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Comparative analysis of machine 
learning approaches to classify 
tumor mutation burden 
in lung adenocarcinoma using 
histopathology images
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Isabelle Auvigne‑Flament3, Hardik Patel2, Robert Findlater2, Vanessa Velez2, Fraser Tan1, 
Kamilla Tekiela2, Ellery Wulczyn1, Eunhee S. Yi4, Craig H. Mermel1, Debra Hanks2, 
Po‑Hsuan Cameron Chen1, Kimary Kulig2,5, Cory Batenchuk2,7, David F. Steiner1,7* & 
Peter Cimermancic2,7

Both histologic subtypes and tumor mutation burden (TMB) represent important biomarkers in lung 
cancer, with implications for patient prognosis and treatment decisions. Typically, TMB is evaluated 
by comprehensive genomic profiling but this requires use of finite tissue specimens and costly, 
time-consuming laboratory processes. Histologic subtype classification represents an established 
component of lung adenocarcinoma histopathology, but can be challenging and is associated with 
substantial inter-pathologist variability. Here we developed a deep learning system to both classify 
histologic patterns in lung adenocarcinoma and predict TMB status using de-identified Hematoxylin 
and Eosin (H&E) stained whole slide images. We first trained a convolutional neural network to map 
histologic features across whole slide images of lung cancer resection specimens. On evaluation 
using an external data source, this model achieved patch-level area under the receiver operating 
characteristic curve (AUC) of 0.78–0.98 across nine histologic features. We then integrated the output 
of this model with clinico-demographic data to develop an interpretable model for TMB classification. 
The resulting end-to-end system was evaluated on 172 held out cases from TCGA, achieving an AUC of 
0.71 (95% CI 0.63–0.80). The benefit of using histologic features in predicting TMB is highlighted by the 
significant improvement this approach offers over using the clinical features alone (AUC of 0.63 [95% 
CI 0.53–0.72], p = 0.002). Furthermore, we found that our histologic subtype-based approach achieved 
performance similar to that of a weakly supervised approach (AUC of 0.72 [95% CI 0.64–0.80]). 
Together these results underscore that incorporating histologic patterns in biomarker prediction for 
lung cancer provides informative signals, and that interpretable approaches utilizing these patterns 
perform comparably with less interpretable, weakly supervised approaches.

Tumor Mutation Burden (TMB) has emerged as an important biomarker for predicting response to immu-
notherapy in lung cancer as well as other solid tumors1–3. TMB is defined as the relative number of somatic 
mutations present in a tumor, with high TMB associated with favorable immunotherapy response, likely due 
to increased expression of neo-antigens and corresponding immunogenicity of the tumor microenvironment4. 
Additionally, while TMB has emerged as a valuable component of precision medicine, it requires genomic pro-
filing of the tumor which is costly, time consuming, and requires sufficient tissue, leading to limited availability 
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for many patients. Additionally, due to differences in coverage regions, bioinformatics pipelines, and strategies 
for counting mutations, substantial variability can still exist in regards to the TMB count across laboratories5.

Several recent efforts have explored the potential for deep learning algorithms to perform a range of tasks 
in pathology, including the detection of tumor, the classification of tumor histology, and more recently, the 
prediction of molecular biomarker status6–9. These approaches show promise, but the histopathological features 
being learned and used by the algorithms are often unknown and cannot be quality-controlled or readily veri-
fied by researchers and pathologists. Building on previously described association of TMB with both histologic 
subtype10,11 and smoking status2, we hypothesized that a computational approach aimed at predicting TMB 
status from H&E images could benefit both in transparency and performance by utilizing known, clinically 
relevant features.

For lung adenocarcinoma, histologic subtype represents an established framework with diagnostic and prog-
nostic significance12,13. Current guidelines call for the reporting of lepidic, acinar, papillary, micropapillary and 
solid subtypes in 5% increments12 with emerging clinical significance for cribriform subtype as well14. However, 
high inter-rater variability in the assessment of these categories can limit overall utility15,16. As such, automated 
subtype classification thus has the potential to provide more accurate and consistent classification, and initial 
efforts demonstrate promising results17. We reasoned that a computational approach enabling comprehensive, 
detailed classification of histologic features across all tissue regions may provide insights into underlying biologi-
cal processes, including those associated with high TMB.

In this study, we first developed and evaluated a convolutional neural network (CNN) for classification of 
lung adenocarcinoma histologic subtypes across all regions of digitized whole slide images (WSIs). We then 
developed a second model to predict the TMB status using the output from the histologic subtype CNN com-
bined with additional clinical data. The result is a deep learning system capable of predicting TMB status while 
also providing an interpretable and informative feature map of the tumor histology. In parallel, we developed 
an end-to-end, “weakly supervised” deep learning model for TMB classification, which uses only the case-level 
TMB information and the slide image to train the model, and thus provides less insights into the features used 
to predict TMB. Importantly, this allowed development of strategies to combine models and comparison across 
several possible modeling approaches.

