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Abstract

Systems memory consolidation involves the transfer of memories across brain regions and

the transformation of memory content. For example, declarative memories that transiently

depend on the hippocampal formation are transformed into long-term memory traces in neo-

cortical networks, and procedural memories are transformed within cortico-striatal networks.

These consolidation processes are thought to rely on replay and repetition of recently

acquired memories, but the cellular and network mechanisms that mediate the changes of

memories are poorly understood. Here, we suggest that systems memory consolidation

could arise from Hebbian plasticity in networks with parallel synaptic pathways—two ubiqui-

tous features of neural circuits in the brain. We explore this hypothesis in the context of hip-

pocampus-dependent memories. Using computational models and mathematical analyses,

we illustrate how memories are transferred across circuits and discuss why their representa-

tions could change. The analyses suggest that Hebbian plasticity mediates consolidation by

transferring a linear approximation of a previously acquired memory into a parallel pathway.

Our modelling results are further in quantitative agreement with lesion studies in rodents.

Moreover, a hierarchical iteration of the mechanism yields power-law forgetting—as

observed in psychophysical studies in humans. The predicted circuit mechanism thus brid-

ges spatial scales from single cells to cortical areas and time scales from milliseconds to

years.

Author summary

After new memories are acquired, they can be transferred over time into other brain

areas—a process called systems memory consolidation. For example, new declarative
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memories, which refer to the conscious memory of facts and events, depend on the hippo-

campus. Older declarative memories, however, also rely on neocortical networks. The cel-

lular mechanisms underlying such a transfer are poorly understood. In this work, we

show that a simple and in the brain ubiquitous connectivity pattern, combined with a

standard learning rule, leads to gradual memory transfer. We illustrate our proposed

mechanism in numerical simulations and mathematical analyses. At the neurophysiologi-

cal level, our theory explains experimental findings on memory storage in the hippocam-

pal formation when specific pathways between neural populations are disrupted. At the

psychophysical level, we can account for the power-law forgetting curves typically found

in humans. A consequence of the proposed model is that consolidated memories can

yield faster responses because they are stored in increasingly shorter synaptic pathways

between sensory and motor areas. By giving a mechanistic explanation of the consolida-

tion process, we contribute to the understanding of the transfer of memories and the reor-

ganization of memories over time.

Introduction

Clinical and lesion studies suggest that declarative memories initially depend on the hippo-

campus, but are later transferred to other brain areas [1–3]. Some forms of memory eventually

become independent of the hippocampus and depend only on a stable representation in the

neocortex [1–3]. Similarly, procedural memories are consolidated within cortico-striatal net-

works [1, 4, 5]. This process of memory transformation—termed systems memory consolida-

tion—is thought to prevent newly acquired memories from overwriting old ones, thereby

extending memory retention times (“plasticity-stability dilemma”; [6–10]), and to enable a

simultaneous acquisition of episodic memories and semantic knowledge of the world [11, 12].

While specific neuronal activity patterns, including for example an accelerated replay of recent

experiences [13, 14], are involved in the transfer of memories from hippocampus to neocortex

[15], the mechanisms underlying systems memory consolidation are not well understood. Spe-

cifically, it is unclear how this consolidation-related transfer is shaped by the anatomical struc-

ture and the plasticity of the underlying neural circuits. This poses a substantial obstacle for

understanding into which regions memories are consolidated; why some memories are con-

solidated more rapidly than others [16–18]; why some memories stay hippocampus depen-

dent, and why and how the character of memories changes over time [1]; and whether the

consolidation of declarative and non-declarative memories [1, 4, 5] are two sides of the same

coin. These questions are hard to approach within phenomenological theories of systems con-

solidation such as the standard consolidation theory [11, 19], the multiple trace theory [16],

and the trace transformation theory [20, 21]. Here, we propose a novel mechanistic foundation

of the consolidation process that accounts for several experimental observations and that

could contribute to understanding the transfer of memories and the reorganisation of memo-

ries over time on a neuronal level.

Our focus lies on simple forms of memory that can be phrased as cue-response associations.

We assume that such associations are stored in synaptic pathways between an input area—

neurally representing the cue—and an output area—neurally representing the response. Thus,

our work relates to feedforward, hetero-associative memory (and is therefore applicable to

both declarative and non-declarative memories) rather than recurrent, auto-associative mem-

ory (see, e.g., [22–24]). Our central hypothesis—the parallel pathway theory (PPT)—is that sys-

tems memory consolidation arises naturally from the interplay of two abundantly found
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neuronal features: parallel synaptic pathways and Hebbian plasticity [25, 26]. First, we illus-

trate this theory in a simple hippocampal circuit motif and show that Hebbian plasticity can

consolidate previously stored associations into parallel pathways. Next, we outline the PPT in a

mathematical framework for the simplest possible (linear) case. Then we show in simulations

that the proposed mechanism is robust to various neuronal nonlinearities; further, the mecha-

nism reproduces the results of a hippocampal lesion study in rodents [27]; iterated in a cas-

cade, it can achieve a full consolidation into neocortex and result in power-law forgetting of

memories as is observed in psychophysical studies in humans [28].

Results

A mechanistic basis for systems memory consolidation

The suggested parallel pathway theory (PPT) relies on a parallel structure of feedforward con-

nections onto the same output area: a direct, monosynaptic and an indirect, multisynaptic

pathway. We propose that memories are initially stored in the indirect pathway and are subse-

quently transferred to the direct pathway via Hebbian plasticity. Because the indirect pathway

is multisynaptic, it transmits signals with a longer time delay than the direct pathway (Fig 1A).

A timing-dependent plasticity rule allows the indirect pathway to act as a teacher for the direct

pathway.

The proposed mechanism can be exemplified in the hippocampal formation, by consider-

ing direct and indirect pathways to area CA1. CA1 receives a direct, monosynaptic pathway

from the entorhinal cortex (EC), which is called perforant path (PPCA1, Fig 1B, red; [29]). In

addition, EC input is relayed to CA1 via the classical trisynaptic pathway via dentate gyrus

(DG) and CA3, reaching CA1 through the Schaffer collaterals (SC; Fig 1B, blue; [29]).

As in earlier theories, we assume that the indirect pathway via CA3 is involved in the origi-

nal storage of memories [30, 31], an assumption that is supported by experiments, e.g. [32–

34]. We neglect, for simplicity, any encoding-related change in the direct pathway, even

though in animals this pathway might also show some, putative much lower, plasticity during

memory acquisition. This simplification does not affect our proposed mechanism on the con-

solidation-related transfer of memories.

We assume encoding in such a way that a memory can be recalled by a specific neural activ-

ity pattern in EC—a cue—that triggers spikes in a subset of CA1 cells through this indirect

pathway via the SC, representing the associated response. The same cue reaches CA1 also

through the direct pathway via the PPCA1. We assume that this direct input from EC initially

fails to trigger spikes because the synaptic weight pattern in the PPCA1 does not match the cue.

However, PPCA1 inputs that are activated by the cue precede the spikes in CA1 pyramidal cells

that are triggered by the indirect pathway by 5–15 ms [35] due to transmission delays. Presyn-

aptic spikes preceding postsynaptic spikes with a short delay favor selective long-term potenti-

ation by spike timing-dependent plasticity (STDP, Fig 1C) [36–38]. Consequently, cue-driven

PPCA1 synapses onto activated CA1 cells are strengthened until the memory that was initially

stored in the indirect pathway can be recalled via the direct pathway alone. The indirect path-

way thus acts as a teacher for the direct pathway.

To illustrate this mechanism, we used a simple integrate-and-fire neuron model (for details,

see Methods) of a CA1 cell that receives inputs through the SC and the PPCA1. We also consid-

ered the two pathways to contain the same number of synapses and transmit identical spike

patterns apart from a 5-ms delay in the SC (Fig 1D). Consolidation then corresponds to copy-

ing the synaptic weight pattern of the SC to the PPCA1. In line with our hypothesis, such a con-

solidation was indeed achieved by STDP in the PPCA1 synapses (Fig 1E). A consolidation in

the opposite direction, i.e., from the PPCA1to the SC cannot be achieved by STDP because the
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temporal order of spiking activity is reversed and hence does not favour synaptic potentiation

(Fig 1F). Note that in this simple example, the EC-to-DG/CA3 synapses don’t store any mem-

ory, but only introduce the transmission delay. In the following, we will show that all synapses

of the indirect pathway can be involved in the original storage of memories.

To understand the conditions under which the suggested PPT can achieve a consolidation

of associative memories, we performed a mathematical analysis, which shows that consolida-

tion is robust to differences in the neural representation in the two pathways and illustrates its

dependence on the temporal input statistics in the two pathways. Readers who are less inter-

ested in the mathematical details are welcome to jump to section “Consolidation of spatial

representations”, where we show in simulations that the mechanism is robust to neuronal

complexities; in subsequent sections, we also show that the mechanism accounts for lesion

studies in rodents, and that it can be hierarchically iterated.

