
sequences to generate a variety of features. Afterwards, balanc-
ing techniques are used on extracted features to manage the
datasets’ imbalance issue and drug–target features are selected
through the newly developed feature selection technique to
boost prediction performances. Finally, the model is trained
using LightGBM classifier on the reduced features.

Drug–target datasets

In our research, we use four types of protein targets gold stan-
dard datasets also known as benchmark datasets, i.e. EN, IC,
GPCR and nuclear receptor (NR) released by Yamanishi et al. [38].
Mainly, only drug IDs and protein IDs are considered from their
datasets. After that, we collected the drug chemical structures
and protein sequences of these four types of datasets from the
DrugBank [55], SuperTarget and Matador [56], KEGG BRITE [57]
and BRENDA [58] databases. After counting them, the number
of known interaction (positive samples) pairs in each dataset is
2926, 1476, 635 and 90, respectively. Finally, the total number of
5127 known interacted pairs was found. The detailed informa-
tion about the drug–target datasets is shown in Table 2. Note
that these gold standard datasets have been exploited in recent
various state-of-the-art methods [41,42,47,59] by researchers.
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Table 1. The existing DTIs prediction methods

Authors Datasets Methodology/techniques Cross-validation Performance parameters

Yuan et al. [50] DrugBank Classifier: ensemble learning and
LambdaMART, feature extraction:
GD (general descriptors-RDKit),
composition, transition and
distribution (CTD-PROFEAT)

5-fold CV Area under
precision-recall curve
(AUPR)

Li et al. [51] Gold standard dataset Classifier: discriminative vector
machine, feature extraction: PSSM
and local binary pattern and
fingerprint, feature dimension
reduction: PCA

5-fold CV Pre, ACC, SE, MCC, AUC

Meng et al. [52] Gold standard dataset Classifier: RVM feature extraction:
BIGP, PSSM feature dimension
reduction: PCA

5-fold CV Ac, SE, Precision, MCC

Luo et al. [53] DrugBank, HPRD,
comparative toxicogenomics,
SIDER

Method: vector space projection
scheme (network integration
pipeline)

10-fold CV AUPR

He et al. [54] Davis, Metz, KIBA Method: SimBoost and
SimBoostQuant

5-fold CV RMSE, AUC, AUPR, CI

Laarhoven et al. [55] Gold standard dataset Classifier: RLS, feature generation:
similarity matrices

10-fold CV AUC

Buza et al. [51] Gold standard dataset, kinase Method: projection-based
ensemble-BLMs, ECkNN

5-fold CV AUC, AUPR

Kuang et al. [56] DrugBank Method: RLS (regularized least
squares) and semi-supervised link
prediction

10-fold CV AUC, AUPR

Cheng et al. [57] Gold standard dataset,
DrugBank

Method: three supervised
similarity network-based
inference

10-fold CV AUC

Figure 1. The workflow of identifying DTIs from the chemical structure of drug compounds and the target sequence of proteins.

Table 2. Statistics of the dataset used in this study

Datasets Drugs Targets Interaction

Enzyme 445 664 2926
Ion Channel 210 204 1476
GPCR 223 95 635
NR 54 26 90

Generally, the DTIs network is visualized by a BG, where
nodes of the graph represent the drugs or proteins, and the
edges indicate the known interactions between these nodes
(drugs and targets). Most importantly, this BG holds a small
number of edges. For example, EN has 445 × 664 = 295 480 edges

in the BG, and only 2926 edges are known interactions (pos-
itive samples). Therefore, the possible 295 480–2926 = 292 554
unknown interactions (negative samples) are greater than the
known interactions, creating a major biasing problem. To solve
the bias caused by the imbalanced data, we develop a new
FastUS algorithm to balance the negative samples with the same
number of positive samples (e.g. EN: 2926 positive/2926 negative)
to assess classification performance.

Feature extraction methods

Drug features

Different types of software have been developed as a descriptor
to calculate and represent the drug compounds in the past few
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Figure 2. Schematic representation of a drug molecular substructure pattern fingerprint.

years. But, recent studies indicate that molecular substructure
fingerprints (MSFs) can efficiently represent drug chemical
structure under consideration [26,35,60,61]. MSFs are string
representations of drug chemical structures aimed to improve
chemical database searching and analysis efficiency. They can
encode the 2D and 3D features of drug molecules. Among the
various types of fingerprints, MSF performs well for small
molecules such as drugs, while atom-pair fingerprints are
the best for large molecules such as peptides. MSF directly
extracts molecular structure in binary bits, the presence (one-
1) or absence (zero-0) of specific sub-structures in the drug
molecule. It represents a molecule into large fragments. It can
retain the whole complexity of drug molecules and thereby
not generate any error features from the molecular structures.
Most importantly, the process provides a complete relationship
between molecular property and structure. Thus, a molecule
is represented as a Boolean array and described according
to fingerprints of structural keys. Here, SMARTS (predefined
dictionary of substructure patterns) pattern and fingerprint
bit have a one-to-one relation. In the SMARTS pattern, if the
substructure is present in the drug molecule, the fingerprint bit
is set to one (1); otherwise, it is set to zero (0) if the substructure
is absent. As an example, a substructure fingerprint dictionary
for a drug molecule is shown in Figure 2.

In this experiment, we used the MACCS (Molecular ACCess
System) fingerprint to create the substructure dictionary. The
fingerprint of MACCS applies a dictionary of MDL keys, and
there are two sets of MACCS keys (one with 960 keys and the
other containing a subset of 166 keys); only the shorter fragment
definitions are available to the public. These 166-D features
are generated for each drug structure in this experiment. Full
development information of MACCS fingerprints can get from
OpenBabel and all the processes performed on the ChemoPy [62]
software package.

Target features

Pseudo position specific scoring matrix (PsePSSM). To represent the
character of the amino acid (AA) sequence correctly, we used
PsePSSM to extract the sequence and evolution information of
the target protein sequence, which is introduced by Chou and
Shen [63]. This technique is extensively applied in bioinformatics
research because it not only encodes sequence information from

protein sequence; it also reflects evolutionary information as
well.

If a protein sequence with L AA residues, PSSM is used as its
descriptor proposed by Jones et al. [64]. For a protein sequence, a
PSSM can be expressed as follows:

MPSSM=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P1→1 P1→2 · · · P1→j · · · P1→20

P2→1 P2→2 · · · P2→j · · · P2→20

...
... · · ·

... · · ·
...

Pi→1 Pi→2 · · · Pi→j · · · Pi→20

...
... · · ·

... · · ·
...

