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Cardiovascular disease (CVD) remains the number one cause of death

worldwide. Ischemic heart disease contributes to heart failure and has

considerable morbidity and mortality. Therefore, alternative therapeutic

strategies are urgently needed. One class of epigenetic regulators known

as pioneer factors has emerged as an important tool for the development

of regenerative therapies for the treatment of CVD. Pioneer factors bind

closed chromatin and remodel it to drive lineage specification. Here,

we review pioneer factors within the cardiovascular lineage, particularly

during development and reprogramming and highlight the implications

this field of research has for the future development of cardiac specific

regenerative therapies.
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Introduction

Cardiovascular disease is the number one cause of death in the U.S and worldwide.

Vascular and cardiac disease results in considerable morbidity and mortality (1, 2).

The only curative disease for end-stage cardiovascular disease is orthotopic heart

transplantation (3).While it is estimated that more than 100,000 Americans could benefit

from cardiac transplantation, only 3,000 to 3,500 recipients receive such therapy due to

limited donor organ availability (4). Therefore, new therapies are warranted.

Reprogramming of lineages has received intense interest and several outstanding

reviews are available and provide a comprehensive overview of the field (5, 6). This field

had its genesis, in part, based on the discovery of master regulators—those factors that

promote lineage specific gene expression when overexpressed in somatic cells such as

fibroblasts (6). These assays were referred to as conversion assays and the first master

regulator to be described wasMyod and its family members (7). Subsequently, more than

200 master regulators have been described and their functional roles have been explored

using gene disruption technologies (8).
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While the role(s) of master regulators focused primarily on

their ability as transcription factors to govern lineage specific

gene expression, pioneer factors function to bind nucleosomal

DNA and relax the chromatin landscape upstream of lineage

specific genes (6, 8, 9). In this fashion, pioneer factors reside

at the very top of the hierarchical molecular cascade. Moreover,

there are only a limited number of rigorously defined pioneer

factors (9). Here, we highlight the criteria necessary for inclusion

as a pioneer factor, we provide an overview of the field itself and

highlight the role andmechanisms of pioneer factors that govern

the cardiovascular field.

Coordinated role of networks and
lineage specification during
cardiovascular development

Cardiovascular development is a well-coordinated and

complex process that requires the specification, proliferation,

migration and differentiation of progenitor cells that become

coupled to form a functional syncytium within the heart (10–

14). Progenitor cells arising from the mesodermal germ layer

form the early cardiac crescent and fuse to form the linear

heart tube. Progenitor cell populations and their derivatives

contribute to the first and second heart fields. These respective

progenitor cell populations contribute to distinct structures

within the mature heart, and are combinatorily regulated by

distinct and overlapping transcriptional networks (15). Stage

specific transcription factors and signaling pathways have

been defined and function as key regulators of cardiovascular

development. As previously outlined, master regulatory genes

govern the transcriptional cascades and direct cellular lineages

during differentiation and cellular reprogramming. However,

within this group of master regulators, a small subset of

transcription factors known as pioneer factors, have the unique

capacity to bind and remodel silent and compacted regions of

chromatin (nucleosomal DNA) to drive the expression of lineage

specific genes that allow for development and reprogramming

to occur (Figure 1). Due to their unique capacity to bind

nucleosomal DNA and drive lineage development, pioneer

factors have been shown to be critical factors for regenerative

sciences and cancer biology.