Theory of spike timing-dependent plasticity (STDP) for parallel input pathways. In

the following mathematical analysis, we consider a single cell that receives inputs through two

pathways, as in Fig 1A. The cell could be located, for example, in CA1, as in Fig 1B. We assume

Fig 1. A mechanistic basis for systems memory consolidation. (A) Circuit motif for the parallel pathway theory. Cue-response associations are

initially stored in an indirect synaptic pathway (blue) and consolidated into a parallel direct pathway (red). (B) Hippocampal connectivity. The

entorhinal cortex projects to CA1 through an indirect pathway via DG-CA3 and the Schaffer collaterals (SC, blue arrow), and through the direct

perforant path (PPCA1, red arrow). (C) Model of consolidation through STDP. Left: before consolidation, a strong SC input (middle, blue vertical bar)

causes a large EPSP and triggers a spike in CA1 (bottom, black vertical bar). A weak PPCA1 input (top, red) that precedes the SC input is potentiated by

STDP. Right: after consolidation through STDP, the PPCA1 input (top) can trigger a spike in CA1 by itself (bottom). (D-E) Consolidation in a single

integrate-and-fire CA1 cell receiving 1000 PPCA1 and 1000 SC excitatory inputs. (D) PPCA1 activity consists of independent poisson spike trains; the SC

activity is an exact copy of the PPCA1 activity, delayed by 5 ms. (E) Consolidation of a synaptic weight pattern from non-plastic SC synapses to plastic

PPCA1 synapses. Left and middle: normalized synaptic weights before and after consolidation. Right: time course of correlation between SC and PPCA1

weight vectors during consolidation (mean ± SEM for 10 trials). (F) Failure of consolidation of a synaptic weight pattern from non-plastic PPCA1 to

plastic SC synapses; panels as in E.

https://doi.org/10.1371/journal.pcbi.1009681.g001
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that memories, i.e., cue-response associations, are stored in the synaptic weight vector V of the

indirect path, and that consolidation occurs by transferring this information into the weights

W of the direct path. In the simulation in Fig 1, the weight vector V represents the SC pathway,

and the vector W the PPCA1 pathway. For simplicity, we consider the case of a single rate-

based neuron, which represents one of the output neurons in the simulated network. Very

similar theoretical results can be obtained for the spiking case of linear Poisson neurons, apart

from additional contributions from spike-spike correlations, which can be neglected for a

large number of synapses [39].

The output y of the rate-based neuron is assumed to be given by a linear function of the

input

yðtÞ ¼WTxðtÞ þ VTx0ðt � DÞ ð1Þ

where the vectors x and x0 denote the input arising from the direct and indirect pathways,

respectively, and T denotes the transpose of a vector (or matrix). We assume that the inputs x

and x0 are both representations of the cue and therefore are related by some kind of (potentially

nonlinear) statistical dependency. Moreover, we assume that x0 arises from an indirect path-

way and is therefore delayed by a time interval D> 0. The notation is chosen such that the

case where the two inputs to the two pathways are the same (apart from the delay) reduces to

the condition x(t) = x0(t), which is the case, e.g., in Fig 1D.

We now consider the learning dynamics of a simple additive (STDP) rule that would result

from a rate picture (neglecting spike-spike correlations; cf. [39]),

DW
T
¼ Z

Z 1

� 1

dt
1

T

Z T

0

dt LðtÞ xðtÞ yðt þ tÞ ¼ Z
Z 1

� 1

dt LðtÞ hxðtÞyðt þ tÞiT ; ð2Þ

where L(τ) is the learning window (example in section Effects of temporal input statistics on

systems memory consolidation), which determines how much a pair of pre- and postsynaptic

activity pulses (i.e., spikes) with a time difference τ changes the synaptic weight, and η is a

learning rate that scales the size of these changes. We adopt the convention that the time differ-

ence τ is positive when a presynaptic spike occurs before a postsynaptic spike.

The notation h� � �iT ¼
1

T

R T
0
� � � dt indicates averaging over an interval of length T. We

assume that the integration time T can be chosen such that the weights do not change signifi-

cantly during the integration time (i.e., a small learning rate η), but that the statistics of the

input are sufficiently well sampled so that boundary effects in the temporal integration are neg-

ligible. We also assume that the statistics of the inputs x and x0 are stationary, i.e., they do not

change over time. Under these assumptions, we can insert the output firing rate y from Eq (1)

into the learning rule in Eq (2) and get

DW
T

¼ Z

Z 1

� 1

dt LðtÞhxðtÞ½WTxðt þ tÞ þ VTx0ðt þ t � DÞ�iT

� Z

Z 1

� 1

dt LðtÞ hxðtÞxðt þ tÞTit

� �

W

þ Z

Z 1

� 1

dt LðtÞ hxðtÞx0ðt þ t � DÞTit

� �

V

ð3Þ

where h� � �it denotes the average over all times. Eq (3) describes the dynamics of the weights

W in the direct pathway, which are driven by an interplay of the correlation structures within

the direct pathway (through hxðtÞxðt þ tÞTit) and between the two pathways (through

PLOS COMPUTATIONAL BIOLOGY Parallel pathway theory for systems memory consolidation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009681 December 7, 2021 5 / 37

https://doi.org/10.1371/journal.pcbi.1009681


hxðtÞx0ðt þ t � DÞTit); the dynamics of W depends also on the shape of the learning window L
and the weights V in the indirect pathway.

It is important to emphasize that in this analysis of the learning dynamics we consider the

input arising during consolidation, e.g., during sleep, and this input may be statistically differ-

ent from the input during memory storage or recall. If the correlation structure between the

two pathways is different during consolidation and during storage/recall, the consolidation

process leads to a distortion of the memory in the sense that a different cue would be required

to retrieve the memory. Here, we consider only the case where the correlation structure during

consolidation is the same as during storage and recall.

Let us now study under which conditions this weight update generates a consolidation of

the input-output associations stored initially in the weights V of the indirect pathway into the

weights W of the direct pathway.

Learning dynamics implement memory consolidation as a linear regression. In gen-

eral, the learning dynamics is hard to analyze if the covariance matrices hxðtÞxðt þ tÞTit and

hxðtÞx0ðt þ t � DÞTit are arbitrary objects. A case that can be studied analytically is that of sep-

arable statistics in which each of the two correlation matrices can be written as a product of

scalar functions f and g of the delay τ and the covariance matrices for zero delay, hxxTi and

hxx0Ti:

hxðtÞxðt þ tÞTit ≕ hxxTi f ðtÞ ð4Þ

hxðtÞx0ðt þ t � DÞTit ≕ hxx0Ti gðt � DÞ ð5Þ

For simplicity, we omitted the lower index t in hxxTi and hxx0Ti. Note that this separability

assumption is consistent with all simulations shown, except the one in the section “Consolida-

tion of spatial representations” of the Results; see there for details.

For separable input statistics, the learning dynamics in Eq (3) can be simplified to

1

Z

DW
T
¼

Z 1

� 1

dt LðtÞf ðtÞ
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≕A

hxxTiWþ
Z 1

� 1

dt LðtÞgðt � DÞ
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≕B

hxx0TiV :
ð6Þ

If the scalar constant A is negative (see below for conditions when this is the case), the learning

dynamics is stable and converges to a unique fixed point that is given by

W ¼ �
B
A
½hxxTi�

� 1
hxx0TiV : ð7Þ

Note that apart from the factor � B
A ≕ b, this fixed point has the same structure as the closed-

form solution of a linear regression. In fact, it is straightforward to show that the learning

dynamics in Eq (6) performs a gradient descent on the error function

EðWÞ≔ hðWTx � bVTx0Þ2it : ð8Þ

If A is negative and B is positive (and thus β is positive), the learning dynamics in the direct

path converges to a weight configuration for which the input WTx from the direct path is an

optimal linear approximation of the input VTx0 from the indirect path, in the sense of minimal

mean squared error E. If β> 1, the direct pathway would contribute more to a potential recall

than the original memory trace in the indirect pathway. A sign reversal of β (i.e. β< 0) implies

a sign reversal of V. Then, however, a constraint on the sign change of weights (see below for

details) would prohibit consolidation; memories in the indirect path could even be actively
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deleted from the direct path. In summary, memory consolidation in the PPT is supported by

A< 0 (stable dynamics) and B> 0 (consolidation possible), which implies b≔ � B
A > 0.

Note that we assumed storage of original memories only in the weight vector V represent-

ing the SC pathway. But since learning in the direct pathway is driven by the input from the

entire indirect pathway, these results also hold if original memories are stored in any other

plastic synapses of the indirect pathway (e.g. EC to DG/CA3 in Fig 1B).

Let us relate the theoretical results obtained so far to the simulations shown in Fig 1;

although the simulations are performed for integrate-and-fire neurons, our theory on rate-

based neurons accounts for the main findings: Because two inputs x and x0 are the same apart

from the delay, the fixed point condition Eq (7) reduces to W ¼ � B
AV, in line with the result

that the weights are copied into the direct pathway. Because the learning window is dominated

by depression we have A< 0 while the delay in combination with the shorter autocorrelation

time of the Poisson processes in the input ensures B> 0. A consolidation from the direct to

the indirect pathway is not possible because this inverts the delay and pushes the cross-correla-

tion between the two pathways into the depression component of STDP. As a result, the factor

B is negative and consolidation fails.