PL→1 PL→2 · · · PL→j · · · PL→20

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (1)

where Pi,j represents the residue score of i-th in the AA sequence
being substituted to the j-th AA residue, which is searched
by the PSI-BLAST [65] tool through the Swiss-Prot database to
generate PSSM on a server machine. In this experiment, we set
the PSI-BLAST parameters: the number of iterations is three, the
threshold E-value is 0.001, and the remaining parameters are
left as default. The indicators in PSSM are regularized using the
following Equation (2).

f (x) = 1
1 + e−x

(2)

A protein sequence can be formulated as L × 20 matrix and
the length of AA in the inputted protein sequence is different;
therefore, PSSM matrics with different length need to transform
into the same dimension using the following Equations (3) and
(4):

MPSSM = [P1, P2, . . . , P20] (3)

Pj = 1
L

L∑
i=1

Pij
(
j = 1, 2, . . . , 20

)
, (4)

where Pj is the average score of each target protein. Here, only
the score of the AA residue of the i-th position being substituted
by the j-th AA residue not considers any sequence information
of target protein sequence. To overcome the limitation, PsePSSM
is used in this study. Therefore, the full form of feature extraction
produce is:

Mξ

PsePSSM= [αξ

1, αξ

2, αξ

3, . . . , αξ

j , . . . , αξ

20] (5)
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α
ξ

1 = 1
L−ξ

∑L−ξ

i=1

[
Pi,j − P(i+ξ ),j

]2
j = 1, 2, 3, . . . , 20, ξ < L, ξ �= 0, (6)

whereα
ξ

j indicates the correlation factor. Finally, a PsePSSM can
be expressed from a protein sequence and creates a 20 + 20 × ξ

dimensional feature vector.

MPsePSSM =
[
P1, P2, . . . . . . , P20, αξ

1, αξ

2, . . . , αξ

20

]2
(7)

This PsePSSM can able to generate a uniform dimensional
vector from different lengths of protein sequences in the dataset
after extracting features. Here, we set ξ = 20 after performing
the optimization function for each training set by fivefold CV.
Therefore, a 20 + 20 × 20 = 420 dimensional feature vector was
generated from a protein sequence.

Pseudo AA composition (PseAAC). To consider the order informa-
tion of protein sequence, Chou [66] introduced a method called
PseAAC to extract the features. It can represent AAC information
and AA order information both. This method is widely utilized
in bioinformatics research, including protein–protein interaction
and DTI [67–69] prediction and so on. The following formula can
express the features of PseAAC:

X = [x1, x2, . . . , x19, x20, x20+1 . . . , x20+λ]T
(λ < L) , (8)

where L is the length of the given protein sequence. Each of the
components is shown as follows:

Xv =
⎧⎨
⎩

Fδ∑20
δ=1 Fδ+W

∑λ
k=1 �k

, 1 ≤≤ 20
W�δ∑20

δ=1 Fδ+W
∑λ

k=1 �k
, 20 + 1 ≤≤ 20 + λ

, (9)

where X represents a feature vector and W indicates the weight
factor with a value of 0.05. Fδrepresents the frequency at δ-th AA
in the protein sequence. We can see from Equation (9) that the
first 20 is the frequency of occurrence in protein sequence, and
λ is the sequence-related factors that reveal different stages of
AA sequence information. It’s obtained via the physicochemical
properties of AA. In this study, the ranges of the parameter δ are
from 0 to 50. Based on the model accuracy of prediction results,
the optimal δ parameters can be determined from different
parameters setting.

Dipeptide composition. Dipeptide composition (DC) extracts
and calculates the frequency of two consecutive AA residues
from protein sequence [70]. The sequence encoding tech-
nique removes different features involving n-th contiguous
AA residues of target protein sequences and computes the
occurrences in the sequences. Compared with the AAC, DC
considers the coupler effect among adjacent residues; therefore,
DC represents not only AA composition information but also the
full sequence information of AA. So, DC is one of the best feature
extraction techniques and generally generates a 400-dimension
feature vector.

d = [d1, d2d3, . . . , d400]T, (10)

where di(i = 1, 2, 3, . . . , 400) represents residue probability,
defined as:

di = mi

M
, i = 1, 2, 3, . . . ., 400, (11)

where mi represents residue number and M indicates all possi-
ble residue number. For this technique, we used the PyBioMed
package [71] to encode protein features where each sequence
generates 400 features.

Data balancing technique

As mentioned earlier, our experimental drug–target datasets
are highly imbalanced. If such datasets are considered to train
the classifier, the model could fail to show accurate prediction
performances. Therefore, different data sampling techniques
have been utilized in the literature to balance the imbalanced
dataset, such as SMOTE [26,72], cluster under sampling [47,73]
and random under-sampling [35,74,75]. In this study, we develop
a new algorithm based on the concept of random under-
sampling technique to overcome the imbalanced problem in
the datasets. This algorithm input is imbalance data (minority
class samples and majority class samples), and after processing,
we will get balanced data as final data. The number of input
class samples and features/attributes are diffident for four
datasets. Because we constructed three individual drug–target
feature groups to evaluate the effect of different features on the
model. Therefore, a drug features group is combined with three
target feature groups and formed complete drug–target feature
groups. The first feature group, namely, MACCS + PsePSSM,
achieves 386 features, and other groups, namely, MACCS +
PseAAC and MACCS + DC, achieves 206 and 566 features,
respectively.

Assume, there are n1 minority data samples and n2 majority
of data samples in the drug–target datasets. Here, we trained
an SVM classifier (multi-kernel or single kernel, decided based
on the value of a predefined threshold) to learn the values of
features of n1 minority samples, and after that, we apply the
same classifier to attain the features from the n2 majority of data
samples. The threshold value depends on the attributes/features
of the datasets. If the number of input features is high, we
have fitted the minority samples using a multi-kernel classifier;
otherwise, we fitted those with a single kernel classifier. Then
Euclidean distance calculates from the predicted and the value
of the real features. From the list, we keep these Euclidean
distances mapped values by the corresponding majority class
samples’ indices. Then we arrange the list in descending order
using calculated Euclidean distance values. Firstly, we choose n1

samples from the sorted list. The final data build the combi-
nation of n1 class from the original experimental dataset and
n2 majority class nominated by the proposed method. There-
fore, effectively, we select those data samples from the majority
class, which are out of the way in terms of Euclidean dis-
tance from the predicted values. Said differently, our proposed
under-sampling technique generally removes the majority data
samples, which are similar to the minority class samples, and
retains the majority class samples that are located further from
the minority class samples. Hence the decision limit becomes
more defined along with the resulting balanced dataset becomes
more dividable. However, we need to mention that Algorithm
1 performs effectively when there is no overlap between data
points.