Methods
Modeling approaches.  The two general modeling approaches are summarized in Fig.  1. In the first 
approach, we explored the use of known histological features by designing a two-stage system. For the first stage 
(LungCNN-Histo), we developed a CNN to classify known histologic features for individual patches across 
hematoxylin and eosin (H&E) stained whole slide images (WSIs). In the second stage (LungCNN-TMB), the 
patch-level CNN predictions from LungCNN-Histo are aggregated over the entire slide and combined with 
clinical features (smoking status, age, stage, sex) to classify the TMB status. Binary classification of TMB status 

Figure 1.   Overview of modeling approaches and inference. Overview of the histologic-subtype approach 
(top) and the weakly supervised approach (bottom). In the histologic-subtype approach, feature maps of 
histologic patterns produced by LungCNN-Histo in stage 1 and are combined with clinical features to predict 
TMB-status in stage 2. The weakly supervised approach also utilizes a two stage approach, whereby a weakly 
supervised model (WS-S1) is developed to produce patch-level TMB predictions at inference. The patch-level 
data are aggregated over the entire tissue area in stage 1 and combined with clinical features to provide TMB 
classification in stage 2.
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was chosen to reflect the clinical application of TMB in predicting treatment response1 (see also TMB Status 
section below).

In contrast to the histologic subtype approach utilizing known lung adenocarcinoma features, we also devel-
oped a weakly supervised approach by using the case-level TMB count as the only available label during model 
training. To allow comparisons and hybrid models, we adopted a two-stage approach for the weakly supervised 
model as well. In the first stage, a weakly supervised model (WS-S1) was developed to directly infer TMB status 
for individual patches using case level labels. Patch-level predictions were aggregated across the WSI to produce 
a “TMB prediction score”. In the second stage (WS-TMB), the TMB prediction score was combined with clinical 
features to classify the TMB status. Additional details can be found in the “model development” section below.

Data.  This study utilized digitized, de-identified WSIs from two independent datasets. The first comprised 
all lung adenocarcinoma (LUAD) images from The Cancer Genome Atlas (TCGA). All TCGA LUAD images 
and associated clinical and mutation count data are managed by the NCI and NHGRI and were accessed via 
the Genomic Data Commons Portal (https://​gdc.​cancer.​gov) along with the associated TCGA publications18,19. 
The second dataset, consisting of 50 de-identified H&E WSIs from 50 lung adenocarcinoma cases, was obtained 
from an independent pathology laboratory in the United States (hereafter referred to as Dataset 2 or DS2). Most 
images from TCGA were scanned at a resolution of 0.25 μm/pixel (40×) with a subset scanned at 0.50 μm/
pixel (20×). DS2 images used in this study were scanned at 40× (0.5 μm/pixel). All research was performed in 
accordance with relevant guidelines and regulations. The study was approved by the institutional review board of 
Advarra (Columbia, Maryland) and deemed exempt from informed consent as all data and images were deiden-
tified. This IRB covered the use of de-identified cases independent of data source for the purposes of this study.

The training and testing data used for all models in this work are summarized in Table 1 and Supplemental 
Figure S1. Available slides were partitioned by case into train and test sets for the LungCNN-Histo and TMB 
classification models, respectively. The resulting data splits are referred to as Histo-Train, Histo-Test, TMB-Train, 
WS-Train, and TMB-Test and are summarized in Table 1. While some of these sets contain overlapping cases, 
Histo-Train and Histo-Test are non-overlapping and TMB-Test represents a completely held out set of cases, 
non-overlapping with any other data splits. LungCNN-Histo was trained on annotated slides from TCGA (Histo-
Train) and validated on annotated slides from both TCGA and DS2 (Histo-Test). LungCNN-TMB, the second 
stage model for TMB classification, and WS-TMB, the second stage model of the weakly supervised approach, 
were both trained using the same TCGA data (TMB-Train), which required availability of TMB and clinical 
features. The first stage of the weakly supervised TMB model was trained using WS-Train, which comprises all 
available TCGA cases with TMB counts available that were not assigned to TMB-Test. All TMB classification 
models were evaluated using the same set of held out TCGA cases as one another (TMB-Test). Lastly, a subset of 
TMB-Test represents held out cases that are also from held out TCGA tissue source sites (referred to as “unseen 
sites” since no cases from these sites were used for model development).

Annotations.  Annotations of specific regions corresponding to 9 LUAD histologic features were performed 
manually. These include 6 tumor subtypes (acinar, lepidic, solid, papillary, micropapillary, cribriform), 2 micro-

Table 1.   Summary of data used for training and testing the LungCNN-Histo and the TMB classification 
models.