In terms of systems memory consolidation in general, the weights V of the indirect path

change as new memories are acquired, so the fixed point in Eq (7) for the weights W of the

direct path is usually never reached. If it were, the direct pathway would merely represent a

copy of the memories that are currently stored in the indirect path rather than retaining older

memories, as intended. The time scale of the learning dynamics of the direct path [determined

by η in Eq (6)] should therefore be longer than the memory retention time in the indirect path,

which is determined, e.g., by the rate at which new memories are stored. In case of a small

enough η, the transient dynamics of the system is more important for the consolidation pro-

cess than the fixed point.

Another important aspect to emphasize is that the consolidation is influenced by the corre-

lation structure hxx0Ti between the two pathways that is encountered during the consolidation

period. Intuitively and according to Eq (8), consolidation is achieved by matching the input

VTx0 that is caused by “cues” x0 in the indirect path with the input WTx caused by the associ-

ated “cues” x in the direct path. In order for the consolidated memories to be accessible during

recall, the relation between the “cues” in the two pathways (i.e., the correlation hxx0Ti between

the two pathways) should be the same during recall as during consolidation.

The objective function argument in Eq (8) only holds when the constant A is negative. For

positive A, the learning dynamics in Eq (7) suffers from the common Hebbian instability and

thus has to be complemented by a weight-limiting mechanism. The choice of this weight limi-

tation (e.g., subtractive or divisive normalization, weight bounds) will then have an impact on

the dynamics and the fixed point of the learning process [40, 41]. For the simulations, the

parameters were therefore always chosen such that the learning dynamics were stable (A< 0).

Although this suggests that no weight limiting mechanism was required in principle, upper

and lower bounds for the weights were nevertheless used in simulations, with no qualitative

impact on the results.

Effects of temporal input statistics on systems memory consolidation. The constants A
and B, which were defined in Eq (6) as A≔

R
dτ L(τ)f(τ) and B≔

R
dτ L(τ)g(τ − D), play an

important role for the learning dynamics. As already elaborated, the sign of A determines sta-

bility while B should be positive to obtain consolidation. Sign and magnitude depend on the

interplay between the learning window L and the temporal input statistics, characterized by

the correlation functions f and g defined in Eqs (4) and (5), respectively. For the assumed
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separable statistics, f is fully determined by the autocorrelation of the input in the direct path,

and f(τ) is therefore symmetric in time τ.
A first interesting observation is that for the special case of an antisymmetric learning win-

dow L, we obtain A = 0 for symmetry reasons. Mathematically, this implies that the first term

of the learning dynamics in Eq (6)—the dependence of the change of the weights W in the

direct path on their actual value—vanishes. Intuitively, the balance of potentiation and depres-

sion in an antisymmetric learning window implies that the direct path, although able to drive

the postsynaptic neuron, is causing equal amounts of potentiation and depression in all of its

synapses. On average, synaptic changes are caused only by the indirect pathway with weights

V, which therefore acts as a supervisor for the learning dynamics of W in the direct path. A

thorough analysis under which conditions STDP can be used for supervised learning has been

provided elsewhere [42, 43], and the results of this analysis are applicable in the present case.

Functionally, the depressing part of an STDP learning window serves to neutralize the impact

of the direct pathway on its own learning dynamics, effectively creating a supervised learning

scenario.

Another interesting observation relates to the magnitude of the terms A and B, which is

determined by the time scale on which the inputs change (reflected, e.g., in the time constants

of the decay of the correlation functions f and g). Let us assume that both correlation functions

f(τ) and g(τ) are maximal for τ = 0 and that they decay to 0 for large |τ|; such conditions are

reasonable for most correlation structures. We also assume that the learning window has the

typical structure of potentiation for causal timing, L(τ)> 0 for τ> 0, and depression for acau-

sal timing, L(τ) < 0 for τ< 0 [36, 37, 44]. Then the delay D> 0 in the indirect path shifts the

maximum of the cross-correlation g(τ − D) into the potentiating part of the learning window

(Fig 2B) while the maximum of f(τ) remains in the transition region of potentiation and

depression (Fig 2A). The following three observations can be made concerning the constant B
as defined by the integral in Eq (6):

(1). If the cross-correlation g has a narrow enough peak (i.e., narrower than the time scale of

the learning window and the delay D), B is positive, suggesting that consolidation can

occur (Fig 2B). The sharp localization of g corresponds to rapidly changing input signals.

(2). If the decay time constant of the cross-correlation g is large compared to that of the learn-

ing window, the depressing component of the learning window has more impact and

reduces the constant B and thus the efficiency of consolidation (Fig 2C). In the case

where the learning window is dominated by depression, B can even get negative for large

time constants of g, abolishing consolidation altogether.

(3). If the delay D along the indirect path is much longer than the decay time constant of the

learning window, we obtain B� 0, meaning that consolidation is abolished (Fig 2D).

In other words, the delayed correlations between the two pathways are too large to be

exploited by STDP. This will limit the ability to consolidate from too long indirect paths

into shortcuts.

Consolidation of spatial representations

The mathematical analysis of the PPT makes two key predictions. First, it suggests that

STDP in a parallel direct pathway achieves consolidation by performing a linear regression

between inputs in the direct and the indirect pathways [Eqs (7) and (8)]. Therefore, the pro-

posed mechanism should generalize to situations in which the cue representations in the

direct and indirect pathways differ. Second, the theory suggests that consolidation is most
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effective when the correlation time constants of the input during consolidation is matched

to the coincidence time scale of STDP (Fig 2B). In the following, we will show in simulations

that those predictions hold and, moreover, that the mechanism is robust to neuronal

nonlinearities.

To begin with, we show that the mechanism is robust to differing cue representations in the

two pathways and to weaker correlations among them [45]. To this end, we used place cell rep-

resentations [46] for the SC input from CA3 and grid cell representations [47, 48] for the

PPCA1input from EC (Fig 3A). Moreover, we show that the suggested mechanism is compati-

ble with the biophysical properties of CA1 neurons, which receive inputs in different subcellu-

lar compartments. To this end, we simulated a multicompartmental CA1 pyramidal cell

Fig 2. Interaction of temporal correlations and the STDP learning window. The weight dynamics of the direct path

[Eq (6)] is driven by inputs from the direct and indirect paths: weight changes are determined by the integrated

products of the STDP learning window L with the autocorrelation f [Eq (4)] and the cross-correlation g [Eq (5)],

respectively. (A) Examples of a learning window L(τ) and an autocorrelation f(τ), both plotted as a function of the

“relative timing” τ. For separable statistics, f is symmetric. If the learning window L has a stronger negative part for

τ< 0 and a weaker positive part for τ> 0, the coefficient A≔
R

dτ L(τ)f(τ) is typically negative. (B)–(D) Learning

window L as in (A) and three example cross-correlations g. (B) The indirect path primarily induces potentiation in the

direct path if B≔
R

dτ L(τ)g(τ − D)> 0. This is the case if (i) the delayD between the paths is positive, (ii) the learning

window is positive for positive delays, and (iii) the time scale of the decay of cross-correlations g is shorter than the

delayD and the width of the learning window L. These three conditions favor consolidation. (C) If the cross-

correlation g decays on a time scale that is much longer than the width of the learning window and the delayD, the

indirect path can drive both potentiation and depression, and consolidation is weaker (i.e., the coefficient B is smaller)

than for shorter correlations. (D) If the delay D between the direct and the indirect paths is longer than the width of the

learning window L, the indirect path cannot induce systematic changes in the weights of the direct path (coefficient

B� 0), and consolidation is ineffective.

https://doi.org/10.1371/journal.pcbi.1009681.g002
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(Fig 3B) that was endowed with active ion channels supporting backpropagating action poten-

tials and dendritic calcium spikes (Fig 3C, Methods).

The use of spatial representations in the input pathways allows us to consider simple forms

of memories in a navigational context in which a given location on a linear track is associated

Fig 3. Consolidation of spatial representations. (A) Replay of PPCA1 and SC activity during sleep. 500 PPCA1 inputs and 2500 SC inputs

are spatially tuned on a linear track with periodic grid fields (top, red) and place fields (bottom, blue). Spiking activities are independent

Poisson processes (10 spikes/s) inside place/grid fields, otherwise silent. SC activity is delayed by 5 ms. (B) Multi-compartmental model of

a reconstructed CA1 pyramidal neuron (see Methods). PPCA1 and SC inputs project to distal apical tuft dendrites (red dots) and proximal

apical and basal dendrites (blue dots). (C) Active neuron properties. Top: somatic sodium spike (black) propagates to the distal tuft and

initiates a dendritic calcium spike (red) and further sodium spikes. Bottom: dendritic calcium spike leads to bursts of somatic spikes.

