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Abstract: A new robust adaptive controller is developed for the control of the hepatitis B virus (HBV) infection inside the body.
The non-linear HBV model has three state variables: uninfected cells, infected cells and free viruses. A control law is designed
for the antiviral therapy such that the volume of infected cells and the volume of free viruses are decreased to their desired
values which are zero. One control input represents the efficiency of drug therapy in inhibiting viral production and the other
control input represents the efficiency of drug therapy in blocking new infection. The proposed controller ensures the stability
and robust performance in the presence of parametric and non-parametric uncertainties (and/or bounded disturbances). The
global stability and tracking convergence of the process are investigated by employing the Lyapunov theorem. The performance
of the proposed controller is evaluated using simulations by considering different levels of uncertainties. Based on the obtained
results, the proposed strategy can achieve its desired objectives with different cases of uncertainties.

1Introduction
Hepatitis B is a potentially life-threatening liver infection caused
by the hepatitis B virus. It is a major global health problem that can
cause chronic infection and puts people at high risk of death from
cirrhosis and liver cancer. An estimated 240 million people are
chronically infected with hepatitis B (defined as hepatitis B surface
antigen positive for at least 6 months). More than 686,000 people
die every year due to complications of hepatitis B, including
cirrhosis and liver cancer [1].

Available drugs cannot clear the hepatitis B virus (HBV)
infection; however, they stop replication of virus and prevent liver
damage. Accordingly, among the dynamic models that have been
proposed for monitoring the HBV changes during the drug therapy,
the virus infection model introduced by Nowak et al. [2] was
widely used and validated in studies on the virus infection
dynamics. This model was obtained by performing various
experimental tests on different patients.

Some other experimental studies were performed on the
animals’ HBV-infected models by Ganem [3] and Feitelson and
Larkin [4]. However, some human features make it extremely
difficult to extend the animal models to the human HBV [4].

Different methods [5–7] exist in the literature for antiviral
therapy problem of infectious diseases. Sharomi and Malik [8]
reviewed the available literature on mathematical models that use
optimal control theory to deduce the optimal strategies aimed at
curtailing the spread of an infectious disease. Moradi et al. [9] used
an adaptive control strategy to manipulate the drug usage and
consequently decrease the tumour volume in the cancer
chemotherapy. Three mathematical cell-kill models including log-
kill, Norton–Simon and Emax hypotheses are considered in the
presence of uncertainties [9]. Anelone and Spurgeon [10]
employed a model of HIV infection together with an associated
reachability analysis which considers the action of antiretroviral
drugs to formulate the containment condition of HIV infection on
the desirable manifold.

Hernandez-Vargas and Middleton [11] proposed a mathematical
model for the HIV infection. Their model represented the whole
trajectory in HIV infection and its progression to AIDS with three
stages: primary infection, asymptomatic and symptomatic periods.
Also, Rivadeneira et al. [12] explained different studies on the HIV
dynamics and proposed optimal control methods for its drug

therapy. Different model predictive control methods [13, 14] were
suggested for optimal drug scheduling in HIV treatment.

In particular, some control strategies have been applied for the
HBV treatment. For instance, Ntaganda and Gahamanyi [15]
employed a fuzzy logic for optimal control of the HBV. Su and Sun
[7] compared the HBV treatment process using two different
therapies (traditional Chinese and Western medicines) by
employing an optimal method. Laarabi et al. [16] applied another
optimal control strategy in order to minimise the treatment costs
and maximise the volume of healthy cells. However, not enough
appropriate control methods were presented for the non-linear
HBV dynamics with analysis of the process stability.

In this work, a robust adaptive Lyapunov-based control strategy
is developed for the HBV treatment. The objectives of this control
strategy are decreasing the number of infected cells and the number
of hepatitis B viruses. As a result of achievement to these
objectives, the uninfected cells will increase. For this purpose, two
applicable control inputs (the antiviral drug usage) are used to track
the descending desired values of infected cells and viruses. These
control inputs represent the efficiency of drug therapy in blocking
new infection and inhibiting viral production [17]. This means that
a control input affects the healthy and sick cells dynamics and the
other one affects the hepatitis virus dynamics. The stability of
process and tracking convergence are guaranteed using the
presented Lyapunov analysis.