Model LungCNN-Histo WS-S1 LungCNN-TMB and WS-TMB

Dataset name Histo-Train Histo-Test WS-Train TMB-Train TMB-Test

Data source TCGA LUAD TCGA LUAD DS2 TCGA LUAD TCGA LUAD
TCGA LUAD (unseen 
sites) TCGA LUAD (seen sites)

Number of cases (number of slides) 64 (68) 38 (40) 50 (50) 317 (261) 242 (295) 84 (84) 88 (93)

Number of tissue source sites 22 20 N/A 23 21 10 17

Age range (median) 38–84
(67.5)

48–83
(68.5)

40–70
(56)

33–87
(67)

33–87
(67)

42–84
(64)

41–88
(69)

Pathologic stage

I 37 20 35 148 138 40 56

II 15 11 9 60 54 27 17

III 8 6 6 37 35 10 12

IV 4 1 0 15 15 7 3

N/A 0 0 0 1 0 0 0

Sex
Female 40 17 17 144 134 44 49

Male 24 21 33 117 108 40 39

Smoking status

Non-smoker 26 17 0 96 89 38 36

Smoker 30 21 0 157 153 46 52

N/A 8 0 50 8 0 0 0

TMB status
Low 47 28 N/A 182 167 61 59

High 17 10 N/A 79 75 23 29

https://gdc.cancer.gov
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environment features (necrosis, leukocyte aggregates), and “other”, which represents primarily non-tumor fea-
tures such as normal lung tissue and tumor stroma.

Annotations for model training were provided by three individuals, first a trained research scientist (molecu-
lar biology PhD training with 5 years of experience in lung histopathology research), followed by review by a 
US board-certified pathologist (> 20 years experience) and additional confirmation by a thoracic pathology 
subspecialist (> 20 years experience). Annotations were non-exhaustive for each WSI, with the goal of capturing 
many examples and patches for all classes even though all tumor on each slide was not annotated. These annota-
tions were performed by identifying regions of the image corresponding to each feature of interest. Internally 
developed image annotation software was used, allowing downstream use of the annotated patches. All of the 
patches annotated in this manner were used for training, with at most one annotation per patch. This process 
involved approximately 60 min per slide for the research scientist and approximately 20 min per slide for the 
reviewing pathologists. The quantity of training annotations and patches for each class are summarized in Sup-
plemental Table S1.

To enable rigorous and quantitative patch-level evaluation, annotations for model evaluation were provided 
by a cohort of 7 US board certified pathologists (non-thoracic, median years of post-training experience 12, 
range 3–28), with 3 pathologists independently annotating each slide. For this process, regions of interest (ROI; 
1 mm × 1 mm) were first pre-selected by one pathologist per slide (4–7 ROIs per slide) with guidance to cap-
ture a diverse set of morphological features. These ROIs were then independently annotated by 3 pathologists 
to provide labels for the nine histologic features specified above (resulting in at most one annotation per patch 
per pathologist). The ROIs were labeled using internally developed labeling software to allow “drag and drop” 
selection of the specified 1 mm × 1 mm bounding box.

TMB status.  To reflect the clinical application of TMB in predicting response to immunotherapy, we focused 
on the binary classification of TMB status as TMB-high versus TMB-low1. In this study, a prespecified threshold 
of 323 mutations was used throughout for both model development and model evaluation, utilizing mutation 
counts provided for TCGA cases18,19. This threshold corresponds to the 70th percentile of the TCGA LUAD 
cohort, representing a value consistent with the portion of cases expected to be above the clinically validated 
threshold of 10 mutations/megabase1. The percentile-based strategy was used because mapping of TMB using 
whole exome sequencing to that obtained using a companion diagnostic tumor profiling panel is complicated by 
many factors, including mutation types counted, call filters, and coverage regions5. However, depending on the 
mutation calling and counting strategies, roughly 200 mutations on whole exome sequencing has also been pro-
posed as an approximation of the clinically relevant threshold20. As such, we also performed secondary analysis 
using a threshold of 200 for TMB-high vs. TMB-low.

Model development.  Histologic‑subtype approach—lung histology model (LungCNN‑Histo).  In the first 
stage of the end-to-end deep learning system, we developed a model to classify lung histologic patterns. Spe-
cifically, we segmented WSIs into small non-overlapping patches of 8 × 8 μm at 10 × magnification and trained 
a CNN to classify each patch into the 9 annotated classes, including 6 tumor subtypes and 2 microenviron-
ment features. We used the Inception V3 architecture21 for the CNN model, training on regions of 512 × 512 μm 
(512 × 512 pixels) to provide additional context for classifying the central 8 × 8 μm patch.

This model is trained on annotations corresponding to 4.6 million patches across 68 TCGA slides from Histo-
Train. We used softmax cross-entropy as the loss function and identified the optimal model hyperparameters 
using cross-validation (Supplemental Table S2). A magnification of 10× (approximately 1 μm/pixel) was selected 
based on consistent performance across all classes. Regularization (via dropout, weight decay and color perturba-
tions) was found to be beneficial. The final model was obtained by ensembling 10 independently trained replicas 
trained on the entire set of annotations, and calibrated on the remaining 8 slides in Histo-Train by reweighting 
the class scores. The model outputs class scores over the 9 classes, the highest of which is interpreted as the model 
predicted class. At inference, this produces a heatmap of LungCNN-Histo predictions for the entire WSI, which 
is used to validate the model, visualize its outputs, and as input for the downstream second stage TMB model.

