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Abstract

Tumors are heterogeneous in the sense that they consist of multiple subpopulations of cells,

referred to as subclones, each of which is characterized by a distinct profile of genomic vari-

ations such as somatic mutations. Inferring the underlying clonal landscape has become an

important topic in that it can help in understanding cancer development and progression,

and thereby help in improving treatment. We describe a novel state-space model, based on

the feature allocation framework and an efficient sequential Monte Carlo (SMC) algorithm,

using the somatic mutation data obtained from tumor samples to estimate the number of

subclones, as well as their characterization. Our approach, by design, is capable of handling

any number of mutations. Via extensive simulations, our method exhibits high accuracy, in

most cases, and compares favorably with existing methods. Moreover, we demonstrated

the validity of our method through analyzing real tumor samples from patients from multiple

cancer types (breast, prostate, and lung). Our results reveal driver mutation events specific

to cancer types, and indicate clonal expansion by manual phylogenetic analysis. MATLAB

code and datasets are available to download at: https://github.com/moyanre/tumor_clones.

Introduction

In most cases, tumors develop from a single population of cells. Accumulated somatic muta-

tions confer selective advantages to the cells in this population over others [1], and then this

population of cells continues to proliferate. As more somatic mutations are acquired, some

tumor cells gain further survival advantages, which leads to an expansion from a single popula-

tion to multiple subpopulations. As a result, tumors are heterogeneous in nature [2, 3] and

contain multiple subpopulations of cancerous cells, each with a unique mutational profile [4–

6], referred to as tumor subclones [2, 7, 8]. The importance of analyzing the tumor subclonal

structure and evolutionary progress has been recognized, considering the potential of elucidat-

ing the underlying mechanisms of cancer progression, metastatic spread and therapy response

[9–11].

Characterizing tumor heterogeneity with subclonal structure, using next-generation

sequencing (NGS) data is a well-studied problem [12], and various computational methods

have been proposed for estimating the subclonal structure in the tumor samples [13–17].
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Some methods approach this estimation problem by first grouping the mutations into clusters,

and then performing phylogenetic analysis to obtain the mutational profiles of the various dis-

tinct subclones in the samples [14–17]. A more direct approach bypasses the clustering stage

by modeling, in straightforward manner, the NGS data with a feature allocation model [13,

18–20]. Basically, with this setup, the problem is reduced into a form of matrix factorization

[21], where the observed variant allele frequency (VAF) is deconvolved into matrices of geno-

types of subclones and the proportion of genotypes in the samples [13, 18, 20]. However, meth-

ods in this category are faced with several issues, such as the assumption that the number of

subclones have to be fixed before analysis [13, 19], and the fact that only a few mutations can

be analyzed [19].

Here, we propose an algorithm for estimating the number, genotypes and the proportion of

subclones, employing a more general model that better explains the inherent heterogeneity in

tumor samples by allowing more categories for the genotypes, so as to capture the three possi-

ble genotypes in a diploid individual. Specifically, 0 for homozygous wild-type, 0.5 for hetero-

zygous mutant and 1 for homozygous mutant. Our approach, which is based on the state-

space formulation of the feature allocation model, employs the SMC [22–24] algorithm for

estimating the model parameters. The proposed SMC algorithm takes advantage of the cate-

gorical Indian buffet process (cIBP) [20], a sequential procedure that describes the prior distri-

bution of the general (Q + 1)-ary categorical matrix, in modeling the genotypes of subclones.

Because the proposed algorithm processes the observed VAF data sequentially, it offers the

flexibility of being able to handle any number of mutations without encountering computa-

tional issues. More specifically, SMC, a powerful recursive filtering algorithm [21, 25, 26],

computes, in a flexible manner, the posterior probability density function (PDF) of the hidden

state every time a measurement is observed, approximating the posterior distributions of the

variables of interest with a set of properly weighted samples, which we will refer to as particles

to distinguish between random samples from a distribution and tumor samples.

Over the simulated datasets, we compare our algorithm with BayClone [20], a Markov

chain Monte Carlo (MCMC) based algorithm, often employed when estimating model param-

eters in tumor heterogeneity [19], and Clomial [13], an expectation maximization (EM) based

algorithm. Similar to the our modeling method, BayClone considers the three possible geno-

types in a diploid individual. Although the modeling approach in Clomial only considers

homozygous wild-type and heterozygous mutant (a common modeling consideration in the

analysis of tumor heterogeneity [19]), it employs EM, a different inference algorithm, to esti-

mate the model parameters. Invariably, our simulations compare the performance of three dif-

ferent algorithms: SMC, MCMC and EM. In terms of the accuracy of the estimates of model

parameters, the proposed SMC method compares favorably with other methods.

