
Age-related macular degeneration (AMD) is the leading 
cause of blindness in Western countries. AMD is character-
ized by a progressive loss of central vision attributable to 
degenerative and/or neovascular changes that occur in the 
interface between the neural retina and the underlying 
choroid. Late stage AMD includes two main subtypes with 
unequal frequencies: atrophic AMD accounts for one third 
of cases whereas two thirds of patients suffer from neovas-
cular AMD [1]. Atrophic AMD is characterized by a gradual 
degeneration of the macular retinal pigment epithelial layer 
that leads to a slowly progressive loss of macular photorecep-
tors and a gradual loss of central vision [2]. Neovascular or 
exudative AMD results from choroidal neovascularization 
through Bruch’s membrane and rapidly alters central vision, 
though progressive damage to photoreceptor cells is caused 
by blood and protein leakage [3-5].

AMD is a multifactorial disease involving genetic and 
environmental risk factors. Over the last few years, efforts to 
identify the genetic factors related to AMD have resulted in 

the identification in the nuclear genome of high-risk alleles 
in complement factor H (CFH) [6-8] and ARMS2 [9,10], and 
of susceptibility alleles in apolipoprotein E (ApoE), pigment 
epithelium-derived factor (PEDF), clusterin, Scavenger 
receptor class B member 1 (SRB1), hepatic lipase (LIPC), 
tissue inhibitor of metalloproteinases-3 (TIMP3), and VEGF 
[11-22]. Recently, in the United States, risk alleles were 
found in mitochondrial DNA with an increased frequency 
of the mitochondrial haplogroup T in patients with AMD 
[23]. Subsequently, it was shown that, in mixed populations 
from the United States and Australia, the association with 
advanced AMD (neovascular and atrophic) was driven by 
variants of respiratory Complex I that uniquely characterize 
haplogroup T2: 4917G (non-synonymous), 11812G (synony-
mous), and 14233G (synonymous) [24]. These findings gave 
further support to a correlation between levels of respiratory 
chain bioproducts of reactive oxygen species (ROS), oxidative 
stress, and degenerative changes typical of AMD.

The aim of the present study was to assess whether 
haplogroup T2 variants conferred a high risk for neovascular 
AMD in a French population. Our study was retrospective 
(patients/DNA samples were previously recruited). We 
decided to focus on patients with neovascular AMD to screen 
a large homogeneous population.
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Purpose: Age-related macular degeneration (AMD) is a multifactorial disease involving genetic and environmental 
factors. Most of the genetic factors identified so far involve the nuclear genome. Recently, two studies in North America 
and Australia reported an association between advanced AMD and the mitochondrial T2 haplogroup. Our purpose was 
to assess this association in a large French population.
Methods: This case control study included 1,224 patients with neovascular AMD and 559 controls with normal fundus. 
Mitochondrial DNA polymorphisms at and around nucleotides 4917, 11,812, and 14,233 were determined using PCR 
amplification and direct sequencing of mitochondrial DNA.
Results: No association was found between the mitochondrial T2 haplogroup and neovascular AMD in the French 
population: 94/1,152 patients with neovascular AMD had the T2 haplogroup (8.2%) versus 34/482 controls (7.1%; odds 
ratio=0.9 [0.5–1.5], p=0.66).
Conclusions: An association between AMD and the T2 haplogroup, previously described in North American and 
Australian populations, was not confirmed in a large French population.
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METHODS

Patients: This case-control study included 1,224 Caucasian 
patients with AMD with choroidal neovascularization (mean 
age ± standard deviation [SD] at AMD diagnosis was 78.8±7.4 
years) who were recruited between 2005 and 2009 at four 
French ophthalmic centers with the potential to recruit a high 
number of patients with AMD: the Ophthalmology Eye Clinic 
of Creteil, Pellegrin Hospital in Bordeaux, Quinze-Vingts 
Hospital, and the Centre of Imaging and Laser of Paris. 
Inclusion criteria were i) women or men aged 55 or older and 
ii) exudative AMD in at least one eye. The exclusion crite-
rion was the presence of other retinal disease (e.g., diabetic 
retinopathy, high myopia, or macular dystrophies). Patients 
underwent a complete ophthalmologic examination including 
i) best-corrected visual acuity measurement, ii) fundus exam-
ination with retinal photographs, iii) fluorescein angiography 
(Topcon 50IA camera, Tokyo, Japan) and, if needed, indocya-
nine green angiography (HRA, Heidelberg, Germany), and 
iv) optical coherence tomography (OCT, Carl Zeiss Meditec, 
Inc., Jena, Germany). A questionnaire about medical history 
and smoking was completed. Written informed consent was 
obtained, as required by French bioethical legislation and the 
local ethics committee (CCPPRB Henri Mondor), in agree-
ment with the Declaration of Helsinki for research involving 
human subjects. The study and data collection methods were 
approved by our Institutional Review Board (CCPPRB Henri 
Mondor).