Histologic‑subtype approach—tumor mutation burden model (LungCNN‑TMB).  The second stage of the end-
to-end system is LungCNN-TMB, which was trained using the TMB-Train set (295 slides across 242 TCGA 
cases). The TMB model aggregates the morphological features captured from the first stage over the WSI and 
combines them with clinical features to estimate the TMB status for each case using logistic regression. Specifi-
cally, it first quantitates the fraction of the nine classes aggregated over the WSI as predicted by LungCNN-Histo. 
Next, we normalized the quantitation of the 6 tumor subtypes to represent subtype pattern composition as a 
fraction of the total predicted tumor content. From the clinical data, we input smoking status, pathologic stage, 
age, and sex as provided by TCGA. These 13 features—9 image features and 4 clinical features—are normalized 
and input to a logistic regression model that predicts the TMB status. The image features and age (in years) are 
treated as continuous variables, pathologic stage (I–IV) as ordinal, and smoking status and sex as categorical. We 
used softmax cross-entropy as the loss function and identified the set of features and optimal hyperparameters 
for the model using cross-validation (Supplemental Table  S3). For comparison, we additionally fit a logistic 
regression model using only the 4 clinical features.

Weakly  supervised approach—stage 1 model (WS‑S1).  We also developed a weakly supervised model using 
the case-level TMB status as training labels. This model predicts the TMB status directly from the WSI, using a 
training pipeline described previously22. The model consists of multiple convolutional neural networks (CNNs) 
that share weights and an average pooling layer, averaging the outputs from each CNN before feeding into a 
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fully-connected layer. The choice of an average pooling layer in this design enables flexibility in utilizing a vary-
ing number of input patches to make a prediction. At training, we sample a fixed number of patches from the 
tissue area for the slide uniformly randomly and run them through the model to produce a “TMB prediction 
score” for the slide. This model was trained using the WS-Train set (317 slides across 261 TCGA cases; Table 1) 
using a patch size of 512 × 512 at 10 × magnification. Preliminary experiments evaluated a range of resolutions 
up to 40× (0.25 μm/pixel), but as these results were inferior to 10 × and the complete dataset was not available 
with 40 × scans, the final hyperparameter search did not include 40×. Hyperparameter details are available in 
Supplemental Table S4. We used the MobileNet23 architecture for the CNN, which is lightweight and adapts well 
to the limited data available for training this weakly supervised model. We employed significant regularization 
and early stopping to avoid overfitting.

Weakly  supervised approach—tumor mutation burden model (WS‑TMB).  In the second stage of the weakly 
supervised approach (WS-TMB), the TMB prediction score is combined with the four clinical features (smoking 
status, pathologic stage, age, and sex) in a logistic regression model that predicts the TMB status. This parallels 
the development of LungCNN-TMB, and uses the same train and test sets to enable comparison and integration 
across approaches (Fig. 1). Using this framework, we additionally developed a hybrid approach that combines 
the TMB prediction score, the 9 histology features (from LungCNN-Histo) and the four clinical features in a 
logistic regression model.

Model evaluation.  Histologic‑subtype approach—lung histology model (LungCNN‑Histo).  The trained 
model was evaluated on the held out set of 40 TCGA slides (TCGA-Histo-Test) and an external validation set of 
50 slides (DS2). Each slide of the test set was annotated independently by three pathologists (see “Annotations” 
section above for details). To ensure high-quality reference standard data for model evaluation across canonical 
examples of the selected features, we formed a consensus patch set (3.1 million patches of size 512 × 512 μm) 
containing only those patches with agreement across the three pathologists. Patch-level model performance 
was assessed for each histology feature by measuring the area under the receiver operating characteristic curve 
(AUC) on this consensus patch set. We additionally evaluated error modes of the model via a confusion matrix 
of the classifications over this set.

Complementing this, we performed a concordance analysis to better understand the inter-pathologist agree-
ment for interpretation of the nine histologic patterns, using Fleiss’ kappa. In contrast to the consensus patch set, 
this analysis considered all patches annotated by any three pathologists. To further evaluate inter-pathologist 
agreement, we also performed exploratory concordance subanalyses focused on two groups of features—the 
tumor group containing the six pathologic tumor subtypes, and the non-tumor group containing the three 
additional features. We computed kappa for both the tumor and non-tumor groups by performing analysis 
over the patches that received only tumor labels or non-tumor labels, respectively. Lastly, percent of patches 
with consensus for each feature was also calculated. All patches with annotations from three pathologists were 
included for this analysis and percent consensus was calculated as the number of patches with a consensus label 
divided by the total number patches receiving at least one label for the same feature.

Histologic‑subtype approach—LungCNN‑TMB.  LungCNN-TMB is evaluated on TMB-Test (n = 177 slides from 
held out TCGA cases not previously used for model development). Planned subanalysis was also performed on 
cases from the unseen sites within TMB-Test (n = 84 slides). The primary analysis was calculating AUC for pre-
diction of TMB-high versus TMB-low cases with additional analysis to compare performance to that of using 
the clinical features alone.