The remainder of this paper is organized as follows. In Section 2, we describe the system

model and problem formulation. In Section 3, we validate the proposed algorithm with simu-

lated data, as well as real data obtained from solid tumors across three major cancer types:

prostate adenocarcinoma (PRAD), breast invasive ductal carcinoma (IDC) and lung adenocar-

cinoma (LUAD). Finally, Section 4 concludes the paper.

Notation-wise in this paper, we denote a vector and a matrix by boldface lower and upper

case letters, respectively; p(�) and p(�|�) denote a probability density function (PDF) and a con-

ditional PDF, respectively; P(�) and P(�|�) denote a probability and conditional probability

mass function, respectively; N ðm; s2Þ denotes a Gaussian distribution with mean μ and stan-

dard deviation σ; Binomial(n, p) denotes a binomial distribution having n number of trials and

p probability of success; Poisson(λ) denotes a Poisson distribution with mean parameter λ;

Gamma(a0, b0) denotes a gamma distribution with shape parameter a0 and rate parameter b0;
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Beta(a1, b1) denotes a beta distribution with shape parameters a1 and b1 and Dirichlet(α)

denotes a Dirichlet distribution with a vector of concentration parameters α.

System model and problem formulation

System model

In our model, we assume that a tumor is heterogeneous i.e., it consists of multiple sub-popula-

tions, referred to as subclones. Each subclone is assumed to have a unique genotype and at

each characterizing mutation locus, we assume that one of the following is the case: (i) none of

the alleles is mutated (homozygous wild-type), designated with genotype 0, (ii) one of the

alleles is mutated, designated with genotype 0.5, and (iii) both alleles are mutated, designated

with genotype 1. Our goal is to estimate the number of subclones, genotypes of all the sub-

clones, and the proportion of each subclone in the tumor samples. To do this, we assume an

availability of DNA sequencing data designed to probe tumor heterogeneity. This dataset

comes in form of two matrices Y and V of equal dimension T × S. T and S denote the numbers

of loci and tumor samples, respectively, and the elements of the two input matrices, yts and vts,
t = 1, . . ., T, s = 1, . . ., S, denote the number of reads that bear a variant sequence and the total

number of reads, respectively. We model the matrix of variant counts as follows:

yts �
ind:Binomialðvts; ptsÞ; t ¼ 1; . . . ;T; s ¼ 1; . . . ; S; ð1Þ

where pts is the success probability of obtaining yts reads from the total reads vts at locus t in

sample s, t = 1, . . ., T, s = 1, . . ., S. pts is interpreted as the weighted sum of the genotypes of all

the subclones present in sample s as follows:

pts ¼ w0spþ
XC

c¼1

ztcwcs; ð2Þ

where C denotes the unknown number of distinct subclones in the tumor samples, ztc 2 {0,

0.5, 1} denotes the possible three states for the allelic genotypes at locus t in subclone c and wcs

denotes the proportion of subclone c in tumor sample s. In addition, the first term in (2)

accounts for experimental and data processing noise, where p denotes the relative frequency of

variant reads produced as error from upstream data processing and usually takes a small value,

close to zero; w0s absorbs the noise left unaccounted for by {w1s, . . ., wCs} [20].

In (2), for all the genomic loci, we arrange the genotypes of all subclones in a T × C ternary

matrix Z and we refer to this as the matrix of genotypes. Similarly, we arrange all the p’s in a T-

dimensional column vector p, and arrange the respective proportions w0s and wcs, for all sam-

ples, in a C0 × S matrix W and refer to this as the matrix of proportions, where each column of

the proportion matrix sums to unity, and C0 = C + 1. Then (2) can be expressed as a matrix fac-

torization problem, such that:

Pts ¼ Z0 �W; ð3Þ

where pts, an element of Pts, denotes the expected VAF at locus t in sample s and Z0 = [p Z].

Given the input read count data, we next describe the proposed SMC algorithm to perform a

joint inference on the number of distinct subclones in the tumor samples, the genotype of each

subclone and the proportion of each genotype in the tumor samples.