(D) Spatial tuning before consolidation. SC provides place field-tuned input to the CA1 cell (left, blue), which yields spatially tuned

spiking activity (right, blue); PPCA1 input is not spatially tuned (left, red), and (alone) triggers low and untuned spiking activity (right,

red). (E) Somatic and dendritic activity during consolidation. During replay, SC input generates backpropagating sodium spikes (black

vertical lines) that generate dendritic calcium spikes (red). (F) After consolidation. Spatial tuning is consolidated from the indirect SC

pathway into the direct PPCA1 pathway. Left: spatial tuning of total PPCA1 input (red) approaches theoretically derived PPCA1 input

tuning (magenta; see Methods). Right: CA1 output is place field-tuned through either SC or PPCA1 input alone. (G) Evolution of

correlation between actual and optimal PPCA1 input tuning (see F) for replay speeds corresponding to hippocampal replay events (black)

and real-time physical motion (grey). Position in D, E, and F normalized to [0, 1].

https://doi.org/10.1371/journal.pcbi.1009681.g003
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with the activity of a given CA1 cell. Effectively, such an association generates a CA1 place cell.

In line with the PPT, we assumed that the spatial selectivity of this CA1 place cell is initially

determined solely by the indirect pathway via the SC, i.e., by place cell input from CA3. The

goal of systems memory consolidation is then to transfer this spatial association to the direct

input, which reaches the CA1 cell via the PPCA1 derived from grid cells in EC. In other words,

place-cell input should supervise grid-cell input to develop a place-cell tuning. Note that

we use the spatial setup primarily as an illustration of the theory. We do not make claims

regarding the temporal development of CA1 place cells in vivo, which is not fully understood

[49–51].

SC place field inputs were modelled by synapses that were active only in a small region of

the track, whereas individual PPCA1 grid cell inputs were active in multiple, evenly spaced

regions along the track (Fig 3A). In terms of the theory, the cue representation in the two path-

ways is now different, but correlated, because the same location is encoded. The SC and PPCA1

inputs projected to proximal and distal dendrites, respectively (Fig 3B, [52]). Synapses were

initialized such that the SC input conductances were spatially tuned and resulted in place field-

like activity in the CA1 cell while the PPCA1 input had no spatial tuning (Fig 3D).

During consolidation, SC and PPCA1 input to the CA1 cell consisted of replays of previously

encountered sequences of locations [13, 14], with a replay speed 20 times faster than physical

motion [13]. During replay, the SC input led to somatic spikes, which in turn triggered back-

propagating action potentials that caused calcium spikes in the distal dendrites where the

PPCA1 synapses arrive (Fig 3C and 3E, [53]). Through synaptic plasticity, PPCA1 synapses active

in the place field of the neuron were potentiated. Over time, the PPCA1 input adopted the spa-

tial tuning of the SC input (Fig 3F, left) and reproduced the original SC-induced place field

output (Fig 3F, right) with high correlation (Fig 3G). The fact that the spatial tuning of two

inputs is not perfectly matched does not contradict with theoretical results, which merely state

that the direct input should attain the best possible linear approximation of the indirect path-

way. In the present setting, this approximation is bounded by the finite range of frequencies of

the entorhinal inputs (in analogy to reconstructing a high-frequency signal, e.g. a narrow peak,

with a finite set of Fourier components), which causes the ringing next to the target peak in

Fig 3F (left). In summary, the PPT mechanism therefore consolidated associations even

though the spatial representations in the two pathways differed and although the two pathways

targeted different neuronal compartments with different numbers of synapses in the CA1 neu-

ron with complex morphology.

The theory also predicts that consolidation is most effective when the correlation time in

the input is matched to the time scale of STDP (Fig 2B). In line with this prediction, consolida-

tion failed when replay speed was reduced to that of physical motion (Fig 3G) because the time

scale of rate changes in place and grid cell activity is then much longer than the delay between

the two pathways and the time scale of STDP (Fig 2C). Accelerated replay during sleep [13]

hence supports systems memory consolidation within the PPT by aligning the time scales of

neural activity and synaptic plasticity [54], and this alignment is similar to the effect of phase

precession during memory acquisition [55].

Finally, we note that the theoretical analysis relied on a separability assumption for the sta-

tistics in the two pathways; cf. Eqs (4) and (5). This condition is not fulfilled for sequence

replay during consolidation because the time-delayed covariance of different place cells

depends on the relative spatial location of their place fields; such correlations are non-separa-

ble even for slower replay or during memory acquisition with real-time physical motion. The

observation that consolidation was successful nevertheless illustrates that the separability

assumption does not need to be fulfilled for the PPT to achieve a successful consolidation.
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Consolidation of place-object associations in multiple hippocampal stages

Ultimately, to consolidate memories into neocortex, they have to move beyond the PPCA1.

Notably, the PPCA1 is itself part of an indirect pathway from EC to the subiculum (SUB) that is

shortcut by a direct connection from EC to SUB (referenced as PPSUB; Fig 4A, left; [29]). This

suggests that the PPT can be reiterated to further consolidate memories from the PPCA1 to the

PPSUB and beyond.

To illustrate this idea, we considered a standard paradigm for memory research in rodents:

the Morris water maze [56]. In the water maze, the rodent needs to find a submerged platform

(object), i.e., it must store an object-place association. Thus this paradigm requires neural rep-

resentations of objects (such as the submerged platform) and places. We hence constructed a

model in which subregions of the hippocampal formation included neurons that encode places

and neurons that encoded the identity of objects (Fig 4A, right).

For simplicity and computational efficiency we switched to a rate-based neuron model

(Methods). An object was chosen from a set of 128 different objects and placed in a circular

open field environment (Fig 4B, top). As motivated by experiments [32–34], we implemented

Fig 4. Consolidation of place-object associations in multiple hippocampal stages. (A) Structure of the extended model. PPSUB: perforant path to the

subiculum. Each area (EC, DG-CA3, CA1, SUB) contains object-coding and place-coding populations. Open arrows: all-to-all connections between these

areas. (B) Decoding of consolidated associations. Top: The location of a platform in a circular environment is stored as an object-place association in the SC

(thick diagonal arrows in A, right). Middle: Platform position probability maps given the platform object cue, inferred from the CA1 output resulting from

SC or PPCA1 alone, at different times during consolidation (see section “Consolidation of place-object associations in multiple hippocampal stages” in

Methods). Bottom: Platform-in-quadrant probabilities (±SEM) given PPCA1 input alone during consolidation. Quadrant with correct platform position

(target quadrant) in orange. (C) Consolidation from SC to PPCA1 and to PPSUB over four weeks. Each day, a new association is first stored in SC and then

partially consolidated. An association on day 0 is monitored in SC, PPCA1, and PPSUB. Panels as in B. (D) Effects of PPCA1 lesions on memory consolidation,

model and experiment (data with permission from [27]). Histograms of time (±SEM) spent in quadrants at different delays after memory acquisition

(“probe”). Dashed lines at 25% are chance levels. T: target quadrant; Left, Right: adjacent quadrants; O: opposite quadrant. Top: Control without lesion.

Middle: Lesion before memory acquisition. Bottom: Lesion 21 days after memory acquisition.

https://doi.org/10.1371/journal.pcbi.1009681.g004
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object-to-place associations in our model by enhancing, as before, synaptic connections in the

SC, but now between object-encoding neurons in CA3 and place-specific neurons in CA1 (Fig

4A, right). Here, we did not consider place-to-object associations. These are less relevant for

the water maze task, where the task is to recall the location of a given object—the platform—

rather than to recall which object was encountered at a given location. We tested object-to-

place associations stored in the SC by activating the object representation in EC—as a memory

cue—and determining the activities in CA1, triggered by the SC alone. From these activities

we inferred a spatial probability map of the recalled object location (Fig 4B; Methods).

We first stored a single object-place association in the SC. During a subsequent consolida-

tion cycle—representing one night—place and object representations in EC were then ran-

domly and independently activated. Consistent with our previous results, the object-place

association was gradually consolidated from the SC to the PPCA1: after one night of consolida-

tion, the correct spatial probability map of an object location was inferrable from CA1 activity

triggered by the PPCA1 alone (Fig 4B).

To track the consolidation process over longer times, we assumed that a new random

object-place association is stored in the SC every day. This caused a decay of previous SC

memory traces due to interference with newly stored associations (Fig 4C, [57, 58]). During

the night following each day, associations in the SC were partially consolidated into the PPCA1,

such that the consolidated association could be decoded from the PPCA1 after a single night,

but previously consolidated associations were not entirely overwritten. As a result, object-

place associations were maintained in the PPCA1 for longer periods than in the SC, thus

extending their memory lifetime (Fig 4C). Eventually, a given PPCA1 memory trace would also

degrade as new interfering memories from the SC are consolidated. However, as noted above,

the PPCA1 itself is part of an indirect pathway from EC to the SUB, for which there is in turn a

parallel, direct perforant pathway PPSUB. The association in the PPCA1 (and SC) could there-

fore, in turn, be partially consolidated into the PPSUB, further extending memory lifetime (Fig

4C). Note that the extension of memory lifetime is supported in the model by a reduced plas-

ticity (i.e. halved learning rate in Eq (33)) in PPSUB compared to PPCA1.

The model suggests that the PPCA1 serves as a transient memory buffer that mediates a fur-

ther consolidation into additional shortcut pathways downstream. This hypothesis is sup-

ported by navigation studies in rats. Using PPCA1 lesions, Remondes and Schuman [27] have

shown that the PPCA1 is not required for the original acquisition of spatial memories, but that

it is critically involved in their long-term maintenance. However, lesioning the PPCA1 21 days

after acquiring a memory did not disrupt spatial memories, suggesting that the PPCA1 is not

the final storage site (Fig 4D) and further supporting the idea that the PPCA1 is important to

enable a transition from short-term to long-term memories.