Role of master regulators during
development

Essential transcription factors, known as master regulators,

regulate cell fate and lineage commitment development. These

master transcription factors regulate lineage commitment

events, and can convert/reprogram cells (fibroblasts) to specific

lineages (8, 16). In addition to the MYOD family, other

prototypic master regulators include Pdx1, an important

regulator of pancreas development (17). Global knockout of

Pdx1 in the mouse results in the absence of the pancreas and

similar to MYOD, ectopic overexpression of PDX1 converts

somatic cells to pancreatic acinar cells (18, 19). Other master

regulators have been identified for each lineage including (but

not limited to): MESP1, MYF5, NEUROD, ASCL1/MASH1,

GATA2, GATA4, PAX3, PAX7, FOXO, FOXA, SCL/TAL1, HIF1

and others (7, 17, 20–24). These lineage specific transcription

factors or master regulators are essential for the different

combinations of reprogramming factors used to develop organ

specific cellular therapies (6). Among these master regulators,

a subset of transcription factors known as pioneer factors,

initiate lineage specific regulatory events to open up or relax

compacted (heterochromatic) DNA to govern developmental

and reprogramming processes (6, 25, 26) (Figure 1).

Role of pioneer factors during
lineage specification

Pioneer factors are a specialized group of lineage-specific

transcription factors that bind heterochromatic regions of

DNA to promote chromatin relaxation and recruit non-pioneer

transcription factors for lineage development or reprogramming

to occur (Figure 1) (9, 25, 26). This important functional

role is due to their unique capacity to scan heterochromatin,

recognize partial (non-canonical) DNA motifs that are exposed

on the surface on nucleosomes and bind to them. The

complexes that are formed (chromatin remodeling and non-

pioneer factors) following the binding of a pioneer factor

are context dependent (i.e., cell type specific) and serve to

dictate the diverse mechanisms whereby pioneer factors can

regulate lineage specification and development. Pioneer factors

were discovered with the dissection and definition of the

mechanisms whereby liver specific regulatory complexes were

bound to heterochromatin early during development (27,

28). These studies identified FOXA1 as the first prototypical

pioneer factor that regulates hepatic lineage specification during

early embryonic development (Table 1) (25, 29). A distinct

feature regarding FOXA1 is that its DNA binding domain

(forkhead/winged helix domain) shares a similar structure to

that of linker histones, which enables this pioneer transcription

factor to displace linker histones from nucleosomes to remodel

chromatin and promote liver development (30, 31). The

discovery of FOXA1 as a pioneer factor has led to the

identification and characterization of other pioneer factors

(Table 1). Perhaps, the most recognized examples of pioneer

factors are OCT4, SOX2 and KLF4 (OSK), which promote

the reprogramming of terminally differentiated fibroblasts to

induced pluripotent stem cells (iPSCs) (32, 33). While c-MYC

is also necessary for the reprogramming process of fibroblasts

to iPSCs, unlike OSK, which can bind partial DNA motifs in
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FIGURE 1

Pioneer factors drive lineage specification. Schematic model depicting the function of pioneer transcription factors during cellular lineage

specification. Pioneer factors initially bind to nucleosomal DNA and then remodel chromatin by themselves or by recruiting a chromatin

remodeling factor. These steps lead to the activation of gene expression and changes to the epigenetic landscape surrounding the DNA binding

sites of the pioneer factor.

TABLE 1 Pioneer factors with established properties.

Pioneer Lineage (cell) Nucleosome

binding

Chromatin

remodeling

Transcription

factor cooperation

Ref.

ASCL1 Neuron Yes Yes BRN2 (126–129)

C/EBPα Macrophage Yes Yes PU.1 (119)

EBF1 B cell Yes Yes PAX5 (117, 118)

ETV2 Endothelial cell Yes Yes ELK3 (37)

FOXA1, FOXA2 Liver/Pancreas/Hormone

dependent

Yes Yes GATA4,C/EBPβ,HNF4α

/GATA6/Nuclear

receptors

(29, 31, 130–

137)

FOXH1 Mesendoderm Yes Yes - (138)

GRHL1, GRHL2, GRHL3 Epithelial cell Yes Yes - (139, 140)

GAF Zygote Yes Yes - (141)

ISL1 Cardiac progenitor cell Yes Yes GATA4 (44)

KLF4 iPS cells Yes Yes MYC (32, 33, 142)

MYOD1 Myoblast Yes Yes - (7)

PAX7 Melanotrope Yes Yes TPIT (34, 39, 143)

PU.1 Macrophage/ T cell Yes Yes - (115, 116,

120–122)

OCT4 iPS cells Yes Yes MYC (32, 33, 142)

OPA Zygote Yes Yes - (144, 145)

SOX2 iPS cells Yes Yes MYC (32, 33, 142)

TCF1 T cell Yes Yes - (146)

ZELDA Zygote Yes Yes - (147)

iPS, induced pluripotent stem cell.