Algorithm 1 Sample P(zt|Zt−1, α, β) using the categorical Indian buffet process (cIBP)
1: Z  Zt−1
2: β� = 2β
3: if t = 1 then
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4: Sample Cnew
t � PoissonðaÞ

5: for c ¼ 1; . . . ;Cnew
t do

6: ztc  
0:5; with probability

b

b
�

� �

1; with probability
b

b
�

� �

8
>>><

>>>:

7: end for
8: else
9: C+  Number of non-zero columns in Z
10: for c = 1, . . ., C+ do
11: mc1  

Pt� 1

r¼1
Iðzrc ¼ 0:5Þ

12: mc2  
Pt� 1

r¼1
Iðzrc ¼ 1Þ

13: mc  mc1 + mc2

14: ztc  

0; with probability 1 �
mc

t

h i

0:5; with probability
mc

t

� �
�

bþmc1

b
�
þmc

� �� �

1; with probability
mc

t

� �
�

bþmc2

b
�
þmc

� �� �

8
>>>>>>><

>>>>>>>:

15: end for

16: Sample Cnew
t � Poisson

a

t

� �

17: for d ¼ ðCþ þ 1Þ; . . . ; ðCþ þ Cnew
t Þ do

18: ztd  
0:5; with probability

b

b
�

� �

1; with probability
b

b
�

� �

8
>>><

>>>:

19: end for
20: end if

State-space formulation

In this section, we succinctly describe our state-space formulation of the deconvolution prob-

lem we set up in (3) with the details described in S1 File. At time step t, we consider the tth row

of the input read count matrices, as the observation at that particular time. Subsequently,

because we are interested in constructing the ternary genotype matrix Z (with an unknown

number of columns) sequentially, one row after the other, using the cIBP (details in the S1

File), we consider the tth row of the genotype matrix as the hidden state at time t, and then, the

proportion of the subclones in the tumor samples, matrix W and p are considered as the

parameters of our state-space model. Thus, the state transition equation is stated as follows:

PðztjZt� 1; a; bÞ; ð4Þ

where Zt−1 denotes the previous t − 1 rows in the genotype matrix Z, α and β are constants, to

be supplied by the user. The reasonable range for both constants are discussed in S1 File and

the algorithm to sample from (4) is presented in Algorithm 1 as follows.

The genotype matrix at time step t, Zt is implicitly constructed from the genotype matrix in

the previous time step t − 1, Zt−1. In the construction process, if new non-zero column(s) is/

are introduced in Zt, then the subclone proportion matrix W would be augmented with an

equivalent number of rows. Thus, W requires some re-parameterization to account for such

change in dimension. Specifically, we rewrite wcs ¼ ycs=
PC

c0¼0
yc0s. This implies that instead of

estimating wcs directly, we estimate θcs, and then obtain wcs from the estimates of θcs. Such re-

parameterization ensures that each column of W sums to unity at every time step.

Subclone inference in cancer
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Moreover, since we are interested in the final estimates of the model parameters W and

p, we create artificial dynamics for these parameters using the random walk model as fol-

lows:

�t � pð�tj�t� 1Þ ¼ N ð�t� 1; s
2Þ;

�t 2 fp; ycs; c ¼ 0; 1; . . . ;C; s ¼ 1; . . . ; Sg;
ð5Þ

where σ denotes the standard deviation. Hence, (4) and (5) fully describe the system state

transition. Similarly, the observation at time t is given by:

yt � PðytjZ1:t;W; pÞ ¼ Pðytjzt;W; pÞ

¼
YS

s¼1

Binomialðytsjvts; ptsÞ;
ð6Þ

where yt denotes the observation at time t (which is conditionally independent of the

previous observations Yt−1 given the state zt), i.e., the tth row of Y. (6) describes the

measurement model for the system. Finally, (4)–(6) completely describe our proposed state-

space model for estimating the number, genotypes and proportions of subclones in tumor

samples.

Algorithm 2 SMC algorithm for inferring subclonal structure
Input: Y, V.
1: Initialize N particles fzi

0
; pi

0
;Wi

0
g
N
i¼1

2: for t = 1, . . ., T do
3: for i = 1, . . ., N do
4: Sample zit from Zi

t� 1
using Algorithm 1.

5: n1  number of columns in Zi
t� 1

6: n2  length of zit
7: d  (n2 − n1)
8: if d = 0 then
9:

Zi
t  

Zi
t� 1

zit

" #

10: Sample Wi
t using (5)

11: else
12:

Zi
t  

Zi
t� 1

0

zit

" #

13: Sample Wi
t using (5).

14: Sample new rows of Wi
t from the prior in (9).