Weakly  supervised approach—WS‑TMB.  WS-TMB is evaluated on TMB-Test, which aids comparison with 
LungCNN-TMB. The primary analysis involves assessing the AUC for predicting the TMB status and compar-
ing this with the AUC for LungCNN-TMB. Variants of this approach using different sets of features, such as the 
hybrid approach, all employ the same test set for consistency.

Statistical analysis.  We use the Scikit-learn Python library for all analysis in this work24. We used fivefold 
cross-validation to determine the optimal hyperparameters for the tumor histology model (LungCNN-Histo). 
For the final trained model, the one-vs-rest AUC for all classes were computed at the patch level. The AUC con-
fidence intervals were estimated using (non-parametric) bootstrapping by drawing 1000 samples, obtained by 
resampling the slides in the dataset with replacement. The slide-level resampling ensures independent sampling 
of clusters, while preserving the correlation among patches within each slide.

We evaluated the inter-pathologist concordance over the nine histologic patterns in LungCNN-Histo using 
Fleiss’ kappa. Concordance was assessed using Fleiss’ kappa as it allows for different subsets of (3) pathologists to 
label each patch in a non fully-crossed design. The confidence intervals for kappa were estimated via bootstrap-
ping by drawing 1000 samples as before.

For predicting the TMB status using any combination of the input features—image features from the tumor 
histology model, prediction scores from the weakly supervised model, and clinical features—we identified and 
trained (multivariate) logistic regression models using the same method for each set of features. We first identified 
the optimal set of features and hyperparameters via tenfold cross validation. Next, the chosen logistic regres-
sion model was trained, its coefficients in this multivariate setting were obtained, and the AUC on the test set 
was computed. Finally, statistical inference was performed. All p-values are one-sided, unless noted otherwise. 
Whenever bootstrapping was employed, we used 1000 independent samples obtained by resampling the cases. 
The p-value of the AUC was determined using a permutation test and confidence intervals were estimated via 
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bootstrapping. The (two-sided) p-values for the model coefficients were estimated using (parametric) bootstrap-
ping. The confidence intervals for the model coefficients were estimated by refitting the model each time on the 
bootstrapped samples. We employed a paired permutation test to test for the improvement in AUC offered by 
the model combining LungCNN-Histo and clinical features over the model using clinical features only.

Results
Histologic subtype and feature classification.  The histologic pattern model (LungCNN-Histo) was 
evaluated across the 9 classes for which it was trained (acinar, lepidic, solid, papillary, micropapillary, cribriform, 
necrosis, leukocyte aggregates, and “other”). As described in the “Methods” section, LungCNN-Histo was evalu-
ated using held out cases from TCGA (TCGA-Histo-Test) as well as an external validation set (DS2). The area 
under the receiver operating characteristic curve (AUC) for each class across both data sources is summarized 
in Table 2. For TCGA, the average AUC across features was 0.93 (range: 0.85 to 0.99). For the external validation 
set, DS2, the average AUC across features was 0.92 (range: 0.67 to 0.99). Among tumor subtypes specifically, 
for both TCGA and DS2 slides, highest performance was observed for micropapillary and solid subtypes and 
the lowest performance for papillary subtypes. We note, however, that the number of pappillary patches in the 
consensus DS2 set was relatively small (Supplemental Table S1), resulting in wide confidence intervals for this 
class. For TCGA the AUC for leukocyte aggregates was 0.96 (95% CI 0.95–0.98) and for necrosis was 0.98 (95% 
CI 0.97–0.99). For DS2 the AUC for leukocyte aggregates was 0.99 (95% CI 0.98–0.99) and for necrosis was 0.98 
(95% CI 0.98–0.99). Example visualizations of the LungCNN-Histo predictions across WSIs as well as annotated 
regions of interest are shown in Figs. 2 and  3, respectively. Generally highest performance was observed for non-
tumor patterns with error modes that included misclassification of acinar regions as papillary, misclassification 
of cribriform as solid, and misclassification of papillary as lepidic or micropapillary (Supplemental Figure S2).  

The inter-pathologist concordance for the annotated patches was assessed using Fleiss’ kappa. The patch-level 
kappa for the nine-way classification of the histologic patterns was 0.64 (95% CI 0.60–0.68). For the task of clas-
sifying patches as tumor or not, the kappa was 0.96 (95% CI 0.95–0.97). The kappa for the six histologic subtypes 
was 0.37 (95% CI 0.30–0.42), underscoring the variability among pathologists for labeling these tumor subtypes. 
The kappa for the 3 non-tumor categories was 0.88 (95% CI 0.83–0.92). Consistent with these results, the overall 
percent consensus was lower for the tumor patches than for the other features (Supplemental Figure S3).