Controls: The study population included 559 Caucasian 
controls (mean age±SD was 67.7±7.8 years) recruited consec-
utively at the Eye Ophthalmology Clinic of Creteil between 
2002 and 2010. Fundus examination and retinal photography 
were performed for each control to exclude any abnormal 

feature on the macula (no drusen, no pigment epithelium 
alteration, no hemorrhage, no exudate, no macular edema, 
no myopic maculopathy). All retinal photos were graded by 
senior ophthalmologists (ES, SYC, JAS, JFK). All controls 
were recruited among patients who had had cataract surgery. 
Information about their medical history, including smoking, 
was obtained.

Genotyping: Genomic DNA was extracted from 10 ml 
blood leukocytes using the Illustra kit, according to the 
manufacturer’s protocol (GE Healthcare, Little Chalfont 
Buckinghamshire, UK). Methods for genotyping CFH and 
ARMS2 have already been described [25,26]. Mitochondrial 
DNA was genotyped using primers designed to amplify the 
genes encoding the NADH dehydrogenase subunits 2 (ND2), 
4 (ND4), and 6 (ND6), respectively (Table 1). Purified PCR 
fragments were directly sequenced, using the BigDye Termi-
nator Cycle Sequencing Kit v3.1 (Applied Biosystems, Foster 
City, CA). The ND4 G11778A mutation and the single nucleo-
tide polymorphisms (SNPs) A11812G, A11914G, G12007A 
and T14167C, T14110C, T14180C, T14182C, T14212C, 
G14364A, and T14470C/A in ND4 and ND6, respectively, 
were analyzed.

Statistical analysis: The Hardy–Weinberg assumption was 
assessed with the standard method comparing the observed 
number of subjects in the different genotype categories with 
the expected number under the Hardy–Weinberg equilibrium 
for the estimated allele frequency, and testing with a Pearson 
goodness-of-fit statistic with the χ2 with 1 degree of freedom. 
The χ2 test was used to compare categorical allelic and 
genotype distributions between cases and controls. Logistic 
regression was used to estimate the adjusted odds ratio (OR) 
with a 95% confidence interval (95% CI). Models were 

Table 1. Primers used To amPlify miTochondrial dna

Gene Polymorphisms analyzed Forward primer Reverse primer
ND2 A4917G 5′ CCTGCTTCTTCTCACATGAC 3′ 5′ GGGTCTGGTTTAATCCACCT 3′
ND4 A11812G, A11914G, G12007A 5′ CTTACATCCTCATTACTATTC 3′ 5′ AAACTATATTTACAAGAGGAAAAC 3′

ND6

A14233G, T14110C, T14167C, 
T14180C, T14182C, T14212C, 

G14364A, T14470C/A 5′ ACCTGCCCCTACTCCTCCTA 3′ 5′ GTAGTTGAAATACAACGATGG 3′

Table 2. demograPhic characTerisTics of The PoPulaTion

n
Controls Cases

p
559 1224

Men, n (%) 216 (38.6%) 414 (33.8%) 0.05
Age, years, m (sd) 67.7 (7.8) 78.8 (7.4) <0.0001

Tobacco, n (%) 236 (42.2%) 461 (37.7%) 0.07
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Table 3. geneTic characTerisTics of The PoPulaTion. 