15: end if
16: Calculate ~wi

t using (8)
17: end for
18: Normalize the weights
19: Perform resampling
20: end for

Subclone inference in cancer
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21: Final particles of the genotype matrix (fZTg
N
i¼1
) and proportion

matrix (fWTg
N
i¼1
) consist of varying number of columns and rows,

respectively. Estimate of the number of subclones is obtained from
the number of columns of the genotype particles (equivalently the
number of rows of the proportion particles). Details of how the
posterior estimates of all the unknown variables are obtained from
the final particles and weights, using the procedures highlighted
in [20, 27], are discussed in S1 File.

The SMC algorithm

We summarize the SMC filtering framework employed to make inference about the number

of subclones, genotype of each subclone and the proportion of each subclone in the tumor

samples, which are the states and the parameters of our proposed state-space model. Details of

our proposed algorithm are presented in S1 File.

Consider the general dynamic system with hidden state variable xt, in our case consisting of

categorical variables zt and continuous variables φt,
�t 2 fpt0; y

t
cs; c ¼ 0; 1; . . . ;C; s ¼ 1; . . . ; Sg, and measurement variable yt, where there is an

initial state model p(x0), and 8t� 1, a state transition model given in (4) and (5) and an obser-

vation model given in (6). The sequence Xt = {x1, x2, . . ., xt} is not observed and we want to

estimate it for each time step, given that we have the observations Yt = {y1, y2, . . ., yt}. Our goal

is to approximate the posterior distribution of states p(Xt|Yt) using samples drawn from it.

Getting such samples from p(Xt|Yt) is not feasible, at least in our model. However, we can still

implement an estimate using N samples (particles), fXi
tg

N
i¼1

, taken from another distribution, q
(Xt|Yt), whose support includes the support of p(Xt|Yt) (importance sampling theorem), and

each particle is accompanied by a weight wi such that
PN

i¼1
wi ¼ 1 (see S1 File for detail).

Thus, the pair fXi
t;w

i
1:tg

N
i¼1

is said to be properly weighted with respect to the distribution p(Xt|

Yt), and the approximation p̂ðXtjYtÞ is then given by:

p̂ðXtjYtÞ ¼
XN

i¼1

wi
tdðXt � Xi

tÞ; where dðuÞ ¼
1; if u ¼ 0

0; otherwise:

8
<

:
ð7Þ

Next, the importance sampling theory is generalized to obtain a sequential algorithm as fol-

lows. We assume that, at time step t − 1, we have already drawn the weighted particles

fXi
t� 1
;wi

t� 1
g
N
i¼1

from the importance distribution q(Xt−1|Yt−1) to approximate the target poste-

rior distribution p(Xt−1|Yt−1). At time step t, we can now draw particles fXi
tg

N
i¼1

from the

importance distribution q(Xt|Yt) as follows: (i) draw new state particles for the time step t as

xit � pðxtjX
i
t� 1
Þ from (4) and (5), and (ii) write fXi

tg
N
i¼1
¼ fxit;X

i
t� 1
g
N
i¼1

. Then, the unnorma-

lized weights at time step t are obtained from the normalized weights at time step t − 1 and the

measurement model in (6) as follows:

~wi
t / wi

t� 1
pðytjx

i
tÞ

¼ wi
t� 1

pðytjzit;W
i
tÞ;

ð8Þ

and the unnormalized weights ~wi
t are normalized to sum to unity. However, since the variance

of the weights increases over time, we perform resampling at every time step, owing to the

choice of our importance distribution (see S1 File for detail) [28–31], discarding the ineffective

particles and multiplying the effective ones. The resampling procedure [25] is briefly summa-

rized as follows:

Subclone inference in cancer
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• Interpret each weight wi
t as the probability of obtaining the particle index i.

• Draw N particles from the discrete probability distribution fwi
tg and replace the old particle

set with this new one.

• Set all weights to the constant value wi
t ¼ 1=N.

Finally, the proposed SMC algorithm for estimating the states and the parameters of our

state-space model is presented in Algorithm 2. The algorithm is initialized by taking samples

from the prior distributions of the parameters. We assume the following:

y0s �
i:i:d Gammaða0; 1Þ; s ¼ 1; . . . ; S;

ycs �
i:i:d Gammaða1; 1Þ; s ¼ 1; . . . ; S; c ¼ 1; . . . ;C; and

p � Betaða00; b00Þ;

ð9Þ

such that wcs ¼ ycs=
PC

c0 ¼0
yc0 s and consequently,

PC
c0 ¼0

wc0 s ¼ 1. We report the posterior esti-

mates of all the unknown variables using the procedure highlighted in [27], with the details

discussed in S1 File.

