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Abstract: The broadband perfect absorption of visible light is of great significance for solar cells and
photodetectors. The realization of a two-dimensional broadband perfect absorber in the visible range
poses a formidable challenge with regard to improving the integration of optical systems. In this
paper, we numerically demonstrate a broadband perfect absorber in the visible range from 400 nm
to 700 nm based on metasurface composite structures. Simulation results show that the average
absorptance is ~95.7% due to the combination of the intrinsic absorption of the lossy metallic material
(Au) and the coupling resonances of the multi-sized resonators. The proposed perfect absorber may
find potential applications in photovoltaics and photodetection.

Keywords: broadband perfect absorber; metasurface composite structure; material intrinsic absorption;
coupling resonance

1. Introduction

A broadband perfect absorber in the visible range has great potential for solar energy
harvesting [1–3] and photoelectric detection [4,5]. Naturally occurring materials, such
as organic dyes and inorganic pigments, usually exhibit insufficient absorption in the
visible range for many modern photonic applications [6]. Metamaterials are made up of
artificially subwavelength nanostructures, providing numerous unconventional optical
properties [7]. Their electromagnetic properties can be easily adjusted by the size and
geometry of the nanostructures. Based on the impedance match between the designed
metamaterial and the free space, the first metamaterial perfect absorber was demonstrated
in 2008 in the microwave band [8]. Since then, the perfect absorber has been extended to
the terahertz [9–11], mid-infrared [12], infrared [13–15], and visible range [16–18].

The bandwidth of an absorber is important for many scientific and technical appli-
cations. The narrowband absorbers are quite important for sensing applications, such
as temperature or refractive index sensing, absorption filtering, and optical signal pro-
cessing [19–21]. On the other hand, broadband absorbers facilitate seminal applications
encompassing photovoltaic cells and optoelectronic detectors. The reported scheme for an
broadband absorber based on metamaterials mainly relies on multiple vertically layered
metamaterials [22–24]. However, due to the laminated structures, the reported absorbers
are bulky and complex for use in fabrication. The realization of an ultrathin broadband
perfect absorber is of great significance for integration applications. Metasurfaces com-
prise subwavelength constituent elements within an optically thin layer that can alter
the amplitude, phase, and polarization of an incident electromagnetic wave [25,26]. The
development of metasurfaces provides a unique opportunity for the planarization and
miniaturization of the broadband perfect absorber [27,28]. Two-dimensional broadband
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perfect absorbers with a horizontal arrangement of several resonators in different sizes were
obtained [29,30]. However, the absorption spectrum usually consists of several discrete
peaks and the average absorption achieved is not high enough. Additionally, the use of a
perfect absorber with a continuous broad bandwidth in the visible range is more favorable
for many practical applications.

In this paper, a broadband perfect absorber based on metasurface composite structures
in the visible range is demonstrated. The simulation results illustrate that the perfect
absorber yields a ~95.7% average absorptance in the visible range (400–700 nm). The
perfect absorption mechanism lies in the combination of the intrinsic absorption of the
gold material (400 nm–550 nm) and the coupling resonances of multi-sized resonators
(550 nm–700 nm) according to the simulation. Given the broad absorption bandwidth,
high absorptance, and ultrathin structure, the designed metasurface absorbers may find
potential applications in solar cells [31,32] and photodetection [33,34].

2. Simulation and Discussion

As plotted in Figure 1a, the unit cell of a metasurface is a metal–insulator–metal
(MIM) sandwich structure. This consists of a circular-shaped gold nanoparticle and a gold
substrate separated by a silicon dioxide (SiO2) spacer. The thicknesses of nanoparticles, SiO2
layer, and gold substrate are t1 = 30 nm, t2 = 50 nm, and t3 = 100 nm, respectively. The lateral
dimension is Λ = 240 nm. The metasurface composite structures consist of two differently
sized nanoparticles with diameters of d1 = 146 nm and d2 = 126 nm. Figure 1b plots the
top view of the metasurface composite structures with periods of Px = 2Λ = 480 nm and
Py = Λ = 240 nm. The absorption characteristics of the metasurface composite structures are
simulated using the COMSOL Multiphysics V5.4 (2018, Stockholm, Sweden) with periodic
boundary conditions. The refractive index of the SiO2 is 1.45 and the permittivity of gold as
a function of the incident wavelength is taken from the experimental results [35]. The perfect
absorption is obtained based on the parameter optimization of the diameters of the gold
nanoparticles. The simulated absorption spectra of the metasurface composite structures
(with both nanoparticles, black solid curve) and the absorption spectra of each constituent
nanoparticle (red solid curve for d2 = 126 nm and blue solid curve for d1 = 146 nm) are
plotted in Figure 1c under x polarization. For the metasurface composite structures with
both nanoparticles, the absorptance is ~99.64% and the bandwidth ∆λFWHM (full width at
half maximum) is 67 nm at the resonant wavelength of λres = 800 nm. For the metasurface
structures with a single nanoparticle of d2 = 126 nm, the absorptance is ~67.16% and
∆λFWHM = 98 nm at λres = 760 nm. For the metasurface structures with a single nanoparticle
of d1 = 146 nm, the absorptance is ~57.18% and ∆λFWHM = 131 nm at λres = 820 nm.