To test whether our model could reproduce these experimental results, we simulated PPCA1

lesions either before the acquisition of an object-place association or 21 days later. Assuming

that the rat’s spatial exploration is determined by the probability map of the object location

[59], the model provided predictions for the time spent in different quadrants of the environ-

ment, which were in quantitative agreement with the data for all experimental conditions (Fig

4D). Our model thus suggests that a hierarchical reiteration of parallel shortcuts—the central

circuit motif of the PPT—could explain these experiments.

Similar to lesioning the PPCA1, we predict that lesioning PPSUB also has an impact on mem-

ory consolidation: PPSUB should act as a transient memory buffer but on a longer timescale

than PPCA1. In general, lesioning a pathway with a set of synapses that cover a specific range of

time scales such that there is a “gap” should result in an impairment of consolidation if the

lesion is done before the memory has “moved on”. To illustrate this idea in more detail, we

study in the next section a model with many stages in a hierarchy.
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Consolidation from hippocampus into neocortex by a hierarchical nesting

of consolidation circuits

Given that shortcut connections are widespread throughout the brain [25, 60, 61], we next

hypothesized that a reiteration of the PPT can also achieve systems consolidation from hippo-

campus into neocortex. To test this hypothesis, we studied a network model (Fig 5A), in which

the hippocampus (now simplified to a single area) receives input from a hierarchy of cortical

areas, representing, e.g., a sensory system. It provides output to a different hierarchy of areas,

representing, e.g., the motor system or another sensory system.

The network also contained shortcut connections that bypassed the hippocampus. As in the

previous section, new memories were stored in the hippocampus but not in any other indirect

connection in the hierarchy. The repeated storage of new memories every day leads to a decay

of previously stored hippocampal memories. But memories are also consolidated by Hebbian

plasticity in parallel pathways; for details, see Methods.

Tracing a specific memory over time revealed a gradual consolidation into the cortical

shortcut connections, forming a “memory wave” [10] that travels from hippocampus into neo-

cortex (Fig 5B). By exponentially decreasing the shortcut learning rate with distance from the

hippocampus, a power-law decay of memories can be observed in the union of all shortcuts,

e.g., by reading out the shortcut with the strongest memory trace at any moment in time (Fig

5B). This observation is in line with a rich history of psychological studies on the mathematical

Fig 5. Consolidation from hippocampus into neocortex by hierarchical nesting of consolidation circuits. (A)

Schematic of the hierarchical model. The hippocampal formation (HPC) is connected to cortical input circuit 1 and

output circuit 1. Increasing numbers indicate circuits further from the HPC and closer to the sensory/motor periphery.

Each direct connection at one level (e.g., dark blue arrow between input 1 and output 1) is part of the indirect pathway

of the next level (e.g., for pathways from input 2 to output 2). Learning rates of the direct connections decrease

exponentially with increasing level (i.e., from blue to red). (B) Memories gradually propagate to circuits more distant

from the HPC. The correlation of the initial HPC weights with the direct pathways is shown as a function of time and

reveals a memory wave from HPC into neocortex. The maximum of the output circuits follows approximately a

power-law (black curve). Noise level indicates chance-level correlations between pathways. (C) Consolidated

memories yield faster responses (from sensory periphery, e.g., Input 8, to system output) because these memories are

stored in increasingly shorter synaptic pathways.

https://doi.org/10.1371/journal.pcbi.1009681.g005
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shape of forgetting curves [28]. Note that for the readout we tried to make as few assumptions

as possible by letting all pathways contribute on an equal footing. Taking the maximum over

the pathways (as well as the mean) generates a power law. Notably, we achieved memory reten-

tion times of years through only a small number (�5) of iterations of the PPT. Finally, we

found that memory retrieval accelerates during consolidation (Fig 5C), in line with consolida-

tion studies for motor skills [62]. In our consolidation model, the time to recall decreases

because the path from peripheral input to output becomes shorter through the use of more

direct (peripheral) shortcut connections (Fig 5A and 5B).

The predicted consolidation-mediated decrease of the time to recall critically depends on

the utilized plasticity rule (STDP), which uses timing of input and output of neurons, and on

our assumption that memories are initially acquired in an indirect pathway with a longer delay

than direct pathways. While this assumption is reasonable for declarative memories that are

initially stored in the hippocampus and then consolidated in sensory or motor areas towards

neocortex, the underlying computational reasons for such a strategy are unknown. The strat-

egy of the initial storage of memories in a pathway with a longer transmission delay could be

related to the Complementary Learning Systems Theory (CLST) [11, 63] if the initial storage

needs some preprocessing, e.g., to achieve representations that are suited for one-trial learning,

e.g. population-sparse representations [9]. In general, our results do not imply that the reduc-

tion of delay is a central goal of systems memory consolidation or that it is even necessary.

Reduction of delay may, however, be a nice side effect of systems memory consolidation with

timing-based plasticity rules [64]. And such a reduction of delay does not need to be restricted

to declarative memories but also could apply to, e.g., motor skill learning or habit formation.

Discussion

We proposed the parallel pathway theory (PPT) as a mechanistic basis for systems memory

consolidation. This theory relies on two abundant features in the nervous system: parallel

shortcut connections between brain areas and Hebbian plasticity. A mathematical analysis

suggests that STDP in a direct pathway achieves consolidation by implementing a linear

regression that approximates the input-output mapping of an indirect pathway by that of the

direct pathway. We applied the PPT to hippocampus-dependent memories and showed that

the proposed mechanism can transfer memory associations across parallel synaptic pathways.

This transfer is robust to different representations in those pathways and requires only weak

correlations. Our results are in quantitative agreement with lesion studies of the perforant path

in rodents [27] and are able to reproduce forgetting curves that follow a power-law as observed

in humans [28].

Theory requirements and predictions

In addition to the anatomical motif of shortcut connections and Hebbian synaptic plasticity,

the parallel pathway theory relies on four further requirements during the consolidation

phase, which can also be considered as model predictions.

(1). Temporal correlations between the inputs from the two input pathways are necessary

during consolidation, and these correlations should be similar to the ones during storage

and recall. For example, a consolidation from hippocampus into neocortex would require

correlations between cortical and hippocampal activity, as reported in [65]. Similarly, a

consolidation of spatial memories within the hippocampal formation (including the

medial entorhinal cortex, MEC) during replay would require correlations between activ-

ity in MEC and hippocampus; in particular, the same locations should be replayed, but
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represented by grid cells in MEC and by place cells in CA3 and CA1, as in Fig 3. A signifi-

cant but weak correlation between the superficial layers of MEC (which provides input to

the hippocampus) and CA1 was indeed observed [45]. Furthermore, pyramidal cells in

the superficial layer III (projecting to CA1, “direct path”) and stellate cells in the superfi-

cial layer II (projecting to DG, which projects to CA3, “indirect path”) are expected to be

correlated due to a strong excitatory feedforward projection from pyramids to stellates

[66]; reviewed in [51]. Coordinated grid and place cell replay was also observed in [67]

but there CA1 and deep layers of MEC (which receives the hippocampal output) were

studied.

(2). The direct pathway should be plastic during consolidation, while the stored associations

in the indirect path remain sufficiently stable (in contrast to the model in [24]). In prac-

tice, this requires the degree of plasticity to differ between periods of storage and consoli-

dation (e.g., due to neuromodulation [68, 69]), in a potentially pathway-dependent

manner. In other words, the requirement is that the content of a memory should not be

altered much while creating a backup.

(3). Plasticity in the shortcut pathway should be driven by a teaching signal from the indirect

pathway. This can be achieved by STDP in combination with longer transmission delays

in the indirect pathway, as suggested here, but other neural implementations of super-

vised learning may be equally suitable [42, 43, 70].

(4). Within the present framework, a systematic decrease in learning rates within the consoli-

dation hierarchy (Fig 5) is needed to achieve memory lifetimes on the order of years. That

is, synapses involved in later stages of consolidation should be less plastic during consoli-

dation periods such as sleep, as also suggested by [10] and [24]. Furthermore, Roxin and

Fusi elegantly showed in [10] that a multistage memory system confers an advantage (in

terms of memory lifetime, memory capacity, and initial signal-to-noise ratio) compared

to a homogeneous memory system with the same number of synapses, which provides a

fundamental computational reason for the existence of a memory consolidation processes

at the systems level. However, to be able to exploit this advantage, an efficient mechanism

to transfer memories across stages is necessary. The proposed PPT explains how memo-

ries can be transferred in a biologically plausible way in a multistage memory system.

Conceptually related to models of systems-memory consolidation with a systematic

decrease in learning rates across a hierarchy of networks are models of synaptic memory

consolidation with complex synapses that can assume many different states and a

decrease of plasticity across a hierarchy of states. In such models of synaptic memory con-

solidation, also a power-law forgetting has been achieved [8, 71]. Synaptic and systems

memory consolidation models are different but not mutually exclusive.

What limits systems memory consolidation?

Our account of systems memory consolidation explains how memories are re-organized and

transferred across brain regions. However, certain forms of episodic memory remain hippo-

campus-dependent throughout life [21].