Results

Application to simulated datasets

To validate our method, we generated multiple simulated datasets for different combinations

of the number of subclones C, average sequencing depth r, sample size S and the number of

loci T. Specifically, we considered C 2 {3, 4, 5} subclones, S 2 {3, 4, . . ., 15} tumor samples, we

fixed the average sequencing depth r = 100 and also the number of loci, T = 20. For each com-

bination of the number of subclones, sample size, average sequencing depth and number of

loci, we produced 10 datasets as follows: (i) the total read count at locus t in sample s, i.e., vts is

generated from Poisson(r), (ii) each column of the proportion matrix is independently gener-

ated from Dirichlet([a0, a1, . . ., aC]), a0 = 0.1 and ac; c 2 {1; . . ., C} is randomly chosen from

the set {2, 4, 5, 6, 7, 8}, (iii) each entry of the genotype matrix is independently generated from

Discrete([0.5 0.1 0.4]) and set p = 0.02, (iv) the success probability pts is computed following

(2), and then, (v) yts, the variant count, is generated as an independent sample from Binomial

(vts, pts).
To quantify the performance of the proposed algorithm, we define the following metrics:

genotype reconstruction error (eZ), proportion error (eW) and the error of the success proba-

bilities (epts) as follows:

eZ ¼
1

TC

XT

t¼1

XC

c¼1

jẑ tc � ztcj; eW ¼
1

CS

XC

c¼0

XS

s¼1

jŵcs � wcsj;

epts ¼
1

TS

XT

t¼1

XS

s¼1

jp̂ts � ptsj; where p̂ts ¼ p̂ŵ0s þ
XC

c¼1

ẑ tcŵcs:

However, because this is a blind decomposition, it is not clear a priori which column of the

estimated genotype matrix Ẑ corresponds to which column of the true genotype matrix Z. We

resolve this by calculating eZ with every permutation of the columns of Ẑ and then select the

permutation that results in the smallest value. The selected permutation is then used in com-

puting eW and epts .
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For every combination of the number of subclones, sample size, average sequencing depth

and number of loci, we computed the average and the standard deviation of the genotype

error, proportion error and the error of the success probabilities over the 10 datasets in each

group. The results are presented in Fig 1(a)–1(c) where the standard deviation is the vertical

line above and below the average value in the errorbar plots. These results show that the per-

formance of the proposed algorithm improves with an increase in the number of tumor sam-

ples. Also, when the number of subclones in the samples is minimal, estimation of model

parameters becomes more accurate. For T = 20, r = 100, S = 10 and C 2 {3, 4, 5}, we present, in

Fig 1(d)–1(f), the estimated posterior distributions of C. In the three cases, the maximum a

posteriori (MAP) estimates of C (marked with red vertical lines) are 3, 4 and 5. It should be

noted that in the implementation of the proposed algorithm, the estimates of other model

parameters are conditional on the MAP estimate of C. This is discussed further in S1 File.

Further, we compared our proposed algorithm with BayClone [20], an algorithm with simi-

lar model assumption and also with Clomial [13]. For the comparison with Clomial, the true

genotype matrix only includes two categories i.e. 0 for an absence of mutation and 0.5 for the

presence of mutation and each entry of the matrix is generated from Discrete([0.3 0.7]). In

computing the errors for Clomial, we viewed a 1 in the estimated genotype matrix as 0.5 for

consistency with the true matrix. The results of the simulated data for three subclones, differ-

ent sample size, average sequencing depth of 100 and 50 loci are presented in Figs 2 and 3.

Fig 3 does not include the error of success probability because Clomial only estimates the

genotype and the proportion matrices. The runtime for the proposed algorithm, BayClone and

Clomial for sample size S = 5, number of subclones C = 3, average sequencing depth r = 100

and 50 loci are 782, 1454 and 768 seconds, respectively, on a 3.5 GHz Intel 8 cores running

MATLAB. Lastly, we investigated the performance of the algorithms when the number of loci

is very large since this is often a source of computational issue in some of the existing methods

[19]. The result for 2000 and 5000 genomic loci are presented in Table 1 (the results for 2000

and 5000 loci are with and without brackets, respectively). For the proposed algorithm, we

noticed a slight improvement in the estimate of the proportion when the number of loci is

large. In the case of the two other algorithms, we observed a slight increase in the genotype

and proportion errors with large genomic loci.