Polymorphisms Controls Cases
p corrected p†

n 559 1224
CFH
TT, n(%) 209 (37.7%) 266 (21.8%) <0.0001
CT 268 (48.3%) 612 (50.1%)
CC 78 (14.0%) 344 (28.1%)
ARMS2
GG 330 (60.2%) 373 (30.6%) <0.0001
GT 192 (35.1%) 572 (46.9%)
TT 26 (4.7%) 274 (22.5%)
4917
A 509 (91.5%) 1103 (90.1%) 0.34 1
G 47 (8.5%) 121 (9.9%)
11812
A 450 (92.8%) 1058 (91.8%) 0.52 1
G 35 (7.2%) 94 (8.2%)
T2 (4917G11812G) 34 (7.1%) 94 (8.2%) 0.45 1
“Not T2” (4917A11812A or 4917G11812A) 448 (92.9%) 1058 (91.8%)
14470
T 528 (95.2%) 1129 (97.7%) 0.02* 0.22
C 18 (3.2%) 19 (1.6%)
A 9 (1.6%) 8 (0.7%)
C or A 27 (4.9%) 27 (2.3%) 0.006 0.07
G11778A
G 484 (100%) 1139 (100%)
A11914G
G 478 (97.0%) 1129 (98.2%) 0.12 1
A 15 (3.0%) 21 (1.8%)
G12007A
G 487 (98.4%) 1128 (99.1%) 0.19 1
A 8 (1.6%) 10 (0.9%)
T14167C
C 507 (90.7%) 1124 (98.8%) 0.13 1
T 52 (9.3%) 87 (7.2%)
T14110C
T 556 (99.6%) 1200 (99.9%) 0.24* 1.00*
C 2 (0.4%) 1 (0.1%)
T14180C
C 558 (99.2%) 1199 (99.4%) 0.45* 1.00*
T 1 (0.2%) 7 (0.6%)
T14182C
T 542 (97.0%) 1165 (96.4%) 0.58 1
C 17 (3.0%) 43 (3.6%)
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adjusted for age, sex, tobacco status, and CFH and ARMS2 
genotypes. P values for mitochondrial polymorphisms were 
presented without and with Bonferroni correction for 11 
SNPs. As all patients were bearers of the G allele, no statis-
tical analysis was performed, and we did not consider the 
G11778A polymorphism.

RESULTS

The genotypes of the 1,224 exudative AMD cases and 
559 controls for the rs1061170 (Y402H, CFH), rs10490924 
(ARMS2), mitochondrial 4917 (mt4917; ND2), mt11812 (ND4), 
and mt14470 (ND6) SNPs, respectively, are shown in Table 
2. The genotypic distributions of the CFH and ARMS2 SNPs 
were significantly different between the cases and controls 
(p<0.0001). The Y402H CFH and ARMS2 rs10490924 
polymorphisms were in Hardy–Weinberg equilibrium in 
the control group. The genotypes of the cases and controls 
for mitochondrial polymorphisms are shown in Table 3. No 
association was found between the mitochondrial 4917G and 
11812G polymorphisms (defining mitochondrial haplogroup 
T2) and neovascular AMD before or after adjustment for age, 
sex, smoking status, and CFH and ARMS2 (OR=0.9 [0.5–1.6]; 
Table 3 and Table 4). Regarding mitochondrial polymor-
phisms, A11914G, G12007A, T14110C, T14180C, T14182C, 
T14212C, A14233G, G14364A, and the G11778A mutation 
lying in the amplified regions, we found no significant asso-
ciation with AMD (Table 5).

Conversely, regarding the T14470C/A polymorphism, 
we found higher frequencies of 14470C or 14470A alleles 
in controls versus cases (crude OR=0.5 [0.3–0.8], p=0.006). 
However, the results were not statistically significant after 
Bonferroni correction (p=0.07) and when the model was 
adjusted for age, sex, smoking status, and CFH and ARMS2 
(OR=0.6 [0.3–1.2], p=0.23, Table 4). In addition, we found 
more people with 14167C polymorphisms in the control group 
than in the AMD patient group, but the difference was not 
significant when adjusted for age, sex, smoking status, and 

CFH and ARMS2 status (OR=0.7 [0.4–1.1], p=0.09 for C 
versus T allele bearers).