Feature selection technique

The dimension of the drug–target features is huge, and the
amount of samples is not larger than the size of the features,
which is called the feature dimensionality problem [76] and
may reason for overfitting results. Therefore, a modified feature
selection algorithm, called MoIFS, was developed and imple-
mented based on the theory of incremental feature selection
(IFS) technique [77] to obtain optimal features or feature subset
for helping in DR. Here, the incremental function expedites
the feature selection process when features are enormous and
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Algorithm 1: Fast Under Sampling- FastUS

1. n1 ← number of minority class samples
2: n2 ← number of majority class samples
3: μ ← number of attributes
4: MA[1 . . . ..n2] ← Majority class Samples
5: MI[1 . . . ..n1] ← Minority class Samples
6: if μ > threshold then // threshold value depends on the attributes/features
7: Model ← mK(MI[1 . . . ..n1]) // Multi kernel classifier
8: else
9: Model ← sK (MI[1 . . . ..n1]) // Single kernel classifier
10: end if
11: DA ← {}
12: for each x ∈ MA do

13:
´
x ← model.predict(x)

14: d← ‖x − ´
x‖

2

2

15: index ← x.index
16: DA ← DA ∪ {d, index}
17: end for
18: SortedList ← sort(MA[1 . . . ..n1], DA)
19: I ← L[1 . . . ..mi1]
20: X1 = {}
21: for each index ∈ selectedIndicesdo
22: X1 = X1 ∪ MA[index]
23: end for
24: FinalData = X1 ∪ MI[1 . . . ..n1]

can scale up without compromising the quality of drug-target
features.

The IFS technique is reformed to have a starting point K and
sequential performance, reducing cutoff D, which is indicated
as IFS (K, D) algorithm. Suppose experimental datasets contain
n features and m samples in a binary classification problem.
Based on the association’s significance, the drug–target features
are represented as binary class labels. Here, these features are
calculated by the statistical significance values P of the t-test
[78]. Features are indicated as fi, i∈ {1,2,3 . . . n}, according to
their probabilistic rank’s values. Our algorithm can successively
add elements/values to the feature subset until the accuracy of
classification decreases consecutively D times. The step by step
pseudo-code of Algorithm 2 is shown as follows.

LightGBM classifier

LightGBM is one of the new and powerful algorithms in the ML
area. It’s a gradient boosting [79] framework Gradient Boosting
Decision Tree (GBDT) that uses a decision tree algorithm for
learning. If a training data {(x1, y1), (x2, y2), . . . , (xn, yn)}, where x
represents the data samples, and y represents the class labels.
In GBDT, the F(X) uses to indicate the estimated function and the
optimization function of GBDT minimizes the expected value of
some specified loss functionL(y, F(x)).

F̂ = argminEx,y
[
L

(
y, F(x)

)]
(12)

To reduce the loss function, the iterative criterion used a line
search option in GBDT.

Fa(x) = Fa−1(x) + ξaha(x), (13)

where ξa= arg min
∑b

i=1L(yi, Fa−1(xi) + ξha(xi)), a represents the
iteration number and ha(xi) is the base decision tree.

If the experimental datasets are large and enormous fea-
tures, GBDT algorithms cannot achieve satisfactory accuracy and
efficiency. This ensemble algorithm’s main cost is to find the
best split points during the learning of decision trees. Later, Ke
et al. [80] introduced an effective gradient boosting algorithm
called LightGBM using GOSS (gradient-based one-side sampling)
and EFB (exclusive feature bundling). In our approach, LightGBM
applies GOSS to control the split through computing variance
gain. First, rank the gradient values in descending order of
the training samples, and top a × 100% data samples of larger
gradient values are nominated to get a sample subset A. Then
rest of the set Ac containing (1 − a) × 100%samples with smaller
gradients. After that, a subset B with size b × Ac is further
randomly sampled. Lastly, we split the samples based on the
variance gain over the A ∪ B.

∼
Vj(d) = 1

n

( (∑
xi∈Al

gi+ 1−a
b

∑
xi∈Bl

gi

)2

nj
l (d)

+
(∑

xi∈Ar gi+ 1−a
b

∑
xr∈Bl

gi

)2

nj
r (d)

,

)
(14)

where Al = {xi ∈ A : xij ≤ d}, Ar = {xi ∈ A : xij > d}, Bl = {xi ∈ B :
xij ≤ d}, Br = {xi ∈ A : xij > d}, gi is the negative gradient and 1−a

b

represents the sum of gradients.
LightGBM has an exclusive function to skip unnecessary

calculation for 0 (zero) feature values. Our algorithm can able to
optimize the histogram technique to ignore the 0 (zero) feature
values. However, we add the optimization in LightGBM as a
simple function because this process requires extra computation
cost and memory to manage the feature tables in the tree growth
procedure. In conclusion, LightGBM is a robust implementation
of GBDT with EFB and GOSS to increase model efficiency with-
out losing accuracy. GOSS helps to split the optimal node by
computing variance gain, and EFB supports the training process
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Algorithm 2: Modified Incremental Feature Selection (MoIFS)

Input: The list of ranked features {f1, f2, f3, . . . . . . , fn} and the start position k, The consecutive decreasing cutoff id D
1: Begin
2: Fs=1
3: Bf =Fs

4: Dt=0
5: While Dt<=D;
6: if Accuracy(Fs) > Accurancy(Fs ∪ {Nf }):
7: Fs= Fs ∪ {Nf }
8: Dt+= 1
9: else
10: Bf = Fs

11: Dt=0
12: Return Bf

13: End

of GBDT by removing zero features. Most importantly, LightGBM
is an ensemble-based approach. Based on Equation (13), we
can get the LightGBM model Fm(x) by weighted combination
scheme.

Fm(x) =
m∑

m=1

βmhm(x), (15)

where m is the maximum number of iteration and hmindicates
the base decision tree. The implementation code of LightGBM
is available at https://github.com/Microsoft/LightGBM. It follows
the histogram-based concept and places continuous values into
discrete bins responsible for quicker model training and more
effective memory usage. Other boosting algorithms grow trees
horizontally, LightGBM grows tree vertically that means it grows
tree leaf-wise while other algorithms grow level-wise. It contains
complex trees by following leaf-wise split technique instead of
a level-wise technique, which is the key reason in attaining the
best accuracy. However, it can occasionally lead to model overfit-
ting, which can be avoided by setting the max_depth parameter.
Moreover, LightGBM offers over 100 parameters, and it is also
supporting optimization in parallel learning to compatibility
with large datasets.

Prediction assessment

In this study, the performance of the proposed model is
evaluated by a 5-fold CV test to construct an effective prediction
framework. Our drug–target datasets were roughly separated
into five subsets by 5-fold CV validation test. One set was
selected from 5 sets as the test set, and the remaining four
were considered as the training set, and this process (cross-
validation) was repeated 5 times. After averaging the five
validation results, the final results are generated from drug-
target datasets. To evaluate the impact of resampling methods
on CV results, two types of analyses were performed. In the
correct CV, the dataset was first split into k folds, the sampling
method (under sampling-FastUS) was applied to the training
set constituted of the k – 1-fold, and a reduced training set was
obtained. In the incorrect CV, different sampling techniques
were first applied to the entire dataset (before CV), and CV was
applied to the undersampled data. In this research, we applied
the first approach to balance the dataset because applying
the balancing method before using the cross-fold validation
iterations may lead to biased results. For our feature selection

technique (MoIFS), cross-validation is done in each fold as same
as the data balancing method (FastUS). In each round of CV, the
training and testing samples are changed; therefore, it is needed
to find the suitable parameters for MoIFS and classifiers based
on new samples. We used the following evaluation metrics to
intuitively calculate the performance of the proposed model:
accuracy (ACC), sensitivity (SEN), specificity (SPE), Matthews
correlation coefficient (MCC) and F1 Score.