In the context of the present model, this restriction could result from different factors. The

PPT simplifies memory engrams by replacing multisynaptic by monosynaptic connections

whenever possible. However, a shortcut pathway may not be present anatomically, or it may

not host an appropriate representation for a given cue-response association in question. For

example, it may be difficult to consolidate a complex visual object detection task into a
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shortcut from primary visual cortex (V1) to a decision area because the low-level representa-

tion of the visual cue in V1 may not allow it [72, 73]. The same applies to tasks that require a

mixed selectivity of neural responses [74]. Such tasks cannot be fully consolidated into short-

cuts with simpler representations of cues and/or responses that do not allow a linear separation

of the associations. On the basis of similar arguments, early work suggested that the hippocam-

pus could be critical for learning tasks that are not linearly separable [75].

Within the present framework, the consolidated memory is in essence a linear approxima-

tion of the original cue-response association, as indicated in the theoretical analysis around

Eqs (7) and (8). The resulting simplification of the memory content could underlie the com-

monly observed semantization of memories and the loss of episodic detail [20, 21]. Such a

semantization could already occur in the earliest shortcut connections [76], but could also

gradually progress in a multi-stage consolidation process.

Relation to phenomenological models of systems consolidation

The basic mechanism of our framework explains memory transfer between brain regions,

which is in line with the Standard Consolidation Theory (SCT) [11, 19]. Our theoretical frame-

work is closely related to the Complementary Learning Systems Theory (CLST) [11, 63],

which posits that slow and interleaved cortical learning is necessary to avoid catastrophic inter-

ference of new memory items with older memories [77]. In our model, later—presumably neo-

cortical—shortcut connections have lower learning rates to achieve longer memory retention

times. Interleaved learning could be achieved by interleaved replay [78–80] during consolida-

tion. Thereby, the results of CLST can be directly applied to learning in shortcuts in our

model, such as the rapid neocortical consolidation of new memories that are in line with a pre-

viously learned schema [17, 63, 81].

Limitations of memory transfer between brain regions—as discussed above—can impair

the consolidation process, resulting in memories that remain hippocampus-dependent

throughout life. Hence, our theoretical framework is also in agreement with the Multiple

Trace Theory (MTT) [16] and the Trace Transformation Theory (TTT) [20, 21]. The MTT

postulates that memories are re-encoded in the hippocampus during retrieval, generating mul-

tiple traces for the same memory. Our model maintains multiple memory traces in different

shortcut pathways, even without a retrieval-based re-encoding. The consolidation mechanism

of the PPT, however, could also transfer a specific memory multiple times if it is re-encoded

during retrieval. If neocortex extracts statistical regularities from a collection of memories

[11], the consolidation of such a repeatedly re-encoded memory could then lead to a gist-like,

more semantic version of that memory in neocortex [16, 21, 82], as emphasized by the TTT.

The premise of our model is that memories are actively transferred between brain regions.

This premise has recently been subject to debate [83–85], following the suggestion of the Con-

textual Binding (CB) theory. The CB theory argues that amnesia in lesion studies and replay-

like activity can be explained by simultaneous learning in hippocampus and neocortex,

together with interference of contextually similar episodic memories [83]. Note, however, that

our framework does not exclude a simultaneous encoding in neocortex and hippocampus,

which can be combined with active consolidation [1, 86].

Hence, our mechanistic approach is in agreement with and may allow for a unification of

several phenomenological theories of systems consolidation.

Consolidation of non-declarative memories

Given that shortcut connections are widespread throughout the central nervous system [25,

60], the suggested mechanism may also be applicable to the consolidation of non-declarative
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memories, e.g., of perceptual [4] and motor skills [5], fear memory [87] or to the transition of

goal-directed to habitual behaviour [88].

Several studies have suggested two-pathway models in the context of motor learning [89–

92]. In particular, Murray and Escola [92] recently used a two-pathway model to investigate

how repeated practice affects future performance and leads to habitual behaviour. While their

model does not incorporate an active consolidation mechanism or multiple learning stages,

the basic mechanism is the same: A fast learning pathway from cortex to sensorimotor stria-

tum first learns a motor skill and then teaches a slowly learning pathway from thalamus to stri-

atum during subsequent repetition.

Limitations of the model and future directions

The present work focuses on feedforward networks and local learning rules. Hence, the model

cannot address how systems memory consolidation affects the representation of sensory sti-

muli and forms schemata that facilitate future learning [17, 81] because representation learn-

ing typically requires a means of backpropagating information through the system, e.g., by

feedback connections [93]. The interaction of synaptic plasticity with recurrent feedback

connections generates a high level of dynamical complexity, which is beyond the scope of the

present study. Our framework also does not explain reconsolidation, that is, how previously

consolidated memories become labile and hippocampus-dependent again through their reacti-

vation [94, 95].

On the mechanistic level, the PPT predicts temporally specific deficits in memory consoli-

dation when relevant shortcut connections are lesioned, that is, a tight link between the ana-

tomical organisation of synaptic pathways and their function for memory. These predictions

may be most easily tested in non-mammalian systems, where connectomic data are available

[96].

The PPT could provide an inroad to a mechanistic understanding of the transformation of

episodic memories into more semantic representations. This could be modelled, e.g, by encod-

ing a collection of episodic memories that share statistical regularities and studying the dynam-

ics of statistical learning and semantisation in the shortcut connections during consolidation.

Such future work may allow us to ultimately bridge the gap between memory consolidation on

the mechanistic level of synaptic computations and the behavioural level of cognitive function.

Methods

Consolidation in a single integrate-and-fire neuron

For the results shown in Fig 1E and 1F we used a single integrate-and-fire model neuron that

received excitatory synaptic input. The membrane potential V(t) evolved according to

tm
dV
dt
¼ Vrest � V þ gsynðtÞðEsyn � VÞ ; ð9Þ

with membrane time constant τm = 20 ms, resting potential Vrest = −70 mV, and synaptic

reversal potential Esyn = 0 mV. When the membrane potential reached the threshold Vthresh =

−54 mV, the cell produced a spike and the voltage was reset to −60 mV during an absolute

refractory period of 1.75 ms.

The total synaptic conductance gsyn(t) in Eq (9) is denoted in units of the leak conductance

and thus dimensionless (parameters are taken from [97]). The total synaptic conductance was

determined by the sum of 1000 Schaffer collateral (SC) inputs and 1000 perforant path

(PPCA1) inputs. Activation of input i (where i denotes synapse number) leads to a jump gi> 0
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in the synaptic conductance:

gsynðtÞ ! gsynðtÞ þ gi : ð10Þ

All synaptic conductances decay exponentially,

tsyn

dgsyn
dt
¼ � gsyn ; ð11Þ

with synaptic time constant τsyn = 5 ms. The PPCA1 inputs were activated by mutually indepen-

dent Poisson processes with a mean rate of 10 spikes/s. The activity patterns of the SC fibers

were identical to those of the PPCA1 fibers but were delayed by 5 ms.

The synaptic peak conductances or weights, gi, were either set to a fixed value or were deter-

mined by additive STDP [98]. A single pair of a presynaptic spike (at time tpre) and a postsyn-

aptic spike (at time tpost) with time difference Δt� tpre − tpost induced a modification of the

synaptic weight Δgi according to

Dgi ¼ LðDtÞ ¼

(
þAþexpðDt=tSTDPÞ if Dt < 0;

� A� expð� Dt=tSTDPÞ if Dt � 0;
ð12Þ

with τSTDP = 20 ms. L(Δt) is the learning window of STDP [98]. Hard upper and lower bounds

were imposed on the synaptic weights, such that 0 � gi � �gmax for all i, where the dimension-

less maximum synaptic weight was �gmax ¼ 0:006. Parameters Aþ ¼ Z � �gmax and A− = 1.05 � A+

with η = 0.005 determine the maximum amounts of LTP and LTD, respectively.

Synaptic weights were initialized to form a bimodal distribution, such that it agrees with the

steady state weight distribution resulting from additive STDP, when presynaptic input consists

of uncorrelated Poisson spike trains [98]. Specifically, half the weights were sampled from an

exponential distribution with mean 0:05 � �gmax, the other half as �gmax minus that same expo-

nential distribution.

The dynamics were integrated numerically using the forward Euler method, with an inte-

gration time step of 0.1 ms.