Tumor mutation burden prediction.  Performance of the LungCNN-TMB model, which combines clini-
cal data and histologic pattern predictions, is summarized in Fig. 4A. On TMB-Test (the set of all held out TCGA 
cases), LungCNN-TMB achieved an AUC of 0.71 [95% CI 0.63–0.79] for TMB-high vs. TMB-low classification. 
Compared to use of clinical features alone (AUC of 0.63 [95% CI 0.53–0.72]), incorporation of the histologic fea-
tures from LungCNN-Histo provided significant improvement (p = 0.002). On the cases from the unseen TCGA 
sites, LungCNN-TMB achieved an AUC of 0.77 [95% CI 0.64–0.88] for TMB classification. The clinical features 
alone demonstrated an AUC of 0.66 [95% CI 0.51–0.79]. At an operating point chosen with equal weight on sen-
sitivity and specificity, the LungCNN-TMB performance corresponds to a sensitivity of 78.3% and a specificity of 
77.6% for the cases from unseen sites and a sensitivity of 71.2% and specificity of 71.7% for the complete test set.

We also trained a weakly supervised model to directly predict TMB from WSIs. We evaluated the aggregated 
output of this model (WS-S1) as a stand-alone feature as well as combined with the clinical features (WS-
TMB). The corresponding AUCs for the different approaches are summarized in Fig. 4B. The WS-TMB model 
(weakly supervised TMB prediction score combined with clinical features) demonstrated an AUC of 0.72 [95% 
CI 0.64–0.80]. We also developed a “hybrid model” approach to combine outputs of the weakly supervised 
TMB model with those of the strongly supervised LungCNN-Histo model as well as the 4 clinical features. 
This approach achieved an AUC of 0.75 (95% CI 0.66–0.83). Overall, these results demonstrate a trend towards 
increased performance with the combination of clinical factors, histologic pattern quantitation, and features 
extracted via weakly supervised learning, suggesting independent predictive value for all of these features.

The overall performance of all models was also evaluated for the alternative TMB threshold of 200 mutations, 
near the median value for the TCGA LUAD cohort. The same performance trends were observed across the 

Table 2.   LungCNN-Histo performance. The area under the receiver operating characteristic curve (AUC) for 
the 9 patterns predicted by LungCNN-Histo at the patch-level.

Histologic feature

AUC (95% CI)

Combined TCGA LUAD DS2

Acinar 0.87 (0.84, 0.90) 0.88 (0.83, 0.92) 0.88 (0.83, 0.92)

Lepidic 0.95 (0.95, 0.99) 0.97 (0.96, 0.99) 0.94 (0.92, 0.96)

Solid 0.96 (0.95, 0.97) 0.97 (0.95, 0.98) 0.95 (0.92, 0.97)

Papillary 0.78 (0.64, 0.85) 0.85 (0.72, 0.91) 0.67 (0.53, 0.96)

Micropapillary 0.97 (0.95, 0.99) 0.99 (0.98, 0.99) 0.96 (0.91, 0.98)

Cribriform 0.93 (0.89, 0.97) 0.92 (0.86, 0.97) 0.94 (0.87, 0.99)

Necrosis 0.98 (0.97, 0.99) 0.98 (0.97, 0.99) 0.99 (0.98, 0.99)

Leukocyte aggregates 0.98 (0.97, 0.99) 0.96 (0.95, 0.98) 0.99 (0.98, 0.99)

Other 0.90 (0.89, 0.92) 0.89 (0.86, 0.91) 0.92 (0.90, 0.94)
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different models at this threshold, although overall performance was generally lower, potentially representing 
the more challenging task of discriminating between cases with intermediate TMB (Supplemental Figure S4).

To better understand the features of LungCNN-TMB contributing to the TMB prediction, we evaluated 
the coefficients of the second stage logistic regression model and corresponding odds ratio (see “Methods” for 
details). In this analysis the absolute value of coefficients represents the level of association with TMB-high 
classification. Amongst the features of the histologic-subtype approach (LungCNN-TMB), solid and papillary 
subtypes were found to be most informative for TMB prediction, with solid subtype as the most independently 
informative (coefficient = 1.13; Table 3). The AUCs for independent features, including stage 1 of the weakly 
supervised approach (WS-S1), were also calculated and are summarized in supplemental Figure S5A, with the 
highest independent predictive value associated with the weakly supervised model output and the solid subtype 
feature. Also, while multiple histologic features were associated with predicted TMB status, in the presence of 
solid subtype the quantity of other subtypes was less informative, due largely to the correlation of subtypes with 
one another. The correlation of histologic subtypes is summarized in supplemental Figure S5B, showing both 
strong positive and negative correlation for several feature pairs. When considering clinical features alone, smok-
ing status, pathologic stage, and age were all found to be independently informative for predicting TMB status. 
In the LungCNN-TMB model (which combines histologic features and clinical features), of the clinical features, 
smoking status had the strongest association with TMB (Coefficient 0.90, p = 0.002; Table 3).