ACC = TP + TN
TP + FP + TN + FN

(16)

SEN = TP
TP + FN

(17)

SPE = TN
TN + FP

(18)

MCC = (TP × TN) − (FP × FN)√
(TP + FN) × (TN + FP) × (TP + FP) × (TP + FN)

(19)

F1 = 2TP
2TP + FP + FN

, (20)

where TP, FP, TN and FN respectively represent the number of
true positives, false positives, true negatives and false negatives.
Moreover, we use AUC (area under the curve) to measure the gen-
eralization performance of our model. Our model is developed
using python language (3.6 version) on Pytorch and scikit-learn
library and running on Windows Server PC with system config-
uration 2.30 GHz Intel Xeon Gold 6140 processor and 128 GB of
RAM.

Results and discussion
In this section, we describe the experimental results of our pro-
posed method for detecting new DTIs. We implemented all the
techniques, i.e. features extraction, data balancing, classifiers
of the proposed model in Python language (Python 3.6 version)
using Scikit-learn library, ChemoPy library and LightGBM python
package. All the experimental implantations were performed
on a high-performance computer with a processor 2.30 GHz
Intel Xeon Gold 6140 CPU and 256 GB RAM provided by the
Computational Intelligence Lab, UESTC.

Selection of parameter of PseAAC and PsePSSM

Selecting the appropriate parameters of the feature extraction
techniques plays a crucial role in constructing a prediction

https://github.com/Microsoft/LightGBM
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Table 3. Prediction Performance of DTI for different λ parameter values on the training data set

λ λ = 1 λ = 2 λ = 3 λ = 4 λ = 5 λ = 6 λ = 7

AUC 0.7345 0.8256 0.8756 0.8745 0.8976 0.8867 0.9045
ACC 0.7102 0.7356 0.7798 0.7865 0.8067 0.7867 0.8105
λ λ = 8 λ = 9 λ = 10 λ = 11 λ = 12 λ = 13 λ = 14
AUC 0.8999 0.9260 0.9156 0.9104 0.8978 0.9301 0.9381
ACC 0.8065 0.8253 0.8205 0.8035 0.8029 0.8288 0.8439
λ λ = 15 λ = 16 λ = 17 λ = 18 λ = 19 λ = 20 λ = 21
AUC 0.9345 0.9385 0.9434 0.9325 0.9330 0.9510 0.9428
ACC 0.8368 0.8450 0.8404 0.8299 0.8395 0.9032 0.8478

Table 4. Prediction performances of DTI for different ξ parameter values on the training dataset

ξ ξ = 1 ξ = 2 ξ = 3 ξ = 4 ξ = 5 ξ = 6 ξ = 7 ξ = 8 ξ = 9 ξ = 10

AUC 0.8845 0.9023 0.9087 0.9067 0.9167 0.9254 0.9180 0.9279 0.9199 0.9289
ACC 0.8615 0.8708 0.8803 0.8788 0.8801 0.8875 0.8840 0.8908 0.8898 0.8876
ξ ξ = 11 ξ = 12 ξ = 13 ξ = 14 ξ = 15 ξ = 16 ξ = 17 ξ = 18 ξ = 19 ξ = 20
AUC 0.9208 0.9312 0.9330 0.9223 0.9376 0.9289 0.9387 0.9456 0.9489 0.9656
ACC 0.8889 0.8980 0.8976 0.8972 0.8999 0.8982 0.9056 0.9089 0.9096 0.9264

model. When applying the PseAAC and PsePSSM method to
extract features from the protein sequence, both selection
parameters λ and ξ have a significant effect on the prediction
performance of the feature extraction. Here, λ represents the
protein sequence information (order information of the amino
acid), and ξ represents nothe protein sequence information
and contains the protein evolutionary information. Most
importantly, if we select the big values of λ and ξ , the protein
dimension will be high, which can generate redundant features
and affect the prediction task. Conversely, if those parameters’
values are too small, the techniques can produce too little
protein information, leading to erroneous results.

To find the best value of parameterλ in the prediction model,
we set to a range of values is 0 to 21. For different λ values, the
LightGBM is applied as a classifier for the prediction task. The
5-fold-CV technique is used to test the model, and the average
prediction results are obtained, as listed in Table 3. Moreover, we
choose the value of ξ to be 1 to 20 to find the optimal parameters
of the prediction model. Similarly, the same classifier and vali-
dation technique is used to obtain the prediction performances
of the drug-target data, as listed in Table 4. The prediction AUC
and ACC value of the model with different changing λ values
are shown in Table 3. Whenλ = 17, the AUC and ACC value
reached the average 0.9434 and 0.8404, respectively. When λ =
20 compared with λ = 1, the prediction AUC and ACC were
improved by 21.65% and 19.30%, respectively. At λ = 10, λ =
11and λ = 12, the prediction AUC and ACC value decreased,
but at λ = 13, the AUC and ACC started to increase. Therefore,
λ = 20is nominated as the best value of the feature parameter.
Because, when λ = 21, the predicted values start to decrease.
By PseAAC technique, each protein sequence can get 20 + λ=
20 + 20 = 40 feature vector.

We can see from Table 4, by changing the value of parameter
ξ , the AUC and ACC value in the drug-target training data also
changes. When the parameterξ = 20, the AUC value reaches a
maximum of 0.9656. Among them, comparing ξ = 20 and ξ = 1,
AUC and ACC are 8.11% and 6.49% higher, respectively. At ξ = 7
and ξ = 9, AUC and ACC decreased, but the overall performance
is rising. Here, the parameter ξ = 20 is better than ξ = 19, and
AUC and ACC are increased by 1.67% and 1.68%, respectively. In

this study, the best ξ = 20 value is nominated for the model. Each
target sequence produces a 20 + 20 × 20 = 420 feature vector by
using the PsePSSM technique.

The effect of multiple feature extraction

Using perfect mathematical models (feature extraction tech-
niques) to describe and implement it is essential for DTIs
research to extract appropriate features from drug chemical
structures and protein sequences. In this study, the model is
trained by four feature extraction techniques, such as MACCS,
PseAAC, PsePSSM and DC. PseAAC is a sequence information-
based feature technique that represents information regarding
amino acid (AA) sequence order and length of a protein
sequence. PsePSSM contains evolutionary information of protein
sequence, and DC calculates the frequency of the AA and
the frequency of the AA pair. PseAAC, PsePSSM and DC are
utilized to generate the protein feature vectors of 40, 220 and
400 dimensions, respectively. The four types of features are
provided in the LightGBM classifier for predicting DTIs, and the
performance results of feature extraction methods are listed in
Table 5. Moreover, we use the receiver-operating characteristic
(ROC) curve to represent and compare the performances of
the model with various features. Figure 3a–d is the ROC curve
generated from the DrugBank datasets under three feature
extraction techniques.