DISCUSSION

AMD is a multifactorial disease that involves environmental 
and genetic factors. Over the last decade, the identification 
of major risk alleles for AMD suggested that inflammation 
and lipid homeostasis were the main pathways involved in 
the disease. Recently, evidence linking allelic variation in 
mitochondrial DNA with AMD was found, supporting the 
long-suspected notion of oxidative stress contributing to 
the pathogenesis of the disease. The link between oxidative 
stress, mitochondrial metabolism, and the aging process is 
well established [27-29]. Reactive oxygen species (ROS) 
are mainly produced by the respiratory chain in the mito-
chondria where, at high concentrations, they may injure the 
mitochondrial genome and thus increase the age-related 
disease sequelae. The high frequency of some mitochondrial 
haplogroups in centenarians in Europe (J and U haplogroups) 
and Asia (D4a) [30-33] and the potential association between 
U or H haplogroups and Alzheimer disease [34,35] supports 
this hypothesis.

Regarding AMD, the photoreceptor/retinal pigment 
epithelium (RPE) complex is located in a unique high-oxida-
tive-stress microenvironment due to the generation of high 
concentrations of light-induced ROS. A body of evidence 
suggests a major role of oxidative stress response and of 
mitochondrial dysfunction in the pathogenesis of the disease, 
including i) RPE lesions in superoxide dismutase 2 (sod2) 
knockdown mice similar to those observed in atrophic AMD 
[36], ii) decreased mitochondrial respiration with altera-
tions of mitochondrial DNA in the macular RPE of patients 
with AMD [37], iii) quantitative and qualitative alterations 
of mitochondrial cristae (ultrastructure) in the RPE cells of 
75-year-old patients with age-related maculopathy (ARM), 
identical to those of 85-year-old ARM-free donor individuals 
[38]. In 2007, the first case-control association study of mito-
chondrial variants in age-related maculopathy supported the 

Polymorphisms Controls Cases
p corrected p†

n 559 1224
T14212C
T 556 (99.5%) 1206 (99.5%) 1.00* 1.00*
C 3 (0.5%) 6 (0.5%)
G14364A
G 553 (99.1%) 1174 (99.2%) 1.00* 1.00*
A 5 (0.9%) 10 (0.8%)

* exact test of Fisher † p adjusted with Bonferroni correction
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idea of a decreased risk of ARM in individuals carrying the 
H haplogroup and an increased risk of soft drusen and RPE 
abnormalities in those with the J and U haplogroups [39]. 
Another case control study identified haplogroup J as a risk 
factor for advanced AMD and haplogroup H as a protective 
factor [40]. More recently, a whole-mitochondrial genome 
case-control association study found an increased risk of 
advanced AMD in carriers of the T2 haplogroup (OR=2.54, 
p≤0.004) [24]. A decrease in respiratory chain complex 
I activity has been found in the sperm of individuals with 
the T haplogroup (defined by the mt4917G polymorphism) 
[41]. Furthermore, an increased susceptibility to oxidative 
stress has been related to deficient complex I activity [42]. It 
is therefore possible that the retinas of individuals with the 
T haplogroup may be more susceptible to ROS species. In 
our study, we have not confirmed the association between 
several mitochondrial polymorphisms and neovascular age-
macular degeneration in a large cohort of patients with AMD 
in France. This discrepancy between previous studies and 

our work may be explained in part by differences in cohort 
structures. Indeed, in Canter’s paper, which included age-
related maculopathy and advanced AMD, the frequency of 
the T haplogroup in clinical cases was 15.4% versus 9.9% 
in our study, while the frequency in the control group was 
comparable with our results [23]. In SanGiovanni’s paper, 
the frequency of the mitochondrial T2 haplogroup was 
much lower in the Age-Related Eye Disease Study (AREDS) 
control population: 1.8% versus 7.1% in our control popu-
lation [24]. Indeed, here, we focused on neovascular AMD 
whereas earlier reports considered heterogeneous patient 
subgroups in the AREDS and Blue Mountain Eye Study 
cohorts, respectively, containing neovascular and atrophic 
AMD. In SanGiovanni’s paper, 35% of the AREDS popula-
tion had atrophic AMD, with a slightly higher proportion of 
T2 in this subgroup: 10.8% versus 9.5% in the neovascular 
AMD subgroup. It is also likely that interactions between 
genetic and environmental factors that contribute to AMD 
may differ in American and European populations [43-45]. 