Ref., reference.

nucleosomal DNA located in enhancers, c-MYC binds accessible

regions in promoters and not nucleosomal DNA (25, 32, 33).

The molecular mechanisms whereby pioneer factors

promote lineage specification and development remain

ill-defined. One area of interest in the field is the effect of

chromatin modifications (histones or DNA) on pioneer factor

binding. A mechanism that has been observed is the binding of

pioneer factors to nucleosomal DNA sites without any apparent

effect. These regions are termed “pioneer factor resistant sites”

and are being examined to define the co-regulatory mechanisms

that are present in the chromatin environment to control cell

fate by promoting or preventing chromatin remodeling and

lineage specification by a pioneer factor following binding

(34). For example, the pioneer factor PAX7 is able to bind

facultative heterochromatin (H3K9me2) but not constitutive

heterochromatin (H3M9me3) in order to regulate pituitary
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progenitor cell development (33–35). This action highlights

the need to characterize the role of different histone and DNA

modifying enzymes that regulate pioneer factor function by

directly interacting with them or by indirectly modifying the

chromatin landscape during lineage specification (33).

A majority of the pioneer factor studies have focused on

the characterization of the activation of lineage transcriptional

programs and the initial functions of pioneer factors. However,

the mechanisms driving lineage repression and the later stages

of lineage specification are not well understood and warrant

further investigation. ASCL1 is one of the few pioneer factors

whose repressive role has been explored and found to recruit

cooperating factors such as the myelin transcription factor 1-

like protein (MYT1L), which represses the myogenic lineage

program during the reprogramming of fibroblasts to neuronal

cells (36). Studies on these cooperating or settler factors have

demonstrated recruitment of both non-pioneer transcription

factors as well as chromatin remodeling enzymes (p300 and

BRG1) to allow for lineage specification to occur by activating

gene expression, modifying chromatin or stabilizing the binding

of pioneer factors to their DNA binding sites (9, 37, 38). Gaining

a deeper understanding on how pioneer factor function is

regulated by these settler factors may enhance reprogramming

strategies to more efficiently drive lineage development in vivo

to treat cardiovascular disease (6).

Role of chromatin modifying factors
for the function of pioneer factors

While pioneer factors are required for the initial binding

to nucleosomal DNA, cooperation with other (non-pioneer

factors) is necessary in order to drive lineage development and

reprogramming (9, 25, 39). Two important events are required

following the binding of a pioneer factor and these include:

(1) chromatin relaxation and (2) recruitment/interaction

with other transcription factors (Figure 1). These two events

enable the effects of pioneer factors and lineage development

to occur by amplifying the signal and providing context

dependent mechanisms in different regions of the genome

(9, 25). Chromatin relaxation is a crucial step during lineage

development where pioneer factors have been shown to promote

remodeling by themselves (FOXA1) or with the assistance

of the SWI/SNF complex (9, 25). The SWI/SNF complex of

proteins is one of the most studied chromatin remodeling

complexes. This complex increases DNA accessibility to

regulate the development or reprogramming of pluripotent,

neuronal, cardiac and endothelial cells (37, 40). SMARCA4

(BRG1), the ATPase subunit of the SWI/SNF complex, is an

important regulator of early embryonic development as Brg1

null embryos are lethal prior to implantation (41). Using in vitro

differentiation and mouse studies, BRG1 has also been shown

to be an important regulator of cardiovascular development and

disease (42, 43). BRG1 also has been shown to be an important

chromatin remodeler as it interacts with at least four different

pioneer factors (OCT4, GATA3, ISL1 and ETV2) in a context

dependent fashion to regulate chromatin remodeling and two of

these pioneer factors are important regulators of cardiovascular

development (Table 1) (37, 38, 44, 45).