In summary, the proposed controller has the following
characteristics in comparison with the previously suggested
controllers for the HBV [7, 15, 16]: (i) being robust to the
parametric uncertainties of the process using the adaptive control
theory [18], and (ii) robustness against bounded unstructured
modelling (non-parametric) uncertainties and/or disturbances in the
process by employing the sliding-mode control theory [19].
Accordingly, in this paper, by combining the non-linear adaptive
control [18] and sliding-mode control [19], a new robust adaptive
Lyapunov-based controller is presented for the HBV infection.

2Mathematical model of HBV
The employed HBV dynamic model in this work is obtained from
some clinical studies [2] on 50 patients for 24 weeks of the
treatment. This non-linear hepatitis B virus dynamics is given by
the following system of differential equations [17]:
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dx

dt
= λ − dx − (1 − u1)βxv (1)

dy

dt
= (1 − u1)βxv − δy (2)

dv

dt
= (1 − u2)py − cv (3)

These dynamics are structured such that the constant parameters
were separated from the varying measurable states: numbers of
infected cells (y), uninfected cells (x) and free viruses (v). Initial
conditions of this dynamics x(0) = x0, y(0) = y0 and v(0) = v0 are
given and the definitions of above model parameters are listed in
Table 1. Note that the number of healthy cells (x) has a maximum
saturation population in the unit of human blood volume. This
saturation level is obtained as λ/d = 6.645 × 107 in Section 4 by
employing the proposed controller. 

In this model (1)–(3), u1(t) and u2(t) are the control inputs to
achieve the desired objectives, which are reducing the amounts of
infected cells y and viruses v in the patient's body. Based on [20],
the time unit of the model is in day and all the parameters are given
in day as well. This time unit (day) has also been used in other
similar HBV models [2, 17, 21].

3Robust adaptive controller design
In this section, the robust adaptive sliding mode control strategy is
developed for the non-linear HBV model. For this purpose, the
rates of drug usage u1(t) and u2(t) are controlled to track the
descending desired values (yd and vd) for the numbers of infected
hepatocytes (y) and free viruses (v). Moreover, using the proposed
controller, the tracking performance is achieved in the presence of
parametric and non-parametric uncertainties of the non-linear HBV
model. The employed HBV dynamics is obtained from [2] in
which numerous experimental tests were implemented to propose
this model (1)–(3). These dynamics were structured such that the
constant parameters are separated from the varying states (infected
and uninfected cells and viruses). The values of these parameters
were obtained from some experiments in [2] that are also
represented in [22].

In this paper, different levels of uncertainty in the estimation of
HBV model parameters have been considered. Another type of
uncertainty considered in this work is the non-parametric or un-
structured uncertainty. This type of uncertainty comes from some
aspects of the process which are not taken into account in the
developed model. These uncertainties can originate from
measurement limitations and/or errors during the initial
experiments, as well as the probable differences (such as age,
genetic diversity and life style) among HBV patients.

Accordingly, two arbitrary disturbance functions D1 and D2 are
taken into account as unstructured uncertainties of the HBV model.
Therefore, (1)–(3) are modified to the following form:

dx

dt
= λ − dx − (1 − u1)βxv − D1βxv (4)

dy

dt
= (1 − u1)βxv − δy + D1βxv (5)

dv

dt
= (1 − u2)py − cv + D2py (6)

The dynamics of the HBV model for the infected cells y and
viruses v (5) and (6) can be rearranged as follows:

u1(t) = −
ẏ

βxv
−

δy

βxv
+ 1 + D1 (7)

u2(t) = −
v̇

py
−

cv

py
+ 1 + D2 (8)

Then, the regressor matrices Z1 and Z2 in terms of certain functions
of the variables ϕ1, ϕ2, x, y and v, and the vectors θ1 and θ2 in terms
of the unknown parameters of the HBV dynamics (7) and (8) are
defined as

Z1 = −
ϕ1

vx
, −

y

vx
(9)

Z2 = −
ϕ2

y
, −

v

y
(10)

θ1 =
1

β
,

δ

β

T

(11)