Finally, as dataset size may have implications for modeling approach selection, we performed a data titration 
experiment to provide insights regarding the impact of the dataset size on the weakly supervised approach in 
particular, summarized in supplemental Figure S6. We observed an expected decrease in performance when 
less training data was utilized. However, there appeared to be decreasing marginal performance gains at our 
final training dataset size, suggesting the performance may not increase substantially for the weakly supervised 
approach, even with more data.

Figure 2.   Visualization of LungCNN-Histo predictions for whole slide images. Shown are representative whole 
slide images with examples of each of the feature classes. WSI whole slide image, H&E hematoxylin and eosin.
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Figure 3.   Visualization of LungCNN-Histo predictions for annotated regions. Shown are representative 
regions of interest (1 mm × 1 mm) for regions with predominance of each of the feature classes (see legend). 
Black regions represent areas of tissue where there was lack of consensus for the three pathologist annotations. 
Middle columns for each panel represent consensus pathologist annotations and the right panel depicts the 
model classification across patches (with the non-consensus patches masked in black to match for easier visual 
reference to the pathologist annotations.) H&E hematoxylin and eosin, ROIs regions of interest.

Figure 4.   Model performance for classification of TMB. (A) Receiver operator characteristic curves (ROCs) 
and corresponding AUCs for LungCNN-TMB in predicting TMB status across all sites of the test set (blue) and 
the subset of cases from unseen sites (orange). (B) AUCs are plotted for TMB classification across all models 
developed. Clinical data plus LungCNN-Histo represents LungCNN-TMB. Error bars are 95% confidence 
intervals.



9

Vol.:(0123456789)

Scientific Reports |        (2021) 11:16605  | https://doi.org/10.1038/s41598-021-95747-4

www.nature.com/scientificreports/

Discussion
Estimating TMB in lung cancer has important implications for immunotherapy treatment options. Current 
strategies for evaluating TMB require comprehensive genomic profiling which can be costly and slow, with turn 
around times often on the order of weeks, potentially delaying treatment decisions. In this study, we explored 
the ability to rapidly estimate TMB status in lung adenocarcinoma using H&E histopathology images combined 
with clinico-demographic data. The resulting end to end system provides both histologic subtype classification 
and interpretable TMB status estimation with an AUC of 0.77 on a set of slides from held out sites, significantly 
better than using the baseline clinical features alone (AUC of 0.66 for the same cases) and on par with TMB 
prediction models recently reported for other cancer types from TCGA​9,25.

Advances and contributions of this work include the following. First, this work involves the development and 
rigorous evaluation of a patch-level model for clinically relevant histologic features in lung adenocarcinoma. 
Second, our results demonstrate that interpretable prediction of molecular biomarkers based on established 
histologic patterns is feasible and comparable to more difficult to explain deep learning approaches. Additionally, 
we provide extensive comparison of modeling approaches for this task, including development and evaluation of 
a weakly supervised model, the integration of clinical features, and hybrid models combining weakly supervised 
feature extraction with information from established histologic subtype predictions. Given the important role of 
model explainability in both establishing user trust and facilitating regulatory processes26, understanding per-
formance tradeoffs of different approaches has meaningful implications for potential use of AI-based biomarker 
predictions in clinical practice.

Initial efforts have shown early promise for molecular prediction from H&E images using weakly supervised 
deep learning approaches (see review from Echle et al.7). The present study provides a direct comparison of a 
weakly supervised approach with a novel, histologic subtype-based approach for TMB classification. Our results 
demonstrate that for datasets of this size (which represents a common range of data availability for data of this 
type), the two stage approach may provide a superior option overall, providing advantages of direct interpret-
ability and biological insights with little tradeoff in terms of performance. Specific possible use cases for the 
interpretable end-to-end system described here include use as a surrogate for TMB if genomic profiling is not 
available, to prioritize initial treatment selection while awaiting molecular results, or to triage cases for molecular 
profiling if tissue or testing resources are limited.

Additionally, because it utilizes clinically relevant histologic features, with further clinical evaluation 
LungCNN-Histo itself has the potential to be a useful tool for classification of lung adenocarcinoma subtype 
in a manner that is more quantitative and standardized than current approaches. Additionally, it provides an 
opportunity for extension to additional “second stage” prediction targets in future work such as other molecular 
biomarkers, patient prognosis, or treatment response. We performed patch level validation of LungCNN-Histo 
in order to rigorously evaluate performance across canonical examples of selected features and demonstrate suf-
ficient accuracy for downstream use in the second stage TMB prediction model. However, patch level subtype 
labeling itself is not a clinical task and proved challenging, with high inter-pathologist variability. Further work 
to define ground truth definitions of tumor subtypes at the patch level may both facilitate model improvements 
and enable applications such as automated or assisted tumor subtyping, case triage, quality assurance, or research 
into clinical and biological significance of spatial relationships across tumor features. Weakly supervised learning 
on the other hand has the advantages of not requiring expert feature annotations, and thus may be better suited 
for application to large datasets with readily available case-level labels, especially for use cases when interpret-
ability may be less critical. Looking forward, utilizing interpretable approaches to investigate or validate regions 
of interest identified by weakly supervised models, or potentially using models trained on interpretable features 
as pre-training to initialize weakly supervised models remain interesting areas to explore. Weakly supervised 
approaches that operate on both the raw image pixels as well as the output from models trained on known features 
also represent a potential future direction. Lastly, especially for use cases in which there is human interaction with 
model predictions in histopathology, identifying and communicating potential causal or biological associations 
between machine learned features and model predictions may become increasingly useful27. In this case, such 
efforts may involve techniques to map molecular findings to specific regions highlighted by the models in order 
to demonstrate underlying biology associated with learned features and predictions.