Pioneer factors in the cardiovascular
lineage

The cardiovascular lineage is composed of multiple lineages

including: the muscle, vascular/endothelial and hematopoietic

lineages (46–51). While many master regulators have been

described and have important roles in the coordination of the

development of the cardiovascular lineage, few pioneer factors

have been identified within this lineage (8, 9). In part, this

is due to the complexity associated with the different cellular

lineages and structures within the cardiovascular system (13, 52).

These pioneer factors are ISL1, GATA4 and ETV2, and in this

section we will discuss the data supporting their pioneer role and

function in the regulation of the cardiovascular lineage.

ISL1 is an important regulator for the development of

the second heart field (SHF), and was recently identified as a

pioneer factor (Table 1). Isl1 KO mice lack the right ventricle,

outflow tract and portions of the atria because of its role as an

important regulator of SHF cardiac progenitor cells (CPCs) (53–

56). In recent studies by Gao et al., they described that ISL1,

like other pioneer factors, regulated the development of SHF

CPCs by binding nucleosomal DNA and relaxing chromatin

by forming a complex with BRG1-BAF60C (44). They also

identified GATA4 as a cooperating factor in selected sites

bound to ISL1, suggesting a potential interaction for ISL1 in

the regulation of cardiovascular development. Together, ISL1

and GATA4 were shown to bind regulatory DNA regions of

important cardiac genes such as Hand2, Myocd, Ttn, Ryr2 and

others. The exact mechanism whereby GATA4 promotes the

pioneer function of ISL1 in these regulatory regions remains to

be elucidated. These studies used both in vivo and in vitro assays

to demonstrate that ISL1 binds nucleosomal DNA to regulate

SHF development.

GATA4 is another important master regulator of

cardiovascular development. Loss of Gata4 has been shown to

lead to early cardiac defects and results in bifed (non-fused)

heart fields and embryonic lethality (57–62). Additionally,

GATA4 has the capacity (along with other master regulators)

to reprogram fibroblasts to induced cardiomyocytes (iCMs) in

vitro and in vivo (63–67). While GATA4 is a key regulator of

cardiovascular development, its role as a pioneer factor has only

been described in hepatic progenitors and reprogramming of

fibroblasts to hepatic-like cells (29, 68). A recent study combined

scRNAseq, ATACseq, ChIPseq and machine learning to define

the molecular mechanisms governing iCM reprogramming
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using GATA4, MEF2C and TBX5 (GMT) and concluded that

MEF2C and TBX5, but not GATA4 bind heterochromatin

and promote chromatin remodeling during reprogramming

(69). While these studies do not support the notion that

GATA4 is a pioneer factor for the cardiac muscle lineage,

further developmental studies are necessary to understand

the heterochromatin binding and chromatin remodeling

capabilities of GATA4 during cardiovascular development.

The recent ISL1 studies suggest that GATA4 may bind to

heterochromatin in the cardiovascular lineage independently

but more mechanistic studies are needed (44).