θ2 =
1

p
,

c

p

T

(12)

such that (7) and (8) can be reformulated using ϕ1 = ẏ and ϕ2 = v̇

[23], as

−
ϕ1

βxv
−

δy

βxv
+ 1 + D1 = Z1(ϕ1, x, y, v)θ1 + 1 + D1 (13)

−
ϕ2

py
−

cv

py
+ 1 + D2 = Z2(ϕ2, v, y)θ1 + 1 + D2 (14)

Accordingly, the non-linear control strategy for the amount of
medication u(t) = (u1(t), u2(t)) is defined as

u1(t) = Z1θ
^

1 + 1 +
γ1sgn y

~

vx
(15)

u2(t) = Z2θ
^

2 + 1 +
γ2sgn v

~

y
(16)

The sign ^ is used to specify estimated values of the uncertain
system parameters that are updated using adaptation laws. In other
words, θ

^

1 and θ
^

2 are the estimations of θ1 and θ2 (introduced in (11)
and (12)). The regressor matrices Z1 and Z2 in the control laws (15)
and (16) are defined in (9) and (10) in terms of ϕ1, ϕ2, x, y and v.
Based on (15) and (16), the controller is updated according to the
patient's infected cells y, viruses v and uninfected cells x. The
variables ϕ1, ϕ2 in (13) and (14) are also defined separately as

ϕ1 = ẏd − η1(y − yd) (17)

ϕ2 = v̇d − η2(v − vd) (18)

where η1 and η2 are positive parameters. The terms γ1sgn(y~)/vx and
γ2sgn v

~ /y in (15) and (16) provide the robustness of the controller
against the bounded model mismatches and/or disturbances (D1 and
D2 in (4)–(6)). In these terms, γ1 and γ2 are positive gains, and y~ and
v
~ are defined as tracking errors of infected cells and viruses with
respect to their desired values (yd and vd):

y
~ = y − yd (19)

v
~ = v − vd (20)

Table 1 Parameter definitions for HBV model (1)–(3)
Parameter Definition
d death rate of target cells
δ death rate of infected cells
c clearance rate of free virions
p production rate of virions per infected cell
β infection rate of new target cells
λ production rate of new target cells
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Note that the proposed controller (15)–(16) requires the
measurements of infected cells (y), uninfected cells (x) and viruses
(v) populations per unit volume of the blood. Some methods in
multiplicity of infection are currently employed for quantification
of viruses and infected cells per unit volume of liquids [24].
Consequently, similar to the previous studies on the modelling [2,
25] and control [7, 15, 16, 26] of the HBV infection, it is
considered that the viruses and cells measurements are possible for
implementation of the proposed strategy. Also, the non-linear HBV
model originated from [2] in which the state variables (x, y and v)
were measured to obtain the dynamic structure (1)–(3) and identify
its parameters.

Now, the adaptation laws for updating the estimated parameters
of the system (θ

^

1 and θ
^

2) are defined as

θ
^̇

1 = Γ1
T
Z1

T
x v y

~ (21)

θ
^̇

2 = Γ2
T
Z2

T
yv

~ (22)

where Γ1 and Γ2 are constant positive definite matrices.
In the next section, using the Lyapunov stability theorem, it will

be proved that the proposed robust adaptive controller ensures the
stability and convergence of the HBV therapy process in the
presence of parametric and non-parametric uncertainties.

4Lyapunov analysis
The closed-loop dynamics of the system using the proposed non-
linear robust adaptive controller is obtained by substituting the
control laws (15) and (16) in the HBV model (7) and (8) and by
adding and subtracting some terms:

−
ẏ

βxv
−

δy

βxv
+ 1 + D1 = −

ẏd − η1 y − yd

β
^

xv

−
δ
^

y

β
^

xv
+ 1 +

γ1sgn(y~)

xv

−
ẏd − η1 y − yd

βxv
−

δy

βxv
+ 1

+
ẏd − η1 y − yd

βxv
+

δy

βxv
− 1

(23)

−
v̇

py
−

cv

py
+ 1 + D2 = −

v̇d − η2 v − vd

p^ y
−

c^v

p^ y
+ 1 +

γ2sgn(v~)

y

−
v̇d − η2 v − vd

py
−

cv

py
+ 1

+
v̇d − η2 v − vd

py
+

cv

py
− 1

(24)