Application to solid tumor datasets

Data pre-processing. The somatic mutation data of real solid tumors come from the

American Association for Cancer Research (AACR) Genomics Evidence Neoplasia Informa-

tion Exchange (GENIE) project [1]: Version 2.0.0, which are accessible on the Sage Synapse

platform (with Synapse ID: syn11310744) [32]. We performed three filtering criteria before

creating the final data set to run our algorithm. (i) The data release includes genomic records

collected by eight participating institutions. To control the batch effect, we selected samples

from Memorial Sloan Kettering (MSK) Cancer Center given the fact that they provide

matched tumor-normal (rather than tumor-only) sequence data and their sample size is the

largest. (ii) We selected patients who have at least three samples with somatic mutation data.

(iii) We further filtered out samples so that the remaining data contain information for at least

three patients for each cancer type. As a result, the data set we retained include 36 samples (of

10 patients) with prostate adenocarcinoma (PRAD), 18 samples (of 6 patients) with breast

invasive ductal carcinoma (IDC) and 9 samples (of 3 patients) with lung adenocarcinoma

(LUAD).

To create the input count matrices for the proposed algorithm, we combined count data of

all the samples from the same patient by the union of their mutated gene symbols. Regarding
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Fig 1. Simulation results for the proposed algorithm. (a), (b) and (c): Plots of the genotype error (eZ), proportion error (eW) and error

of success probability (epts ) versus different sample sizes for subclones C 2 {3, 4, 5}. (d), (e) and (f): Posterior distributions of C, for C = 3,

4, and 5.

https://doi.org/10.1371/journal.pone.0211213.g001
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Fig 2. The proposed algorithm and BayClone. (a), (b) and (c): Plots of the genotype error (eZ), proportion error (eW)

and error of success probability (epts ) versus different sample sizes for the proposed algorithm and BayClone.

https://doi.org/10.1371/journal.pone.0211213.g002

Subclone inference in cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0211213 January 25, 2019 10 / 21

https://doi.org/10.1371/journal.pone.0211213.g002
https://doi.org/10.1371/journal.pone.0211213


Fig 3. The proposed algorithm and Clomial. (a) and (b): Plots of the genotype error (eZ) and proportion error (eW)

versus different sample sizes for the proposed algorithm and Clomial.

https://doi.org/10.1371/journal.pone.0211213.g003

Subclone inference in cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0211213 January 25, 2019 11 / 21

https://doi.org/10.1371/journal.pone.0211213.g003
https://doi.org/10.1371/journal.pone.0211213


the entries for which the mutation of the corresponding gene was not detected in some sam-

ples, we imputed the values with the average counts of the matched normal samples. For

instance, we assume that there are three samples (A, B, C) from a specific patient and samples

A and B have mutations at gene G while sample C does not. In the combined total (or alter-

ation) count matrix of this patient, we used the average of total (or alteration) counts for gene

G of the matched normal samples of A and B to be the imputed count of C for gene G in the

combined matrices.

Inferred subclonal structure and phylogenetic trees. We illustrated the use of our algo-

rithm on the three solid cancer types: PRAD, IDC and LUAD. We applied our algorithm on

the data of every patient, resulting in the inferred subclonal landscape, which contains the

information of the genotypes, the proportions of each subclone as well as the possible phyloge-

netic tree. Some of the model parameter estimates are presented and the others, including the

posterior distributions of the number of subclones, are in S1 Tables and S1 Figs.

A phylogenetic tree depicts the evolutionary history of cancer progression. Based on the

inferred subclonal genotypes, drawing insight from the approach in [13], we manually con-

structed a phylogenetic tree for each patient, in which the root is always the normal subclone,

each node represents a subclonal population, and the mutations that occurred between the

parent and the offspring nodes are shown on the edges. Moreover, since our algorithm is able

to identify both heterozygous and homozygous mutations, we annotated those mutations

which were inferred as homozygous. We reasoned that investigating the subclonal results com-

bined with the phylogenetic characteristics has the potential to provide evidence for the valid-

ity of our method.

Driver mutations found on edges connected to the root of the phylogenetic trees. We

observed that genes with well known driver mutations for one cancer type are located on the

edges that are connected to the root of the phylogenetic tree of patients with that cancer. This

is consistent with the fact that are somatic mutations in a gene that confer a selective advantage

on cancer cells, which are believed to be involved in cancer initiation and clonal expansions

[33].