The absorptance A(λ) is obtained from A(λ) = 1 − T(λ)− R(λ). T(λ) is transmit-
tance, while R(λ) is reflectance. The transmittance T(λ) is zero since the thickness of the
gold substrate is t3 = 100 nm, which is greater than the skin depth of the gold film. As a
result, A(λ) = 1− R(λ). The reflectance can be minimized until zero under the condition of
impedance matching, resulting in the perfect absorption of A(λ) ∼ 100 %. The impedance
Z of the metasurface composite structures can be calculated according to the following
equation [36]:

Z =

√
1 + S11

2 − S2
21

1 − S11
2 − S2

21
(1)

Here, S11 is the complex reflection coefficient while S21 denotes the complex trans-
mission coefficient. Due to the optical thickness of the gold substrate, S21 is zero. The
simulated real and imaginary parts of the impedance are presented in Figure 1d. The real
part is 1 and the imaginary part is 0 at the resonant wavelength of 800 nm; both of these are
perfectly matched to the vacuum values and result in a perfect absorption effect.

To illuminate the absorption mechanism, the norm of the electric field (|E|, color plot)
and the local electric field distribution at each position (white arrows) in the x–y plane
through the nanoparticles 15 nm above the SiO2 layer and the x–z plane are plotted in
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Figure 1e,f under x polarization at the resonant wavelength of 800 nm. |E| shows that
strong coupling exists between the two nanoparticles, and the absorption spectrum of the
metasurface composite structures with both nanoparticles can be viewed as a coupling
superposition of the absorption spectrum of each constituent nanoparticle. The white
arrows indicate that the electric dipole resonance is excited in the nanoparticles when
an x-polarized incident beam normally reaches the metasurface composite structures.
Meanwhile, the norms of the magnetic field (|H|, color plot) and the electric current (white
arrows) of the metasurface composite structures in the x–z plane are shown in Figure 1g.
The antiparallel electric currents are induced in both the gold nanoparticles and substrate,
and a strong magnetic dipole resonance is generated in the thin SiO2 layer [37]. As a result,
impedance matching and the perfect absorption effect can be obtained at the resonance
wavelength [38].
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particles (black solid curve) and with a single nanoparticle (red solid curve for d2 = 126 nm and blue 

Figure 1. (a) The considered metal–insulator–metal unit cell. (b) The metasurface composite struc-
tures. (c) The simulated absorption spectra of the metasurface composite structures with both
nanoparticles (black solid curve) and with a single nanoparticle (red solid curve for d2 = 126 nm
and blue solid curve for d1 = 146 nm) under x polarization. (d) The impedance spectra (real and
imaginary parts). The electric field distributions in (e) the x–y plane and (f) the x–z plane. (g) The
magnetic field (color plot) and electric current (white arrows) distributions.