Using (9)–(14) in (23) and (24), the closed-loop dynamics of the
controlled process is obtained as

−
1

βxv
y
~̇ + η1y

~ + D1 = Z1θ
~

1 +
γ1sgn y

~

xv
(25)

−
1

py
v
~̇ + η2v

~ + D2 = Z2θ
~

2 +
γ2sgn v

~

y
(26)

where θ
~

1 = θ
^

1 − θ1 and θ
~

2 = θ
^

2 − θ2 are the vectors of parameter
estimation errors. By simplifying (25) and (26), the closed-loop
dynamics is finally expressed as

y
~̇ = − η1y

~ − βxvZ1θ
~

1 − βγ1sgn y
~ + βxvD1 (27)

v
~̇ = − η2v

~ − pyZ2θ
~

2 − γ2psgn v
~ + pyD2 (28)

To prove the process stability and the tracking convergence using
the proposed controller, a Lyapunov function candidate is used as

V =
1

2
v
~2

+ y
~2

+ βθ
~

1

T
Γ1

−1
θ
~

1 + pθ
~

2

T
Γ2

−1
θ
~

2 ≥ 0 (29)

The time derivative of V is then obtained as

V˙ = v
~
v
~̇ + y

~
y
~̇ + βθ

^̇

1

T

Γ1
−1

θ
~

1 + pθ
^̇

2

T

Γ2
−1

θ
~

2
(30)

where θ
~̇

i = θ
^̇

i, because θi is a constant vector and θ
˙
i = 0. By

employing the non-linear closed-loop dynamics (27) and (28) in
(30), we have

V˙ = v
~ −η2v

~ − py Z2θ
~

2 − γ2psgn v
~ + py D2

+y
~ −η1y

~ − βxv Z1θ
~

1 − βγ1sgn y
~ + βxv D1

+βθ
^̇

1

T

Γ1
−1

θ
~

1 + pθ
^̇

2

T

Γ2
−1

θ
~

2

(31)

Using the parameter adaptation laws (21) and (22), V˙  in (31) is
simplified to:

V˙ = − η2v
~2

+ v
~ − pγ2sgn v

~ + py D2

−η1y
~2

+ y
~ −βγ1sgn y

~ + βxv D1

(32)

The positive gains γ1 and γ2 in the robust controller (15) and (16)
should be adjusted as large to overcome the upper bounds of non-
parametric uncertainties (disturbances D1 and D2) by satisfying the
following inequalities:

γ1 ≥ | xv D1 | , γ2 ≥ | y D2| (33)

Employing (33) in the time derivative of Lyapunov function (32)
results in:

V˙ ≤ − η1v
~2

− η2y
~2 (34)

 
Proposition: Based on the Lyapunov stability theorem [18], the
proposed non-linear control method guarantees the stability and
tracking convergence (y~ → 0 and v~ → 0 as t → ∞). In other words,
if the rate of antiviral drug usage u(t) = (u1(t), u2(t)) is adjusted
based on the presented control laws (15) and (16), the populations
of infective cells and free viruses converge to their desired values
(y → yd and v → vd).
 
Proof: According to (29), the Lyapunov function V is positive
definite (V ≥ 0) in terms of y

~, v
~, θ

~
1 and θ

~
2. Also, the time

derivative of Lyapunov function is negative semi-definite (V˙ ≤ 0)
in (34). Thus, V is bounded and consequently y~, v~, θ

~
1 and θ

~
2 remain

bounded. The desired number of infected cells (yd) and the desired
number of viruses (vd) are defined bounded. Therefore, since
y
~ = y − yd and v

~ = v − vd, the state variables y and v are also
bounded due to the boundedness of yd and vd. Moreover, by
applying the Barbalat's lemma [18], it is concluded that V˙ → 0 as
t → ∞. As a result and based on (34), the tracking errors of
infected cells and viruses converge to zero (y~ → 0  and v

~ → 0).
Therefore, the objectives of proposed non-linear robust adaptive
controller (y → yd and v → vd) are achieved. However, the vectors
of parameters estimation errors (θ