We can see from Table 5 that the AUC values of different
feature extraction algorithms are also different. For the Enzyme
dataset, the model used the MACCS+PsePSSM, MACCS+PseAAC
and MACCS+DC features to attain AUC of 0.9656, 0.9510 and
0.9434, respectively. The ACC values of MACCS+PsePSSM,
MACCS+PseAAC and MACCS+DC are 0.9264, 0.9032 and
0.8939, respectively. The highest AUC and ACC values were
achieved by the MACCS+PsePSSM feature. For the Enzyme
dataset, MACCS+PsePSSM gain more comprehensive features
from protein sequence, which helps identify DTIs, and the
performance results are better than the other two feature
extraction techniques. In the case of IC, GPCR and NR datasets,
the AUC and ACC values for individual feature groups are also
listed in Table 5. Figure 3 shows that the ROC curves of different
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Figure 3. ROC curves of LightGBM classifiers using MACCS+PsePSSM, MACCS+ PseAAC and MACCS+ DC feature group on the datasets: (a) EN, (b) IC, (c) GPCR and (d)

NR.

Table 5. Performance of different features on benchmark datasets

Datasets Features AUC ACC

EN MACCS + PsePSSM 0.9656 0.9264
MACCS + PseAAC 0.9510 0.9032
MACCS + DC 0.9434 0.8939

IC MACCS + PsePSSM 0.9612 0.9150
MACCS + PseAAC 0.9410 0.8859
MACCS + DC 0.9323 0.8737

GPCR MACCS + PsePSSM 0.9249 0.8629
MACCS + PseAAC 0.9134 0.8522
MACCS + DC 0.8823 0.8306

NR MACCS + PsePSSM 0.8652 0.8653
MACCS + PseAAC 0.8445 0.8189
MACCS + DC 0.8350 0.8076

feature extraction techniques show different coverage areas; the
ROC curve using the MACCS+PsePSSM feature covers the largest
area, which is significantly higher than the other techniques.

For all the datasets, the MACCS+PsePSSM feature achieved
higher prediction performance than MACCS+PseAAC and
MACCS+DC. From Table 5, we can see that the features
MACCS+PsePSSM, MACCS+PseAAC and MACCS+DC obtained
the best performances for EN dataset, followed by IC, GPCR and
NR. Most importantly, NR shoed the most unrhymed prediction
performance for three feature where MACCS+PsePSSM received
a little higher performance than the MACCS+PseAAC and
MACCS+DC. Moreover, EN dataset attains the most top results
for the DTI features. In contrast, the predictive model achieved
the highest AUC of 0.9656 for MACCS+PsePSSM, representing
the impact of a protein’s evolutionary-based information and
structural properties. The MACCS+PsePSSM features also show
almost the same performance results for EN and IC. This
study’s main goal is to compare and examine the effectiveness
of different features and determine the most useful feature
from the benchmark dataset. Our experiments disclose that
MACCS+PsePSSM features more information and shows a
significant role in predicting DTIs than MACCS+PseAAC and
MACCS+DC feature descriptors.
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Table 6. Comparison of prediction results on a balanced and unbalanced dataset

Datasets Sampling method Evaluation metrics

AUC ACC SEN SPE MCC F1

EN Without resampling 0.9412 0.9067 0.9245 0.8578 0.8289 0.9235
With FastUS 0.9656 0.9264 0.9456 0.9323 0.8987 0.9347

IC Without resampling 0.9200 0.8989 0.9056 0.8567 0.7890 0.9056
With FastUS 0.9612 0.9150 0.9078 0.9234 0.8456 0.9134

GPCR Without resampling 0.8745 0.8590 0.8765 0.7689 0.6990 0.8800
With FastUS 0.9249 0.8629 0.8789 0.8765 0.7823 0.8957

NR Without resampling 0.8353 0.8256 0.9089 0.7289 0.7012 0.8901
With FastUS 0.8652 0.8653 0.8767 0.8976 0.8234 0.8845

The effectiveness of the data balancing techniques

The imbalanced dataset can be responsible for the biased results.
In this study, drug–target dataset is a severe imbalance. The
number of known DTI (positive samples) is significantly smaller
than that of unknown DTI (negative samples), which is the cause
of the reduced performance results of the prediction model.
To balance the datasets and improve the ability of the model,
we used the FastUS technique as a balancing method with the
LightGBM classifier. Here, the model compares the balanced and
unbalanced datasets to evaluate the efficiency of the FastUS
technique with LightGBM classifier, the experimental results
shown in Table 6.

We can see from Table 6 that the model obtains different
prediction performances on a balanced (With FastUS) and unbal-
anced (Without Resampling) dataset. The results show signifi-
cant advantages on the AUC, ACC, SEN, SPE, MCC and F1 evalu-
ation index after applying the FastUS algorithm. On the unbal-
anced distribution (Without Resampling), the number of positive
instances and negative instances are 2926 and 292 554 (as an
example for EN dataset); respectively, the positive instances
is less than the negative instances. Using the EN dataset, the
MODEL obtained AUC values of 0.9656 for balanced data, 0.9412,
for unbalanced data. In the case of the IC dataset, the MODEL
achieved AUC values of 0.9612 and 0.9200, for balanced and
unbalanced data, respectively. For the GPCR dataset, MODEL
yielded an AUC of 0.9249 for balanced, 0.8745 for unbalanced
data. Similarly, AUC values of MODEL using NR data are 0.8652for
balanced, 0.8353 for unbalanced. In conjunction with balanced
and unbalanced data, additional performance metrics, including
ACC, SPE, MCC and F1 of the MODEL, are mentioned in Table 6. In
the case of EN, the prediction results of ACC, SEN, SPE, MCC and
F1 on balanced data are 0.9264, 0.9456, 0.9323, 0.8987 and 0.9347,
which are 1.99%, 2.11%, 7.45% 6.98% and 1.12% higher than
unbalanced, respectively. It shows that the FastUS technique can
obtain a comparatively effective performance. In the case of IC,
GPCR and NR datasets, the ACC, SEN, SPE, MCC and F1 results
for balanced and unbalanced data are also shown in Table 6. In
Figure 4a–d, the ROC curves of data balancing techniques show
different coverage areas, the ROC curve using FastUS covers
the largest area, which is higher than the without resampling
techniques.