Specifically, in each of the six instances of IDC, we found that either gene PIK3CA or gene

AKT1 is placed on the edge directly connected to the neutral/normal subclone. Two examples

are shown in Fig 4 (IDC_0000525) and Fig 5 (IDC_0000690) and the corresponding estimated

genotype matrices are shown in Tables 2 and 3, respectively. The inferred results for other IDC

patients can be found in S1 Figs and S1 Tables. Somatic mutations occurring in oncogenes

PIK3CA and AKT1 have been widely reported in breast cancer [34–36]. PIK3CA is the most

frequently mutated gene found in breast cancer [37], and it is an integral component of the

phosphatidylinositol 3 kinase (PI3K) signaling pathway. AKT1, one of the three isoforms of

the protein kinase AKT, is also a mediator in the downstream of the PI3K pathway and it plays

a key role in promoting cell survival by inhibiting apoptosis. Its over-activation has been impli-

cated in tumorigenesis [35–38]. The dysregulation of the PI3K/AKT pathway has been demon-

strated in different solid tumors including breast cancer, and it has been suggested that this

Table 1. Comparison of algorithms on large datasets.

Genotype error Proportion error Runtimes (seconds)

Proposed algorithm 0.0040 [0.0050] 0.0121 [0.0116] 2.754e4 [5.707e4]

BayClone 0.1000 [0.0950] 0.0632 [0.0724] 5.032e4 [1.363e5]

Clomial 0.0850 [0.0500] 0.0548 [0.0550] 2.736e4 [5.688e4]

https://doi.org/10.1371/journal.pone.0211213.t001
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dysregulation is associated with the increased mutations in pathway genes PIK3CA and AKT1

[36, 39].

In the case of LUAD, KRAS and EGFR have mutations found prevalent in patients [40–42].

Despite the small number of patients, the constructed phylogenetic trees showed consistent

results. First, among the three LUAD patients, two of them harbor somatically mutant KRAS

and the remaining one has mutation in EGFR, which also reflects the well-known mutual

exclusiveness of these two driver mutations [43]. Fig 6 and Table 4 display the case of patient

LUAD_0000978, from which we can find that KRAS is marked on the edge connected to the

Fig 4. Phylogenetic tree for IDC_0000525. Constructed phylogenetic tree for patient IDC_0000525.

https://doi.org/10.1371/journal.pone.0211213.g004
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Fig 5. Phylogenetic tree for IDC_0000690. Constructed phylogenetic tree for patient IDC_0000690.

https://doi.org/10.1371/journal.pone.0211213.g005

Table 2. Estimated genotype for IDC_0000525.

Gene name C1 C2 C3 C4

TP53 0 0.5 0 0.5

AKT1 0.5 0.5 0.5 0.5

RUNX1 0.5 0 0.5 0

POLE 0 0.5 0 0.5

FANCC 0 0 0 0.5

STK11 0 0 0 0.5

EP300 0 0 0 0.5

RB1 0 0.5 0 0

FOXP1 0.5 0 0.5 0

SHQ1 0 0.5 0 0

https://doi.org/10.1371/journal.pone.0211213.t002

Table 3. Estimated genotype for IDC_0000690.

Gene name C1 C2

TP53 0.5 0

PIK3CA 0 0.5

EPHA3 0.5 0

https://doi.org/10.1371/journal.pone.0211213.t003
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root in the phylogenetic tree, indicating its oncogenic role. A previous study analyzing somatic

mutation data of non-small cell lung cancer by a different method also found that KRAS and

EGFR mutations were present in the founder clone in their results, suggesting that it is likely

that these mutations are initiating events for lung cancer [40].

Fig 6. Phylogenetic tree for LUAD_0000978. Constructed phylogenetic tree for patient LUAD_0000978.

https://doi.org/10.1371/journal.pone.0211213.g006
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Genotype assignments validated by the tree structures. One of the advantages of the

proposed algorithm is that for each gene, it can consider three different categories of genotype:

wild-type, heterozygous and homozygous. This feature was validated by analyzing the hierar-

chical structure of the inferred phylogenetic trees. Given that one of our assumptions is that a

mutation never disappears in the entire phylogeny, if a mutant gene were assigned different

genotypes in different subclones, the subclone(s) with homozygous mutations should be

descendant(s) of the subclone(s) with heterozygous mutations. This implies that the paternal

and the maternal alleles (or vice versa) of this gene became mutated consecutively, along the

clonal evolution. Such situations apply to three cases of PRAD patients: PRAD_0000655,

PRAD_0003101, PRAD_0003511 (Fig 7), constructed from the inferred genotype matrices in

S1 Tables. For example, in patient with ID “PRAD_0003101”, the inferred decomposition

results in S1 Tables showed that there are two subclones (referred to as subclone 1 and sub-

clone 2, respectively) in addition to the normal one. Both subclone 1 and subclone 2 harbor

mutations in gene PTEN; however, the respective genotypes are different: “0.5” (i.e. heterozy-

gous) for subclone 1 while “1” (homozygous) for subclone 2. The constructed phylogenetic

tree revealed concordant result (Fig 7(b)) that subclone 2 is the offspring node of subclone 1,

suggesting that an additional mutation event occurred in PTEN during this clonal expansion

which resulted in the change in genotype.