More recently, ETV2 was identified as a pioneer

factor for the cardiovascular lineage that regulates and

reprograms endothelium (Table 1) (37). ETV2 is an essential

transcription factor for the development of endothelial and

hematopoietic lineages (51, 70–108). Its expression is observed

in mesodermal progenitors and hemangioblasts that give rise

to endocardial/endothelial and hematopoietic lineages, while

repressing other lineages such as the cardiac and skeletal

muscle lineages (49, 74, 79). Key regulatory genes and pathways

for the cardiovascular lineage such as MESP1, NKX2-5,

Wnt/Notch/BMP signaling (among others) have been shown

to regulate ETV2 expression within the cardiovascular lineage

(50, 74, 109, 110). Loss of Etv2 results in lethality by E8.5 in

developing mouse embryos due to the lack of all vascular and

blood lineages. Moreover, congenital heart defects in aborted

developing human fetuses have been reported to harbor Etv2

mutations (50, 51, 111). Additionally, ETV2 overexpression

(alone) reprograms terminally differentiated cells (fibroblasts)

to endothelial cells both in vitro and in vivo (112). Our recent

findings characterized the molecular mechanism whereby

ETV2 regulates the endothelial lineage as a pioneer factor

(37). ETV2 can scan the genome, bind nucleosomal DNA

and remodel chromatin independent of its cellular context,

whether it is related to fibroblast reprogramming or mouse

embryonic stem cell (mESC) differentiation into endothelial

progenitor cells (Figure 1). We characterized this functional

role for ETV2 using scRNAseq, ATACseq, NOMEseq, ChIPseq

and in vitro nucleosomal binding assays to unequivocally

demonstrate that ETV2 binds nucleosomal DNA during

endothelial lineage reprogramming/development. We identified

canonical downstream targets for ETV2 such as Emcn, Lmo2,

Rhoj and others that were bound by ETV2 during endothelial

lineage development and reprogramming. Similar to ISL1,

ETV2 recruits and directly interacts with BRG1. BRG1 is an

essential co-factor for ETV2 to function as a pioneer factor

as Brg1 knockdown and conditional knockout significantly

affected the ability of ETV2 to remodel chromatin and drive

endothelial lineage formation in both reprogrammed fibroblasts

and differentiating mESCs, respectively (37). This ETV2-BRG1

interaction was verified using mass spectrometry, Co-IP assays

and GST-pulldown assays. Additionally, we demonstrated that

this interaction was important for enacting epigenetic changes

during endothelial lineage development such as the deposition

of histone 3 lysine 27 acetylation (H3K27Ac) in regions

surrounding ETV2-BRG1 bound sites. Lastly, by screening

co-factors we identified ELK3 as a transcription factor that

was recruited to ETV2-BRG1 bound sites following chromatin

remodeling and ELK3 has an important role in endothelial

cell development (Figure 1 and Table 1). Understanding how

other factors might regulate chromatin remodeling and the

pioneer activity of ETV2, such as FOXC2 which is known to

regulate Fox-Ets enhancer motifs during endothelial lineage

development in combination of ETV2, will be important for

further dissecting this molecular mechanism (113). Forkhead

transcription factors are important in the field of pioneer

factors and chromatin remodeling because of their unique

protein structure that resembles linker histones and allows

(some of the forkhead family members) to remodel chromatin

(31). Furthermore, the expression of ETV2 is transient during

development, understanding how other downstream co-factors

(i.e., ELK3, FLI1, SCL/TAL1, etc.) direct the developmental

machinery following the downregulation of ETV2 will be

important for the development of therapeutic strategies

using ETV2 to develop mature vasculature that can be used

for ischemic diseases such as the transplantation of human

vasculature (71, 114).

ETV2 possesses an Ets DNA binding domain (DBD)

characterized by a winged helix-turn-helix structure which

needs to be studied in terms of how it interacts with nucleosomal

DNA to allow for chromatin binding and remodeling to occur

(75). Previous studies on forkhead factors have demonstrated

that the winged helix DBDof the pioneer factor FOXA resembles

that of the structure of linker histones, while Ets factors have

been shown to use their short α-helix structure to bind the major

groove of DNA to target nucleosomes (25). We hypothesize that

the winged helix of ETV2 will most likely behave like that of

previously described Ets factors, but it remains to be explored.