It can summarize few clarifications from the above discus-
sion: Firstly, the balanced dataset with FastUS significantly out-
performs the unbalanced dataset in the case of ROC curves.
Secondly, the performance of the LightGBM classifier has been
improved after utilizing the FastUS. More specifically, the results
significantly improve for all four datasets on the SPE and MCC
metrics, which has worse results for unbalanced data, especially

Table 7. The prediction results of the MoIFS on EN dataset

Number of Features AUC ACC

826 0.9605 0.9098
756 0.9479 0.9077
669 0.9486 0.9178
605 0.9656 0.9264
550 0.9477 0.9056
402 0.9372 0.8934
378 0.9331 0.9056
311 0.9513 0.9023
255 0.9451 0.8967
201 0.9522 0.9034
153 0.9342 0.8812
112 0.9352 0.8867
50 0.9224 0.8745

for the NR dataset. Thirdly, FastUS is the effective method for this
paper to identify DTIs, since it boosts the prediction ability and
reduces the model biasness for drug–target datasets.

The influence of feature selection techniques

Feature selection is an essential technique for selecting opti-
mal feature subset in the area of pattern recognition and data
processing. It is a combinatorial optimization problem that can
increase the prediction ability of the predictive model. Differ-
ent feature selection techniques have been extensively applied
with drug–target datasets in recent studies. Generally the fea-
ture selection algorithm assesses feature subsets of drug–target
based on the classification algorithm. It provides individual
fitness levels and evaluation indicators based on prediction
accuracy, to successfully eliminate redundant information in
drug-protein features and extract the data for each protein. The
experimental results of the drug-target dataset with various
feature dimensions are listed in Table 7.

We can see from Table 7; best prediction effect can’t get
with our dataset when considering full drug–target features.
Therefore, it’s better to remove some features from the experi-
mental datasets. Moreover, the AUC and ACC scores of the 201
features, 311 features and 826 features are lightly better than
the beginning 50 features. Most essential indicators AUC and
ACC show advantages result for the 605 features. In the case
of AUC, the performance of 605 features is 1.34% high than the
201 features, 1.43% high than the 311features and 0.51% high
than the 826 features. In the case of ACC, the ACC of the 605
features are 2.30%, 2.41% and 1.66% higher than the 201,311 and
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Figure 4. ROC curves of the MACCS+ PsePSSM feature group using without resampling and With FastUS techniques on the datasets: (a) EN, (b) IC, (c) GPCR and (d) NR.

826 features. For our experiments, 605 selected features are the
optimal dimension by the MoIFS algorithm.

Moreover, to verify the effectiveness of the MoIFS, we com-
pare the prediction performance of MoIFS with other feature
selection techniques such as GA [50], PCA [81,82] and Relief
[51] under the 826 dimension feature. The prediction result of
these three algorithms is shown in Table 8. The best feature
dimensions selected by GA, PCA, Relief and MoIFS are 456, 635,
546 and 605, respectively, where AUC values of the prediction
model are different. The AUC of 605 for MoIFS is 0.9656, which
is 5.55%, 5.22% and 3.41% higher than the GA, PCA and Relief.
We can see all the feature selection algorithms can’t show
the improved results for drug–target datasets, and the MoIFS
is a suitable algorithm here. In Figure 5, the ROC curves show
the comparison of the robustness of three different feature
selection methods where coverage area by the MoIFS is also
the largest. Therefore, MoIFS can use this study to reduce the
features effectively, improve the prediction performance and
reduce the experimental cost.

Selection of model classifier

This study focuses on four classifiers: Random Forest (RF) [83],
SVM [84], XGBoost [33] and LightGBM [80]. Here, RF applies
200 trees, and the iterations number of XGBoost is 20. The
prediction performances for four classifiers are tested under
the cross-validation test, the results of the predictive model
shown in Table 9. To make a clear comparison of prediction
effects, the results graph of the EN dataset shows in Figure 6.
After analyzing the prediction results of the DT dataset from
Table 9 that the highest results of AUC, ACC, SEN, SPE, MCC
and F1 obtained by the LightGBM algorithm are 0.9656, 0.9264,
0.9456, 0.9323, 0.8987 and 0.9347, respectively. The overall
prediction ACC of RF, SVM, XGBoost and LightGBM is 0.8289,
0.8756, 0.9167 and 0.9264, respectively. LightGBM ACC is 0.90%,
5.07% 9.07% higher than that attained by XGBoost, SVM and RF
classifiers. The SPE of the LightGBM classifier is 1.89%, 5.79%
and 11.89% higher than the XGBoost, SVM and RF classifiers,
respectively.
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Table 8. The comparison of different feature selection algorithms on EN dataset

Algorithm Features Evaluation metrics

AUC ACC SEN SPE MCC F1

GA 456 0.9101 0.8765 0.8765 0.8543 0.8587 0.8798
PCA 635 0.9134 0.8827 0.8976 0.8654 0.8478 0.8876
Relief 546 0.9315 0.9024 0.9178 0.8933 0.8756 0.9056
MoIFS 605 0.9656 0.9264 0.9456 0.9323 0.8987 0.9347

Figure 5. Performance comparison of different feature selection techniques on EN dataset.

Table 9. Performance of different classifiers on EN dataset

Algorithm Evaluation metrics

AUC ACC SEN SPE MCC F1

RF 0.8749 0.8289 0.8345 0.8134 0.7999 0.8134
SVM 0.9149 0.8756 0.8834 0.8744 0.8467 0.8751
XGBoost 0.9546 0.9167 0.9312 0.9134 0.8876 0.9199
LightGBM 0.9656 0.9264 0.9456 0.9323 0.8987 0.9347

Figure 6 displays the bar graph of the EN data for four clas-
sifiers. We can see from Figure 6 that the prediction values
found by the LightGBM classifier have the best AUC score of
0.9656, which is 1.10%, 5.07% and 8.749% higher than that of
the XGBoost, SVM and RF classifiers, respectively. Through com-
paring the bar graph, AUC, ACC, SEN, SPE, MCC and F1 val-
ues of four classifiers on the drug–target data, robust perfor-
mances with generalization ability is considered for a classifier
to construct our model. Here, the RF classifier is practical and
straightforward, but the results generated by this classifier are
relatively weak because of the larger calculation amount. SVM
and XGBoost are tree-based classifiers, but there are still some
challenges in the prediction task. The prediction performance of
the LightGBM classifier is superior to the other three classifiers.

Therefore, we select the LightGBM classifier as a classification
algorithm for this study.

Comparison with other methods

As mentioned earlier, different feature extraction, feature selec-
tion, data balancing and classifiers have been used for detecting
interactions between a drug and target protein. To compare
the effectiveness of our method, we consider five drug–target
methods under the AUC values for the same datasets. Here,
those existing methods also utilized 5-fold CV as a key per-
formance metric for four datasets. Our model has compared
with that of Huang et al. [85], Mousavian et al. [35], Li et al. [41],
Wang et al. [59] and Meng et al. [86] under the AUC values. They
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Figure 6. Performance comparison of different classifiers on EN dataset.