~
1 = θ

^

1 − θ1 and θ
~

2 = θ
^

2 − θ2)
remain bounded.
Since the numbers of desired viruses and infected cells are
designed to be descending and converge to zero (yd → 0 and
vd → 0) during treatment, the numbers of actual viruses and
infected cells also converge to zero as a result of the above-
mentioned Lyapunov-based convergence proof (y → yd → 0 and
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v → vd → 0). Now, for evaluation of the uninfected cells (x)
behaviour, (4) is rearranged as

dx

dt
= λ − x(d + (1 − u1)βv + D1βv) (35)

Setting y → 0 and v → 0, we have:

(d + (1 − u1)βv + D1βv) → d (36)

which means that:

ẋ → λ − dx (37)

Therefore, as the time tends to infinity, the number of healthy cells
(x) will converge to its maximum steady-state value (x → λ/d),
which is 6.645 × 10

7 based on Table 2. □ 

5Numerical results
The proposed robust adaptive sliding-mode control strategy is
evaluated in this section by performing some simulations. For this
purpose, the parameters and initial conditions of the hepatitis B
virus infection with the non-linear model (1)–(3) are considered the
same as ones presented in [22] for a patient. These values are listed
in Table 2.

The desired descending amounts of infected cells and viruses in
the blood that should be tracked using the proposed controller are
assumed to be

yd = (y0 − yf)e
−s1t

+ yf (38)

vd = (v0 − vf)e
−s2t

+ vf (39)

where yf and vf are the final desired values of y and v, respectively.
The constant parameters s1 and s2 are desired exponentially
decreasing rates of infected cells and viruses during the treatment.
For a treatment period of 100 days, these parameters are set on
s1 = s2 = 5.75. It is worth mentioning that without loss of
generality, other continuous decreasing functions for the desired
values of y and v can be used instead of ones expressed in (38) and
(39).

The unstructured uncertainties and/or disturbances (D1 and D2 in
(4)–(6) are considered to be non-linear time varying; however, they
can have any bounded functionality, without loss of generality.
According to the progress of the HBV disease, D1 and D2 are
assumed here to change daily, weekly and monthly due to the
periods of human life, as

D1 = k11sin 2πt + k12sin
2πt

7
+ k13sin

2πt

30
(40)

D2 = k21sin 2πt + k22sin
2πt

7
+ k23sin

2πt

30
(41)

where ki j are coefficients of time varying disturbances.
In these simulations, three cases of uncertainty are considered

in the HBV model for evaluation of the controller performance.
The percentages of parametric uncertainties and the coefficients of
disturbances and/or non-parametric uncertainties (40) and (41) in
these three cases are listed in Table 3. 

The controller gains in (15)–(18) and the adaptation gains in
(21) and (22) are adjusted using a trial and error method to have
appropriate tracking convergence: η1 = η2 = 0.6, γ1 = γ2 = 0.1,
Γ1 = diag(40, 10) and Γ2 = diag(2, 25).

The performance of the proposed non-linear controller in
exponential decreasing of the infected cells y and viruses v per ml
of the blood volume is shown in Fig. 1, for three cases of
uncertainties. 

As seen in Fig. 1, the proposed controller provides the tracking
of desired exponentially decreasing values (defined in (38) and

Table 2 Parameters and initial values of variables for the
non-linear HBV dynamics (1)–(3) [22]
Parameter Value
d 0.0038
β 1.981 × 10−13

δ 0.0125
p 842.0948
c 0.67
x(0) 5.5556 × 107 cells/mL
y(0) 1.1111 × 107 cells/mL
v(0) 6.3096 × 109 copies/mL
λ 2.5251 × 105

 

Table 3 Percentages of parametric uncertainties and
coefficients of non-parametric uncertainties (40) and (41)
Case of
uncertainty

Parametric uncertainties Non-parametric
uncertainty

Uncertainty
percentage

for θ
^

1(0)

Uncertainty
percentage

for θ
^

2(0)

k1 j for
j = 1, 2, 3

k2 j for
j = 1, 2, 3

1 +50 +30 0.2 0.3
2 +30 −20 0.15 0.2
3 −30 −50 0.1 0.1

 