Consolidation of spatial representations in a multi-compartment neuron

model

The results presented in Fig 3C–3G relied on numerical simulations of a conductance-based

compartmental model of a reconstructed CA1 pyramidal cell (cell n128 from [99]). Passive

cell properties were defined by the membrane resistance Rm = 30 kO cm2 with reversal poten-

tial EL = −70 mV, intracellular resistivity Ri = 150Ocm, and membrane capacitance Cm =

0.75μF/cm2. Dendrites were discretized into compartments with length smaller than 0.1 times

the frequency-dependent passive space constant at 100 Hz. Three types of voltage-dependent

currents and one calcium-dependent current, all from [100], were distributed over the soma

and dendrites. Gating dynamics of the currents evolved according to standard first-order ordi-

nary differential equations. The steady state (in)activation functions x1 and voltage-depen-

dent time constants τ1 for each gating variable (i.e., x =m, h, n; see below) were calculated

from a first-order reaction scheme with forward rate αx and backward rate βx according to

x1(V) = αx(V)/(αx(V) + βx(V)) and τx(V) = 1/(αx(V) + βx(V)) where V was the membrane

potential. All used current densities and time constants were selected for a temperature of

37˚C (see [100]).
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A fast sodium current, INa, was distributed throughout the soma (�gNa ¼ 130 pS/μm2) and

dendrites (�gNa ¼ 260 pS/μm2), except from the distal apical dendritic tuft,

INa ¼ �gNam3hðV � ENaÞ ; ð13Þ

with reversal potential ENa = 60 mV. The dynamics of activation gating variablem and inacti-

vation gating variable h were characterized by

am ¼ � 0:584
V þ 30

e� ðVþ30Þ=9 � 1

bm ¼ 0:398
V þ 30

eðVþ30Þ=9 � 1

ah ¼ � 0:077
V þ 45

e� ðVþ45Þ=5 � 1

bh ¼ 0:0292
V þ 70

eðVþ70Þ=5 � 1
:

ð14Þ

Here and in the following, we dropped units for simplicity, assuming that the membrane

potential V is given in units of mV.

The steady-state inactivation function was defined directly as

h1 ¼
1

1þ eðVþ60Þ=6:2
: ð15Þ

A fast potassium current, IKv, was present in the soma (�gKv ¼ 95 pS/μm2) and throughout

the dendrites (�gKv ¼ 190 pS/μm2),

IKv ¼ �gKvnðV � EKÞ ; ð16Þ

with reversal potential EK = −90 mV and with activation gating variable n characterized by

an ¼ � 0:064
V � 25

e� ðV� 25Þ=9 � 1

bn ¼ 0:0064
V � 25

eðV� 25Þ=9 � 1
:

ð17Þ

A high-voltage activated calcium current, ICa, was distributed throughout the apical den-

drites (�gCa ¼ 30 pS/μm2) with an increased density (�gCa ¼ 35 pS/μm2) for dendrites distal

from the main apical dendrite’s bifurcation,

ICa ¼ �gCam2hðV � ECaÞ ; ð18Þ

with reversal potential ECa = 140 mV and with activation gating variablem and inactivation

gating variable h characterized by

am ¼ � 0:177
V þ 27

e� ðVþ27Þ=3:8 � 1

bm ¼ 3:02 e� ðVþ75Þ=17

ah ¼ 4:89 � 10� 4 e� ðVþ13Þ=50

bh ¼
0:0071

e� ðVþ15Þ=28 þ 1
:

ð19Þ
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A calcium-dependent potassium current, IKCa, was similarly distributed throughout the api-

cal dendrites (�gKCa ¼ 30 pS/μm2) with an increased density (�gKCa ¼ 35 pS/μm2) beyond the

main bifurcation of the apical dendrite,

IKCa ¼ �gKCanðV � EKÞ ; ð20Þ

with activation gating variable n characterized by

an ¼ 0:032ð½Ca2þ�iÞ
6

bn ¼ 0:064

ð21Þ

with [Ca2+] in μM.

Internal calcium concentration in a shell below the membrane surface was computed using

entry via ICa and removal by a first-order pump,

d½Ca2þ�i
dt

¼ �
10; 000

2Fd
ICa þ

½Ca2þ�
1
� ½Ca2þ�i
tR

; ð22Þ

with Faraday constant F, depth of shell d = 0.1 μm and with [Ca2+]1 = 0.1μM, and τR = 80 ms.

To account for dendritic spines, the membrane capacitance and current densities were dou-

bled throughout the dendrites. An axon was lacking in the cell reconstruction and was added

as in [100].

Excitatory synaptic inputs were distributed over the membrane surface. Upon activation of

a synapse, the conductance with a reversal potential of 0 mV increased instantaneously and

subsequently decayed exponentially with a time constant of 3 ms. The PPCA1 provided 500

inputs that were distributed with uniform surface density throughout the distal apical tuft den-

drites; the SC provided 2500 inputs, distributed uniformly over basal dendrites and proximal

apical dendrites [52].

All inputs were spatially tuned on a 2.5 m long linear track over which the simulated rat

walked. The PPCA1 inputs showed periodic, grid field-like spatial tuning with periodicity ranging

from 2 to 6 grid fields along the entire track with random phase: GiðxÞ ¼ rHðcosð2pkxþ xiÞÞ,
where H is the Heaviside step function, r is the mean firing rate within the grid field, k is the

spatial frequency, and ξi is the random spatial phase offset for neuron i (for i = 1, . . ., 500).

The 2500 SC inputs showed place field-like tuning, having single, 25 cm long place fields dis-

tributed uniformly random along the track. When the virtual rat was within the place or grid

field of an SC or PPCA1 fiber, respectively, the input was activated as an independent Poisson

process with a mean rate of r = 10 spikes/s. Outside of the place/grid fields the fibers were qui-

escent. Simulations of the consolidation phase considered replay of the rat walking back and

forth along the linear track, with running speeds increased, compared to realistic speeds, by a

factor 20 (5 m/s; [13]). SC input activity to the CA1 cell was delayed by 5 ms with respect to

the PPCA1 input [101], accounting for the extra processing stages involved for information

reaching CA1 from the entorhinal cortex through DG and CA3, compared to the direct ento-

rhinal PPCA1 input.

The PPCA1 and/or SC inputs showed additive STDP, operating in the same manner as

defined around Eq (12). Post-synaptic spikes were defined as local voltage crossings of a

threshold at −30 mV. The maximum synaptic weight for the SC inputs was 400 pS and 140 pS

for the PPCA1 inputs.

The reference tuning curve shown in Fig 3F (PPCA1 inputs theory) was computed by adding

up all grid field tuning functions that had an active field in the SC-encoded spatial position

(i.e., halfway along the linear track).
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Simulations were carried out with a fixed time step of 25 μs using the NEURON simulation

software [102].

Consolidation of place-object associations in multiple hippocampal stages

The results related to Fig 4 show the acquisition and consolidation of place-object associations

in a hippocampal network model. Every day a virtual animal learns the position of one of

many possible objects in a circular open field environment. The simulations show that during

a subsequent sleep phase, replay of the hippocampal activity that is associated with runs

through this environment allows for the consolidation of the place-object association. We call

the imprinting of a new memory and the subsequent memory consolidation phase a consolida-

tion cycle. In the simulations, a place-object association learned at time t = 0 is tracked for

Ncycle consolidation cycles, i.e., nights after memory acquisition. Between consolidation cycles,

the memory in the system is assessed as described below.

Model architecture. The model consists of four neuronal layers: entorhinal cortex (EC),

dentate gyrus/CA3 (DG-CA3; note that the dentate gyrus is not explicitly included as a sepa-

rate area), CA1, and the subiculum (SUB). Each layer consists of a population of place-coding

cells and a population of object-coding cells. The connectivity is depicted in Fig 4A: EC proj-

ects to DG-CA3, which connects to CA1 (through the SC pathway), which in turn connects to

the SUB. EC provides also shortcut connections to CA1 (PPCA1 pathway) and the SUB (PPSUB

pathway).

The SC, PPCA1, and PPSUB pathways consist of four different connection types among pop-

ulations of neurons that represent either place or object: (i) from object (populations) to object

(populations), (ii) from place to place, (iii) from object to place, and (iv) from place to object.

For simplicity, the pathway from CA1 to the SUB consists only of place-to-place and object-to-

object connections, because we never store object-place or place-object associations in this

pathway. The pathway from EC to DG-CA3 was not explicitly modelled. Instead, we assumed

that the same location (of the virtual animal) is represented in both areas, but with a grid cell

code and a place cell code, respectively. We assumed that all connections have the same trans-

mission delay, which is equal to one time step D = ΔT = 5 ms in the simulation (see Table 1 for

parameter values). In practice, this meant that the activities in the SC pathway and the connec-

tion from CA1 to the SUB each had a transmission delay D relative to the activities in the con-

nections from EC to DG/CA1 and from EC to SUB.

Activities of neurons in each layer were described as firing rates and were determined by a

linear model,

yCA1
ðtÞ ¼WT

PP‐CA1
ðtÞ xECðtÞ þ VT

SC xCA3ðt � DÞ; ð23Þ

ySUBðtÞ ¼WT

PP-SUBðtÞ xECðtÞ þ VT

CA1-SUB yCA1
ðt � DÞ; ð24Þ

where xEC(t) and xCA3(t) are the activities in the input layers EC and DG-CA3, respectively,

and yCA1(t) and ySUB(t) represent the activities in the output layers CA1 and SUB, respectively.