Table 10. Comparison of MODEL with existing methods on four datasets

Dataset Huang et al. [85] Mousavian et al. [35] Li et al. [41] Wang et al. [59] Meng et al. [86] Our method

EN 0.9040 0.9480 0.9288 0.9425 0.9773 0.9656
IC 0.8510 0.8890 0.9171 0.9107 0.9312 0.9612
GPCR 0.8990 0.8720 0.8856 0.8743 0.8677 0.9249
NR 0.8430 0.8690 0.9300 0.8176 0.8778 0.8652

made the negative samples with the same size as the positive
sample datasets using random sampling techniques to solve the
imbalance problem. The AUC values of the five methods with our
proposed method are reported in Table 10, where it can be seen
that the AUC values of PreDTIs are significantly higher than the
six exiting methods.

Here, Huang et al. [85] used the extremely randomized
tree (ER-Tree) algorithm as a classifier where Pseudo-SMR
and fingerprint descriptor are applied to represent the bio-
logical evolutionary information and molecular substructure
information of drug-target. The results show that this method
achieves a prediction AUC of 0.9040, 0.8510, 0.8990 and 0.8430,
respectively. To investigate the influence of a negative selection
scheme on the prediction performance, Mousavian et al. [35]
developed an SVM-based model with Bigram-PSSM model and
Fingerprints methods for predicting DTIs. This method’s average
AUC values on four datasets are 0.9480, 0.8890, 0.8720 and 0.8690,
respectively. Li et al. [41] introduced a DVM classifier using
highly discriminative information of DTIs. The evolutionary
information is retained from PSSM, and then the LBP technique
is utilized to compute the LBP histogram descriptor. Wang
et al. [59] proposed an ML framework for identifying DTIs from
drug chemical information and protein sequence using a deep-
stacked autoencoder, which can effectively generate raw infor-
mation. This proposed framework shows some advantages that
it can attain the hidden data from target sequences and extract
representative features through multiple layers iterations. The
prediction results of AUC on data are 0.9425, 0.9107, 0.8743 and
0.8176. Meng et al. [86] introduced a method, namely PDTPS
to detect DTIs. This approach combines PSSM, BIGP and PCA
with RVM. This approach achieved an average accuracy of

97.73%, 93.12%, 86.78% and 87.78% on EN, IC, GPCR and NR,
respectively.

Average AUC values of PreDTIs on EN, IC, GPCR and NR
are 0.9656, 0.9612, 0.9249 and 0.8652, respectively. We see that
PreDTIs significantly outperformed the exiting approaches in
terms of the AUC metric. However, Meng et al. [86] achieved little
better results than us for EN and NR datasets. Our method’s high
prediction performance effectively features extraction tech-
niques that extract more discriminative features for molecules
and proteins. Furthermore, our balancing method perfectly man-
ages the imbalance problem in the datasets, and feature selec-
tion techniques reduce the unwanted features, which also the
main reason for better performance by the LightGBM classifier,
indicating better performance for identifying the new DTIs.

New DTIs prediction

After investigating our predicted drug-target pairs, the PreDTIs
model only does not attain the high probability scores in terms
of the AUC metric but also predicted interactions are biologically
realistic. It is important to remember that the interacted datasets
used in this study were collected from few years old databases.
Most importantly, those interacted datasets still exist and
unchanged; therefore, we can verify our newly predicted drug-
target pair with an updated version of the database. Meanwhile,
many new interactions have been discovered by the wet-lab
experiments and stored those interactions in the updated
version of databases such as DrugBank [11], ChEMBL [10] and
KEGG [87].

The model is trained using four benchmark datasets, and
the non-interacting pairs are labeled based on their prediction
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probability. After training, our model could predict new interac-
tions from non-interacting samples. We selected only the top
new pairs that achieved the highest prediction probability and
listed in Supplementary Tables 1–4. The predicted pairs, which
are achieved at least 82% prediction probability by our model,
can be considered correct predictions and found in the existing
databases. Here, the current version of KEGG and DrugBank as of
7 June 2020 is considered to search and verify our interactions.

In particular, we investigated one target protein, Prothrom-
bin (P00734). Figure 7 shows the top predicted for Prothrombin.
In our experiments, Prothrombin has a total of 30 predicting
drugs with our method, and seven were effectively identified
as presented in Figure 7. The unconfirmed predictions might be
correct after investigating their possibility. These experimental
results disclose that our PreDTIs approach could also be utilized
to predict the new drugs for severe acute respiratory syndrome
2 (SARS-CoV-2), indicating the proposed techniques are more
practical in real applications.

Discover new drugs to treat COVID-19 patients
Coronavirus disease is a critical health challenge across the
world since December 2019. Until now, 14 450 472 cases, with
605 587 confirmed deaths, have been reported in 215 countries.
The confirmed COVID-19 cases are quickly spreading, and the
incidence rate is growing worldwide. Peoples affect by this virus,
and there is no vaccine in the globe yet for treatment against
this virus. Therefore, there is a serious need to find effective
anti-COVID-19 agents for the prevention of the epidemic and
control viral infections. Drug repurposing of antiviral molecules
is a strategy employed in COVID-19 treatment, representing
a valid alternative of the vaccine in this short period. Most
of the existing drugs are used for repurposing in the treat-
ment of the COVID-19, and the medical community knows their
therapy and toxicity information in humans. Recently, several
drugs are selected, which shows promising inhibitors against
COVID 19 protease. There are some molecular docking (computa-
tional methods)-based methods that have been applied to FDA-
approved drugs or antiviral drugs to identify useful molecules
on viral proteins of SARS-CoV-2. But ML [88] based method
can be a helpful tool. In this section, we propose to use our
PreDTIs (ML-based DTI) model to identify the most potent drugs
against SARS-CoV-2. A step by step of DTI-COVID-19 framework
is illustrated in Figure 8, and the details information about this
method described as follows:

• Data collection and analysis of SARS-CoV-2: Specimens will
be collected from humans. Upper respiratory specimens
and lower respiratory specimens need to collect as a res-
piratory material. If required, other clinical specimens such
as blood and stool also can be collected from the patients.
During this process, the medical staff should well be trained
with enough Standard Operating Procedures for collecting
an appropriate specimen from the human body. After that,
these collected samples should reach the testing laboratory
as early as possible and can be shipped and stored at 2–
8◦C. The virus analyzer machine will process the specimens
and gene expression analysis done to get virus protein
sequences.

• Drug and protein datasets collection: FDA-approved drugs
or antiviral drugs can be selected as experimental drugs
from the DrugBank database, which contains detailed
information of drugs compound, and the protein of SARS-
CoV-2 can be collected from the NCBI database. There is
a specific link (https://www.ncbi.nlm.nih.gov/sars-cov-2/)

for SARS-CoV-2 where protein sequence can be collected
for experiments purposes.