Unlike ISL1 and GATA4, the pioneer function of

ETV2 in the cardiovascular lineage is independent of its

cellular context, whether it is cellular differentiation or

reprogramming, it functions in a similar fashion in both

model systems. Future studies will need to focus on further

characterization of the molecular mechanisms driving

endothelial cell development/reprogramming by ETV2 to

enhance therapeutic approaches to develop mature vasculature

for ischemic diseases. While ETV2 is an essential regulator

of hematopoietic development, we did not define ETV2 as a

pioneer factor for hematopoietic lineages and therefore we

hypothesize that other co-factors and pioneer factors might

facilitate this developmental process. For example, EBF1, PU.1

and C/EBPα regulate hematopoietic development and act as

pioneer factors for the B cells, DN3 t cells and macrophages

(115–122) (Table 1). Whether these factors are regulated by

ETV2 early on or they act independently of ETV2 to regulate

the development of hematopoietic lineages remains to be
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elucidated. Identifying this pioneer role for ETV2 has big

implications for the development of regenerative therapies that

aim to generate vasculature for ischemic diseases, particularly

in the cardiovascular system (71, 112). Additionally, although

not the focus of this review, the development of therapies that

target pioneer factors in cancer will be very important. As

ETV2 has been shown to have a role in cancer (82, 88, 98, 123),

understanding whether its ability to remodel silent/compacted

chromatin as a pioneer factor has important implications

during angiogenesis, as therapeutic initiatives could target and

inhibit ETV2 thereby impacting tumorigenesis (82, 98, 123).

Additionally, it would be interesting to determine whether

or not BRG1 or another chromatin remodeler also forms a

complex with ETV2 in the context of cancer.

Conclusion(s)

More studies are emerging that claim to have characterized

a novel pioneer transcription factor and this number will be

expected to increase (8). This is in part due to the advances

in molecular biology that facilitate the cellular characterization

at the single cell level during embryogenesis. Further, these

technologies will allow us to identify DNA binding sites for

transcription factors (TF) and more importantly allow us to

define the chromatin dynamics surrounding the DNA binding

sites of such TFs. Importantly, the development of the Assay

for Transposase-Accessible Chromatin followed by sequencing

(ATAC-seq) allows for the definition of the chromatin landscape

of differentiating or reprogramming cells using very few cells

(50,000 cells or less) and support the claim that a TF is a

pioneer factor (124, 125). While ATAC-seq characterization of

cell populations can be insightful, we caution the reader that

a more in-depth analysis is needed when assigning the role of

pioneer factor. To designate a pioneer factor, three criteria need

to be fulfilled: (1) pioneer factors need to bind nucleosomal DNA

in vivo (sequencing) and in vitro (nucleosomal binding assay),

(2) pioneer factors need to promote chromatin remodeling

around DNA binding sites by themselves or by interacting

with chromatin remodelers and (3) pioneer factors need to

enact global epigenetic changes (i.e., demethylation) and recruit

other co-factors that further promote the development or

reprogramming of a cellular lineage (Figure 1; Table 1).

Further studies will be needed within the cardiovascular

field to identify pioneer factors that regulate distinct cellular

lineages and structures (i.e., first vs. second heart field) that

comprise the four chambered organ. For example, while

ETV2 sits at the top of the endothelial lineage developmental

hierarchy, ISL1 and GATA4 are two of many regulators of

the cardiac muscle lineage with very specific functions. We

predict that multiple pioneer factors will be required to regulate

cardiac muscle development and reprogramming. Other cellular

lineages that were not discussed include: smooth muscle and

cardiac fibroblasts as no pioneer factors have been identified

for these lineages. Pioneer factors can be powerful tools for

the development of regenerative therapies whose goal is to

generate mature and functional cell lineages. Understanding

the molecular mechanisms that drive lineage development by

these and other pioneer factors within the cardiovascular lineage

will be instrumental because coupling these pioneer factors

along with chromatin remodelers and downstream targets genes

can amplify the molecular effect needed to better develop

regenerative therapies for cardiovascular disease.
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