Inferred subclonal proportions along the phylogeny indicate tumor progression. Fur-

thermore, the inferred subclonal proportions along with the tree structures provide more

evidence to validate our algorithm. For the same patient that we discussed above i.e.,

“PRAD_0003101”, there are three metastatic samples available among which one was obtained

when the patient was 68 years old (referred to as M1) and the other two were obtained when

he was 69 years old (referred to as M2 and M3). We found that the proportions of subclone 2

in M2 (96%) and M3 (86%) samples are much higher than the one for M1 sample (29%), and

cases for subclone 1 to the contrary S1 Tables. Meanwhile, we also observed similar results for

another patient with ID “PRAD_0001204”, who has two primary tumor samples and one met-

astatic sample (S1 Tables and S1 Figs). In this case, subclone 1 descends from subclone 2, and

the highest proportion of subclone 1 can be found in the metastatic sample, which was also

obtained when the patient was older. These findings imply that as the patient aged or the can-

cer metastasized, the mutations specific to the descendant subclone gained cells survival

advantage, promoting cell proliferation, and hence resulted in the increasing proportion of the

subclone in samples.

Discussion

The inherent heterogeneity in tumor samples often results in setbacks when cancer patients

undergo treatment. The samples consist of different subpopulations of cancerous cells, each

Table 4. Estimated genotype for LUAD_0000978.

Gene name C1 C2 C3 C4

SMAD4 1 0 0 0

PTPRT 0.5 0 0 0

RAD54L 1 0 0 0

APC 0.5 0.5 0 0

GRIN2A 0.5 0.5 0 0

PAK7 0.5 0 0 0

MET 0.5 0.5 0.5 0

KRAS 0 0 0 0.5

https://doi.org/10.1371/journal.pone.0211213.t004
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Fig 7. Phylogenetic trees for patients with PRAD. Constructed phylogenetic tree for patients: (a) PRAD_0000655,

(b) PRAD_0003101 and (c) PRAD_0003511.

https://doi.org/10.1371/journal.pone.0211213.g007
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characterized by a distinct mutational profile. Inference of these profiles and the proportion of

each subpopulation in the samples can improve personalized medicine e.g. preventing cancer

relapse and helping in cancer prognosis. We proposed an efficient sequential algorithm for

estimating the mutational profile of each cancer cell subpopulation and their respective pro-

portions in the tumor samples. With simulated datasets, we performed experiments to validate

our algorithm. We applied our algorithm to real tumor samples, covering three solid cancer

types, PRAD, IDC, and LUAD.

By analyzing the inferred genotype landscape results, we found evidence supporting the

validity of our method in several ways. For example, many well-known driver mutations spe-

cific to cancer types were found in the edges directly connected to the root in the inferred phy-

logenetic tree. The position of these somatic mutations indicates their roles in cancer initiation

and expansion. For example, somatic mutations in genes PIK3CA and AKT1 were identified

as driver events for breast cancer, suggesting malfunction of PI3K/AKT pathway in cancer

[39]. Such characteristics were consistently observed across different patients included in this

study.

We also evaluated our algorithm by investigating the phylogenetic tree structures, which

could imply the cancer progression history in patients. The algorithm is able to distinguish

the genotype of a mutation among wild-type, heterozygous and homozygous. Consistent

with one of our assumptions that a somatic mutation will not disappear, our results revealed

that if a mutant gene were assigned different genotypes in different subclones, the subclone

(s) with homozygous mutations was always the descendant(s) of the subclone(s) with

heterozygous mutations, indicating the order of mutation events on different alleles during

the clonal expansion. Moreover, we observed increasing proportions of leaf subclones

in more advanced samples than less advanced ones, such as metastatic samples versus pri-

mary samples, from the identical patients, suggesting the proliferation of cells in these sub-

clones due to the survival advantages by acquiring more mutations during the cancer

progression [1].

Lastly, the proposed algorithm can handle any number of mutations in an accurate and

computationally efficient manner.
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