Figure 2a plots the simulated absorption spectra of the metasurface composite struc-
tures under x and y polarizations with the resonant wavelengths of 800 nm and 754 nm,
respectively. For y-polarized incidence, the absorption spectra of the metasurface com-
posite structures with both nanoparticles (black solid curve) and with each constituent
nanoparticle (red solid curve for d2 = 126 nm and blue solid curve for d1 = 146 nm) are
simulated in Figure 2b. For the metasurface composite structures with both nanoparticles,
the absorptance is ~99.95% and ∆λFWHM = 64 nm at λres = 754 nm. The absorptance is
~59.08% and ∆λFWHM = 153 nm at λres = 731 nm for the metasurface structures with a single
nanoparticle of d2 = 126 nm. As for the metasurface structures with a single nanoparticle
of d1 = 146 nm, the absorptance is ~50.23% and ∆λFWHM = 170 nm at λres = 806 nm. The
impedance is simulated in Figure 2c. The real and imaginary parts are perfectly matched
to the vacuum values at λres = 754 nm. Figure 2d plots the norm of the electric field (|E|,
color plot) and local electric field distribution (white arrows) in the x–y plane through the
nanoparticles 15 nm above the SiO2 layer at λres = 754 nm. The electric dipole resonance can
be easily observed in the nanoparticles. It is found that there is no strong coupling between
the two nanoparticles, and the absorption spectrum of the metasurface composite struc-
tures with both nanoparticles can be viewed as a simple superposition of the absorption
spectrum of each constituent nanoparticle.
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Figure 2. (a) The simulated absorption spectra of the metasurface composite structures under x and y
polarizations. (b) The simulated absorption spectra of the metasurface composite structures with
both nanoparticles (black solid curve) and with a single nanoparticle (red solid curve for d2 = 126 nm
and blue solid curve for d1 = 146 nm) under y polarization. (c) The impedance spectra (real part and
imaginary parts). (d) The electric field distributions.