Fig. 1 Controller performance
(a) Decreasing the number of viruses, (b) Decreasing the number of infected cells, (c)
Increasing the number of healthy (uninfected) cells, per ml of the blood volume
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(39) for the hepatitis B viruses and infected cells (v → vd and
y → yd). To better illustrate this convergence performance, the
normalised tracking errors for the populations of virions and
infected cells with respect to their desired values (v~/v0 = (v − vd)/v0

and y~/y0 = (y − yd)/y0) are shown in Fig. 2. It is observed that the
tracking errors converge to zero ( y

~ → 0  and v
~ → 0) in the

presence of different uncertainty cases (introduced in Table 3), as
proved in Section 4 (Lyapunov analysis). 

It was mentioned earlier that x approaches to
λ/d( = 6.645 × 10

7
) as the time tends to infinity (by employing the

proposed strategy, if t → ∞ then x → λ/d). However, since 100-
day treatment period is not comparable to infinity, x does not
converge to its maximum level in Fig. 1c. To show the final
convergence value, the result of x should be plotted for more than

300 days of treatment time. However, since the first 100 days of
treatment is the most important time for the reduction of viruses
and infected cells and increasing the number of uninfected cells,
the simulation results are presented for this time interval.

The aforementioned convergence to desired control objectives
is the result of drug therapy based on the designed robust adaptive
laws (15) and (16). This drug usage u(t) = (u1(t), u2(t)) is shown in
Fig. 3 for different cases of modelling uncertainty. 

As seen, the controller could adapt to different uncertainties and
adjust the drug inputs (Fig. 3) such that the desired descending
numbers of viruses and infected cells are tracked (Figs. 1 and 2).

To demonstrate the parameter adaptation performance of the
proposed strategy, the variations of parameters estimations with
respect to their initial values are shown in Fig. 4 for two elements
of θ

^

1(t) − θ
^

1(0). The adaptation of θ
^

1(t) is obtained using the update
rule (21), and the uncertainty percentages of the initial estimation
θ
^

1(0) are mentioned in Table 3 for different cases. It is observed in
Fig. 4 that the estimation of unknown parameters in θ

^

1(t) are
bounded and consequently the error θ

~
1 = θ

^

1 − θ1 remains bounded
as it was proved in Section 4. The results for θ

^

2(t) are similar and
they are not illustrated for the sake of brevity. 

6Conclusion
A non-linear robust adaptive Lyapunov-based control strategy was
designed in this paper for the antiviral drug therapy of the hepatitis
B virus infection with different cases of uncertainty. The objectives
of proposed robust adaptive controller are decreasing the
populations of infected cells and viruses by tracking desired
descending values, which result in increasing the healthy
(uninfected) cells. The stability of controlled process together with
the tracking convergence and the bounded parameter adaptation
were proved using the Lyapunov analysis.

The controller performance in the presence of different cases of
parametric and non-parametric uncertainties was investigated by
some simulations. Due to the obtained results, the proposed non-
linear control strategy is robust against a wide range of modelling
uncertainties and bounded disturbances, and can rapidly adjust the
antiviral drug usage to reduce hepatitis viruses and infected cells.

The proposed non-linear robust adaptive control strategy can be
used in realistic health treatments of HBV patients, and can be
redesigned for other diseases with different dynamic models in

Fig. 2 Normalised tracking errors
(a) Number of viruses, (b) Number of infected cells, in comparison with their desired
values

 

Fig. 3 Drug usage
(a) u1(t), (b)u2(t) for different cases of modelling uncertainty (introduced in Table 3)

 

Fig. 4 Adaptation performance for the parameters
(a) θ^1, 1, (b) θ^1, 2 in different cases of uncertainty (in Table 3)
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future works. In future studies on the HBV treatment, a
discontinuous (discrete) control law can be developed to be
applicable in clinical implementations. This is because that a
discontinuous state feedback (discontinuous measurement of
patient's viruses and cells) is more feasible in realistic therapies.
However, the stability analysis of a discrete controller for a
continuous non-linear dynamic model of HBV may be
mathematically challenging.
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