• Features generation: There are various types of techniques
to extract protein sequences and drug chemical structures
to represent them into a numerical form such as PubChem
fingerprint, MACCS fingerprint, PsePSSM, PseAAC, PSSM-
Bigram, etc. The model can choose any of the techniques
for the processing of its structure and sequence.

• Applied diffident techniques on datasets: If the experimen-
tal datasets are imbalanced ith huge features, then data bal-
ancing and feature selection can be applied on the datasets
to handle the balance issue and reduce the drug-protein
features. Finally, the ML classifier could be applied to the
dataset for prediction propose.

• Find effective drug–protein pairs: Different statistical and
ML techniques such as Pearson’s correlation coefficient,
Spearman’s correlation coefficient and prediction proba-
bility can be used to determine the active pairs from the
datasets.

• Suggest drugs for COVID-19: Based on the correlation coeffi-
cient and prediction probability scores, the model can show
the best drugs against COVID-19.

Discussion
Our proposed method has effectively ranked drug-target pairs
and suggests new drugs for exiting proteins. This research’s
main contribution is to develop a balancing algorithm and fea-
ture selection algorithm to handle the class-imbalanced and
manage the high dimensionality of data. Moreover, boosting
help in adding diversity for the multi-features and improves the
prediction performance. The experimental results show that our
method outperforms the existing methods. Most importantly,
we can clearly see that the model’s performance is degraded
when the balancing technique is not performed. Besides, there
is a significant gain in performance when the proposed DR
algorithm is applied in the dataset. Our proposed method is
benefitted more by MoIFS in comparison to GA, PCA and Relief.
But, the running time of MoIFS is quite high on the EN dataset,
our proposed approach’s main complexity.

Further, to check the method’s ability, we investigated one
target protein, prothrombin (P00734), and found a total of 30 (top
7 is shown in Figure 7) predicting drugs. These results indicate
that our PreDTIs approach could also be utilized to predict the
new drugs for SARS-CoV-2, indicating the proposed techniques
are more practical in real applications. Further, new and miss-
ing DTIs were identified using our framework. To verify the
model efficiency, some known (positive) DTIs were removed
from the benchmark data, and their DTIs were recalculated
to verify the model accuracy. The results disclose that similar
structures of compounds tend to interact with similar types of
targets.

Conclusions
With the massive expansion of the era of big data, protein
sequence and drug chemical structure data are increasing
rapidly in different biological databases. Therefore, ML has
become an effective strategy to predict the DTIs. In this article,
we present a new ML-based method PreDTIs to predict DTIs.
This model is developed by fusing different types of drug and
target features with the LightGBM classifier. The key challenges
of DTIs prediction include: (1) fully extracting the critical
features of drug and protein; (2) the problem of imbalance data

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab046#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab046#supplementary-data
https://www.ncbi.nlm.nih.gov/sars-cov-2/
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Figure 7. Chemical structures of drugs for prothrombin.

Figure 8. A ML-based method (schematic diagram) to discover new drugs to treat COVID-19 patients.
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and (3) feature dimensionality in the dataset. First, PsePSSM,
PseAAC, DC and MACCS fingerprint are employed to extract
the evolutionary, sequence, and structural information of the
target and drug features to identify DTIs. The imbalance data
is a common problem in the biological datasets; therefore, we
proposed a balancing algorithm based on the concept of random
under-sampling techniques, which helps in handling the data-
imbalance issue and minimizes the prediction biasness. Most
of the related exiting works didn’t consider the imbalanced
data problem effectively while developing a prediction model.
Moreover, we developed a feature selection algorithm to reduce
the dimension of the drug–target features to retain the optimal
set of features effectively and make the prediction process
flexible. This algorithm shows a perfect mechanism to enhance
prediction performances for predicting DTIs. Finally, balanced
data and optimal features are provided into the LightGBM
Classifier to predict unknown DTIs. The 5-fold CV validation
is used to evaluate the predictive performance of the proposed
method. The prediction results show that the proposed method
has improved performance compared with other related existing
methods using the same dataset. We believe our method
not only useful for the prediction of DTIs but also a robust
application in a relevant area such as molecular biology,
bioinformatics and proteomics. Here, too, we show how to use
our PreDTIs (ML approach) model to identify the most potent
drugs against SARS-CoV-2. In the future, we have a plan to
consider SARS-CoV-2 datasets for experiments and use a deep
learning-based algorithm as a classifier to speed up the model
performance in discovering new drugs for COVID-19. The current
version of our proposed method is suitable for both the gold
standard and DrugBank dataset, but not for heterogeneous data
sources. There is a chance to face some core challenges for our
model with heterogeneous data because (i) there will be missing
information as not all kinds of data will be available for all the
targets and drugs and their interactions; (ii) the heterogeneous
data sources are not all of the same quality, and data volume
can be relatively huge.

Fortunately, with the accumulation of a large amount of
health data and the development of ML methods, our algorithm
can predict drug-disease treatment associations to minimize the
effort and cost. A drug that can interact with multiple target
proteins is a pretty common scenario; therefore, it is important
to consider the drug repositioning concept to identify treat-
ments for novel diseases. We can provide an example of the
drug Gleevec (STI-571 or Imatinib Mesylate), which was initially
bound with the fusion gene BCR-ABL associated with blood can-
cer disease leukemia; later, Gleevec was also bound with KIT and
Platelet-derived growth factor (PDGF), it has led to a revolution
in the therapeutic approach to gastrointestinal stromal tumors.
Many existing drugs may expect to bind with unknown targets
for treating novel diseases using our proposed algorithm.

Symbols/notations
Symbol/Notation Description
MA Majority Samples in the datasets
MI Minority Samples in the datasets
μ Number of attributes
sK A single kernel is trained
mK Multiple kernels are trained
ξ Prediction by model
DA Distance samples array
L A Sort list to store the majority samples and distance

samples
I Selected indices from the minority samples

F A final data output frame
Fs Feature subset
Fb Best features from imputed features
Dt Decrease Times
Nf Next feature of all features

Key Points
• A new computational model predicts unknown DTIs

using protein sequences and drug chemical structures
to suggest new drugs for known targets and find new
targets for current drugs.

• In the feature extraction stage, generated drug-target
features can represent us to their discriminatory
nature for patterns related to evolutionary, sequence
and structural information that helps predict new
DTIs interactions even more effective.

• Imbalanced datasets can lead to losing the model’s
ability to give accurate decisions where the prediction
generally occurs based on the majority class and com-
pletely omits the minority class. The proposed FastUS
algorithm solves the class imbalance problem in the
drug-target datasets.

• High dimensionality features may cause model over-
fitting. The proposed algorithm MoIFS can help obtain
the optimal features based on the theory of IFS where
features are enormous and able to scale up without
compromising the quality of drug–target features.

• The model achieves the best prediction performance
and can suggest potential DTIs, even the effective drug
candidates against COVID-19.

Supplementary data

Supplementary data are available online at Briefings in Bioin-
formatics.
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