Table 4. crude and adjusTed odds raTios of having neovascular amd in miTochon-
drial T2 haPlogrouP and according To mT14470 PolymorPhism

4917G and 11812G
Crude 

OR [95% CI] p

Model adjusted for age, sex, tobacco 
CFH and ARMS2 

OR [95% CI] p
4917G 1.2 [0.8–1.7] 0.34 1.0 [0.6–1.5] 0.88
11812G 1.1 [0.8–1.7] 0.52 1.0 [0.3–3.0] 0.99

4917G 11812G (=T2 
haplogroup) 1.2 [0.8–1.8] 0.45 0.9 [0.5–1.6] 0.74

14470
Crude 

OR [95% CI] p
Model adjusted for age, sex, tobacco 

OR [95% CI] p
14470T 1 (ref) 0.023 1 (ref) 0.36
14470C 0.5 [0.3–0.9] 0.6 [0.2–1.3]
14470A 0.4 [0.2–1.1] 0.7[0.2–2.4]

14470C or A 0.5 [0.3–0.8] 0.006 0.6 [0.3–1.2] 0.23

Table 5. crude and adjusTed odds raTios of having neovascular amd according To differenT miTochondrial PolymorPhisms

Polymorphisms
Crude 

OR [95% CI] p

Model adjusted for age, gender, tobacco 
CFH and ARMS2 

OR [95% CI] p
A11914G 0.6 [0.3–1.2] 0.13 0.40 [0.2–1.1] 0.07
G12007A 0.5 [0.2–1.4] 0.19 0.3 [0.1–0.9] 0.04
T14167C 0.8 [0.5–1.1] 0.13 0.7 [0.4–1.1] 0.09
T14110C 0.2 [0.1–2.6] 0.23 0.8 [0.1–10.1] 0.85
T14180C 0.3 [0.1–2.5] 0.27 0.3 [0.1–5.3] 0.4
T14182C 1.2 [0.7–2.1] 0.58 1.1 [0.5–2.3] 0.82
T14212C 0.9 [0.2–3.7] 0.91 1.4 [0.3–7.7] 0.69
G14364A 0.9 [0.3–2.8] 0.91 0.9 [0.2–3.6] 0.91
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Regarding oxidative stress, ROS production is influenced by 
nutrition [46,47]. Owing to the marked differences in dietary 
habits in the United States and France, it is conceivable that 
individuals with the same mitochondrial genotypes living in 
the United States or France may have different susceptibilities 
to oxidative stress.

However, the lack of association between the T2 
haplogroup and neovascular AMD in the French popula-
tion does not rule out the possible contribution of mito-
chondrial variants in this population. Other haplogroups 
such as H12 or U5a have been associated with a decreased 
stability of complex I [48] and could be associated with 
AMD in the French population. From this point of view, 
our results suggest that two mitochondrial variants in ND6, 
14470A (haplogroup H10) and 14470C (haplogroups B5b1, 
D4e1a, L1c6, M8a, P1b, U6, and X), may confer protection 
against neovascular AMD. To confirm this hypothesis, it 
is necessary to increase the size of the population. Indeed, 
although the crude odds ratio suggested a protective role 
of the 14470A and 14470C alleles, the adjusted odds ratio 
was not significant. This might be correlated with the fact 
that patients carrying these alleles were younger than those 
carrying the 14470T allele. Our results should be interpreted 
with caution. We did not have sufficient power for some 
polymorphisms of interest in particular for the A11914G, 
G1 2 0 0 7A ,  T 14110 C ,  T 1418 0 C ,  T 1418 2 C , 
T 1 4 2 1 2 C ,  1 4 , 4 7 0 ,  a n d  G 1 4 3 6 4 A 
p o l y m o r p h i s m s .  H o w e v e r ,  f o r  t h e  4 917, 
11,812, and T14167C polymor phisms, we had 
a power of at least 80% to detect an odds ratio of 2 after Bonferroni 
correction.

In conclusion, no association between the mitochondrial 
T2 haplogroup and neovascular AMD in French patients was 
observed, but further studies are required to assess the role 
of mitochondrial polymorphisms in this disease. The advent 
of high-throughput sequencing should be of major help in 
this task by allowing fast sequencing of the entire 16.5 kb 
mitochondrial genome in a large population of patients with 
clinically defined AMD.
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