The comparison between Figures 1c and 2a shows that the perfect absorption char-
acteristics are polarization-dependent because of the asymmetry of the geometry along
the x- and y-axes. To improve the polarization dependence, the metasurface composite
structures are designed with four diagonal symmetric gold nanoparticles above the SiO2
layer, as shown in Figure 3a. The geometrical parameters are d1 = 146 nm, d2 = 126 nm, and
Px = Py = 2Λ = 480 nm, respectively. The thicknesses of the nanoparticles (t1), SiO2 layer
(t2), and gold substrate (t3) are the same as those in Figure 1a. The simulated polarization-
insensitive absorption spectra are presented in Figure 3b under x (black dashed curve)
and y (red dotted curve) polarization. The absorptance is ~95.88% and the ∆λFWHM is
55 nm at λres = 745 nm. The norms of the electric field (|E|, color plot) and local elec-
tric field distributions (white arrows) of the metasurface composite structures in the x–y
plane are plotted in Figure 3c,d under x polarization and y polarization at λres = 745 nm.
The electric dipole resonances can be separately observed along the x-axis and y-axis. It
can be seen that, due to the symmetry of the composite structure, the absorption spectra
under x- and y-polarization are identical, indicating the polarization insensitivity of the
composite structure.
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To achieve the perfect absorption in a broader wavelength range, five differently
sized nanoparticles were designed in the metasurface composite structures, as plotted
in Figure 4a. The diameters of the gold nanoparticles were optimized as d0 = 55 nm,
d1 = 60 nm, d2 = 80 nm, d3 =90 nm, and d4 = 100 nm, respectively. The thicknesses of the
nanoparticles, SiO2 layer, and gold substrate were t1 = 30 nm, t2 = 20 nm, and t3 = 100 nm,
respectively. The subwavelength lateral dimension was reduced to Λ =160 nm to minimize
the influence of the diffraction effects. As a result, the period was Px = Py = 2Λ = 320 nm.
The absorption spectra were simulated (as presented in Figure 4b) under x-polarized
incident light (black solid curve). It can be observed that the absorptance was beyond 90%
in the wavelength ranges of 400–650 nm and 685–700 nm. For the broad visible wavelength
range of 400–700 nm, the average absorptance was ~95.7%. Additionally, to illustrate the
perfect absorption mechanism, the absorption spectra of the metasurface comprising each
constituent gold nanoparticle were simulated (as plotted in Figure 4b) with diameters
of 55, 60, 80, 90, and 100 nm. This was achieved by setting only one nanoparticle as a
Au nanoparticle and all other nanoparticles as air in each simulation; this procedure was
repeated for all constituent nanoparticles. The spectra exhibited pronounced resonance
peaks at wavelengths of 580, 590, 630, 657, and 685 nm with absorptance values of 76.6%,
45.0%, 87.9%, 99.2%, and 97.3%, respectively. The resonant wavelengths were redshifted
with the increase in the diameters of the nanoparticles. The power loss accumulated
at the resonant wavelengths, where the energy of the incident light was converted into
heat, resulting in a high level of absorption. As the designed five adjacent resonance
peaks were so close, they could couple with each other and merge into a broad absorption
band (550–700 nm). Meanwhile, the absorption in the shorter wavelength (400–550 nm)
originated from the intrinsic absorption of the gold material, with an absorptance close
to unity. The finite-element simulations shown in Figure 4c further verify the broadband
perfect absorption mechanism in the range of 550–700 nm. The norm of the electric field
(|E|, color plot) was plotted in the x–y plane through the nanoparticles 15 nm above the
SiO2 layer under x-polarized incident lights. The coupled electric dipole resonances were
observed at the different resonance peaks of 594 nm, 637 nm, and 693 nm according to the
absorption spectra of the metasurface composite structures with multiple nanoparticles
(black solid curve in Figure 4a). It can be observed that the broadband absorption in the
range of 550–700 nm originated from the superposition of the coupling resonances of the
multi-sized nanoparticles.
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Figure 4. (a) The metasurface composite structures with five differently sized nanoparticles. (b) The
simulated absorption spectra of the metasurface comprising each constituent gold nanoparticle and
the metasurface composite structures with multiple nanoparticles under x-polarized incident light.
(c) The electric field distributions (|E|) at λres = 594 nm, 637 nm, and 693 nm.
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Subsequently, the influence of geometrical parameters on the proposed perfect ab-
sorber was investigated. Figure 5a plots the absorption spectra with respect to the thickness
of the SiO2 layer t2. The average absorptance was 82.8%, 95.7%, 88.2%, 80.2%, and 73.2%
when t2 = 10 nm, 20 nm, 30 nm, 40 nm, and 50 nm, respectively. On the other hand, the
absorption spectra are presented in Figure 5b as functions of the period P. The average
absorptance was 91.5%, 95.7%, 94.7%, and 91.3% when P = 300 nm, 340 nm, 380 nm, and
420 nm, respectively. It can be seen that the optimized perfect absorption was obtained
when t2 = 20 nm and P = 340 nm, which is in accordance with the geometrical parameters
shown in Figure 4. In addition, the absorption dependence at oblique incidence is illus-
trated in Figure 5c. Compared with the normal incidence (θ = 0◦), the average absorptance
decreased to 94.9%, 90.3%, and 75.6% when θ = 15◦, 30◦, and 45◦, respectively. It can be
observed that the broadband perfect absorption performance could be maintained when
the incident angle increased up to 30◦.
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Figure 5. The simulated absorption spectra of the metasurface composite structures as functions of
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The anticipated fabrication of the proposed perfect absorber was based on the stan-
dard electron beam lithography steps [39]. Firstly, gold film with a thickness of 100 nm
was deposited on a silicon substrate using electron beam evaporation. Secondly, a sili-
con dioxide film with an optimized thickness was formed by chemical vapor deposition.
Finally, an array of multi-sized gold nanoparticles was fabricated using electron beam
lithography, metal deposition, and a lift-off process. Based on high-resolution electron
beam lithography (EBL) with a negative-tone hydrogen silsesquioxane (HSQ) resist and the
lift-off process [40,41], gold nanoparticles with different-sized diameters could be reliably
fabricated to satisfy the designed structural parameters (e.g., d0 = 55 nm, d1 = 60 nm,
d2 = 80 nm, d3 =90 nm, and d4 = 100 nm). Additionally, the absorption mechanism (the
material intrinsic absorption and the coupling resonances of the multi-sized resonators)
allows for a relaxed tolerance of the nanoparticle diameters in practical fabrication on the
condition that the diameters are evenly distributed within a certain range (from 55 nm
to 100 nm). Slight deviations from the original diameter may lead to a shift in a single
absorption peak, but the broadband absorption effect will remain.

3. Conclusions

In conclusion, in this research a broadband perfect absorber was proposed and nu-
merically studied in the visible range based on metasurface composite structures. The
simulated average absorptance was ~95.7% under x polarization in the wavelength range
of 400–700 nm. The intrinsic absorption of gold material contributed to the absorption in
the range of 400 to 550 nm, and the superposition of multiple resonances of composite
nanoparticles contributed to the absorption in the range of 550 to 700 nm. A systematic
strategy for the structure of broadband perfect absorbers was thus established. Based on the
geometry scalability, the perfect absorber may operate at other wavelength ranges. Given
their broad spectral absorption range and high absorptance, the designed metasurface
absorbers may find potential applications in enhancing photovoltaics and photodetection.
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