Table 3.   Coefficients and odds ratios for individual features of the LungCNN-TMB model. Two-sided 
P-values were estimated using bootstrapping. A logistic regression model combines features from the 9 image 
features of LungCNN-Histo and 4 clinical features (age in years, sex, pathologic stage, smoking status) to 
predict TMB status. The image features (quantified as proportion of total tumor area) and age (in years) are 
treated as continuous variables, pathologic stage (I–IV) as ordinal, and smoking status (binary) and sex (M,F) 
as categorical. Features in this table represent those providing best model via cross-validation (see “Methods”).  
OR odds ratio

Feature Estimate (95% CI) p-value OR

Model coefficients

Solid 1.13 (0.49, 1.73) 0.001* 3.10

Smoking status 0.90 (0.41, 1.36) 0.002* 2.46

Age −0.86 (−1.44, −0.29) 0.062 0.42

Pathologic stage −0.51 (−1.12, 0.09) 0.157 0.60

Intercept −1.56 (−1.90, −1.22) 0.000* –
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We also observed that hybrid models utilizing weakly supervised learning combined with models trained on 
known histologic patterns may provide superior performance. Notably, this indicates that the weakly supervised 
model is learning at least some features independent from the known histologic patterns. Further, the improved 
performance of the AI-based approaches relative to the clinical features alone demonstrate that both deep learn-
ing approaches have learned histologic features independent of clinical variables themselves. Taken together, this 
work provides a novel proof of concept for the field to further explore optimal use cases for such hybrid models, 
whereby weakly and strongly supervised deep learning approaches may complement one another.

To develop a system with the most practical relevance for current pathology workflows and interpretability, we 
focused our study on images of slides from formalin fixed paraffin embedded (FFPE) tissue. This has the benefit 
of providing TMB and histologic subtype predictions that can be readily evaluated by pathologists and applied 
to routine histopathology slides. While there does not appear to be a generalizable performance advantage for 
FFPE versus frozen section images for deep learning based molecular predictions28, many other efforts have 
focused on frozen sections for TMB prediction7. Future work comparing and contrasting the performance and 
relevant features for TMB prediction using FFPE versus frozen specimens may enable these different approaches 
to inform and complement one another.

Limitations of this study include the following. While we evaluated LungCNN-Histo on an external valida-
tion set (DS2) and our TMB test set included unseen TCGA tissue source sites, further validation on additional 
datasets remains warranted. In particular, while TCGA data can provide useful evaluation of generalization 
across the different sites, the specimens themselves may not always be representative of the specific grossing 
protocols or specimen types used for molecular testing in clinical practice (eg, biopsies versus resection speci-
mens). Evaluation on histological images from diverse clinical cohorts and including biopsy specimens remains 
a useful next step for validation of the LungCNN-TMB model described here. Molecular tumor heterogeneity 
represents another potential limitation, as there may theoretically be differences in the molecular profile of the 
specific tissue used for molecular testing relative to the specific portion of the tumor represented in the FFPE 
WSI. However, WSI-based molecular predictions may themselves be a tool that facilitates evaluation of tumor 
heterogeneity, by providing feature maps of histologic subtypes as well as highlighting features associated with 
specific molecular findings in one portion of tumor versus another. Although not available for this study, the 
use of immunotherapy response data to evaluate TMB classification accuracy would provide informative clinical 
validation. Lastly, in this study we predominantly explored the use of LungCNN-Histo output to predict TMB 
status based on the quantity of the histologic patterns. Future work to incorporate information from the complex 
patterns and spatial relationship within individual tumors remains an intriguing direction.

In this work we developed interpretable and novel approaches for TMB prediction in lung cancer, show-
ing that such approaches are feasible and comparable in performance to weakly supervised models. We also 
developed and rigorously evaluated a model for histologic subtypes and features, capable of providing a feature 
map across WSIs. We hope this can provide a foundation for future work to build upon, including prediction of 
additional biomarkers and exploration of spatial relationships of histologic features within individual tumors. 
Lastly, we developed and compared hybrid approaches to evaluate the value of combining information across 
clinical data, weakly supervised feature learning, and comprehensive histologic pattern quantitation. While use 
of molecular prediction models in clinical practice will require further performance improvements and appro-
priate clinical validation, this work offers valuable demonstration of the potential for deep learning to provide 
efficient biomarker classification along with biological insights regarding histologic and molecular associations.
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