Time is denoted by t. The symbols WPP-CA1 and WPP-SUB denote the weight matrices of the

pathways from EC to CA1 and from EC to SUB, respectively. The matrices VSC and VCA1-SUB

summarise the weights from DG-CA3 to CA1 and from CA1 to SUB, respectively, which

mediate the transmission delay D. Eqs (23) and (24) are identical in structure to Eq (1) except

that now the output is a vector (and not a scalar) and the synaptic weights are a matrix (and

not a vector).
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As already mentioned above, each neuron in a layer is assumed to primarily encode either

place or object information (see Fig 4A). To simplify the mathematical analysis, we turn to a

notation where we write a layer’s activity vector z (where z = xEC, xCA3, yCA1, or ySUB) as a con-

catenation of place and object vectors:

z ¼
zplace

zobject

" #

; ð25Þ

where the number of place- and object-coding cells is identical, dim(zplace) = dim(zobject) = N,

hence dim(z) = 2N. Correspondingly, the weight matrices M (where M = WPP-CA1, WPP-SUB,

VSC, or VCA1-SUB) are composed of four submatrices, connecting the corresponding feature

encoding sub-vectors (place-place, place-object, object-place, and object-object):

M ¼
Mplace;place Mobject;place

Mplace;object Mobject;object

2

4

3

5: ð26Þ

Associations between objects and places were initially stored in VSC as described below. To

achieve a consistency in the code for places and objects, the weights in VSC and VCA1-SUB that

connect neurons coding for the same feature (i.e., place-place or object-object) were set pro-

portional to identity matrices I,

Vplace;place
SC ¼ Vobject;object

SC ¼ wid
SCI; ð27Þ

Vplace;place
SC ¼ Vobject;object

CA1-SUB ¼ wid
CA1-SUBI : ð28Þ

Table 1. Parameters for simulations shown in Fig 4.

Ncycle 31 number of consolidation cycles

Tc 150 s consolidation time per sleep cycle

ΔT 5 ms integration time step

N 256 neurons per place- or object-coding population

Nobject 128 number of different objects

rmax 10 spikes/s maximum output firing rate

σ 0.1 size of place field standard deviation

D 5 ms transmission delay

wid
SC

1

4
weight between object-object and place-place coding cells in DG-CA3 and CA1

wid
CA1-SUB

1

2
weight between object-object and place-place coding cells in CA1 and SUB

λSC 0.6 relative strength of new place-object association in VSC

Nmem 125 number of associations stored to initialize VSC

wmax
1

N maximum weight values for WPP-CA1 and WPP-SUB

wmax
init

1

10
� wmax maximum initial weight values for WPP-CA1 and WPP-SUB

AþPP-CA1
0.05 � wmax height of potentiating learning window for WPP-CA1

A�PP-CA1
� 1:00025 � AþPP-CA1 height of depressing learning window for WPP-CA1

AþPP-SUB 0:5 � AþPP-CA1 height of potentiating learning window for WPP-SUB

A�PP-SUB 0:5 � A�PP-CA1 height of depressing learning window for WPP-SUB

τSTDP 20 ms time constants of learning window

Nequi 10 equilibration sleep phases run before the simulation starts

σnoise 4.8 noise level assumed for place inference

https://doi.org/10.1371/journal.pcbi.1009681.t001
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The scaling factors wid
SC ¼

1

4
and wid

CA1-SUB ¼
1

2
ensure that these pathways had similar impact as

the other pathways projecting to CA1 cells and SUB cells, respectively, and wid
CA1-SUB is twice as

large as wid
SC to account for the fact that only in the CA1-SUB pathway the object-place and

place-object connections were set to zero. The matrices WPP-CA1 and WPP-SUB, which repre-

sent shortcuts, were plastic during a consolidation cycle and evolved according to the learning

rule described below. Their initial values were chosen as a random permutation of an equilib-

rium state, taken from a long running previous simulation.

Place- and object-coding cells. Place-coding cells in EC and DG-CA3 were assumed to

respond deterministically, given a two-dimensional position variable p(t) 2 [0, 1]2, which

evolves in time.

Place-coding cells in entorhinal cortex show grid field spatial tuning [48], which we mod-

elled as a superposition of 3 plane waves with relative angles of p
3
:

xplace
EC;i tð Þ ¼ rmax

2

9

X3

l¼1

1

2
þ cos mik

l
iðpðtÞ � piÞ

� �
� �

; ð29Þ

where the spacingmi ¼ 2p 2þ 4i
N

� �
; 8i 2 ½1;N�; is chosen so that a total range of 2 to 6 periods

fit into the circular environment. The orientation of the plane waves is determined by the vec-

tor kli ¼ cos l p
3
þ yi

� �
; sin l p

3
þ yi

� �� �
where θi are uniformly chosen random angles, and pi 2

[0, 1]2 are uniformly sampled random phases of the grid field [49]. Each cell’s output rate var-

ies between 0 to rmax spikes per second.

Place-coding cells in DG-CA3 show place-field tuning and were assumed to have a 2D

Gaussian activity profile

xplace
CA3;iðtÞ ¼ rmax exp �

ðpðtÞ � ciÞ
2

2s2

� �

; ð30Þ

where rmax is the maximum rate, σ the field size, and ci the centre of field i. The centres ci were

chosen to lie on a regular grid.

The object-coding cells in EC and DG-CA3 respond with fixed deterministic responses

xobject
EC and xobject

CA3 to each of Nobject objects. Given that they are located in the same brain region,

we assumed that the firing-rate statistics of the object-coding cells and the place-coding cells

were similar, both in EC and CA1. This was ensured by calculating the rates of the object-cod-

ing cells in two steps. First, we used the same equations as for the place-coding cells (i.e., Eq

(29) for EC cells and Eq (30) for DG-CA3 cells) with a randomly selected “object position”

oi, i 2 {1, ‥, Nobject} for each of the Nobject objects. Subsequently the rates of the neurons within

the population were randomly permuted for each object, to avoid an artificial constraint of the

population activity onto a 2-dimensional manifold.

Imprinting of place-object associations in the SC pathway. The virtual animal learned a

single new object-to-place association each day. Storing more memories per day would not

qualitatively change the results, but would merely alter the time scale at which a given memory

is overwritten in the SC pathway. Memories were imprinted in VSC by first determining the

activities of the object-coding DG-CA3 cells and place-coding CA1 cells given a random object

and a random position where the object was encountered (see previous section). The weights

in VSC that connect object cells to place cells were then updated according to

VSC  VSC þ
lSC½xCA3yT

CA1
�
norm

1 � lSC

� �norm

; ð31Þ

where 0< λSC < 1 (numerical values of parameters are summarized in Table 1) denotes the
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strength of the new memory and controls the rate of forgetting. The symbol [M]norm denotes

the normalized version of the matrix M; the normalisation ensures that the biggest sum along

the columns of [M]norm was 1 by rescaling all entries of M with the same factor. The specific

choice of the normalisation does not alter the results. The inner norm in Eq (31) ensures the

same relative influence of different memories, irrespective of the associated activity levels. This

ensures an approximately constant rate of overwriting/forgetting. The outer norm guarantees

that the weights VSC stay bounded and hence induces forgetting. As a consequence of this

updating scheme, the memories are lost over time. Note that before we imprint a new memory

to VSC (other than on day 0 on which the place-object association is learned that is tracked

during the simulation), the place-coding cells in DG-CA3 are remapped, i.e., they are assigned

to new random positions. This corresponds to learning the new object in a new environment/

room, and effectively reduces the amount in interference between memories. Before starting

a simulation, we imprinted Nmem place-object associations to VSC to ensure an equilibrium

state.

The weights from place-to-object coding cells could be updated analogously. This would

allow to decode the identity of a stored object given a location. We did not test this direction of

the object-place association, because this is not relevant for the water maze task.

Learning rule operating on PPCA1 and PPSUB pathways. The plastic weight matrices

WPP-CA1 and WPP-SUB changed according to a timing-based learning rule [41]:

dW
dt
¼

Z 1

0

dt½LðtÞ xECðt � tÞ y
TðtÞ þ Lð� tÞ xECðtÞ y

Tðt � tÞ�; ð32Þ

where W is either WPP-CA1 or WPP-SUB, and y correspondingly yCA1 or ySUB. The learning win-

dow L(τ) defined in Eq (12) determines the learning dynamics.

Eq (32) differs from the corresponding Eq (2) in several ways. First, on the left-hand side

there is now a derivative, in contrast to the earlier version with a differential quotient; and

on the right-hand side we omit the angular brackets that indicated a temporal average.

Therefore, Eq (32) represents the instantaneous change of weights for a particular input,

which is numerically more straightforward to implement in an online-learning paradigm.

The resulting weight change for long times and many inputs approximates well Eq (2) if

consolidation is slow enough. Second, we now omit the learning rate parameter η, which is

absorbed in the definition of the parameters A+ and A− of the learning window L. Third,

there are now two addends in the integral and the integration limits are from 0 to1. This is

equivalent to the earlier definition, but more convenient for a numerical implementation.

All this allows to simplify the description of the learning dynamics, as will be outlined in

what follows.

We integrated the learning dynamics using the Euler method, with time steps ΔT equal to

the inverse pattern presentation rate. In practice, we used the standard method of calculating

pre- and postsynaptic traces x̂ and ŷ to integrate the equation

dW
dt
¼ Aþ x̂ECðtÞ y

TðtÞ þ A� xECðtÞ ŷ
TðtÞ ð33Þ

where A+ and A− again determine the maximum amount of potentiation and depression of the

synaptic weights, respectively. Note that these parameters effectively control the learning rate

and are chosen twice as large in the PPCA1 than in the PPSUB (Table 1), to increase memory

lifetime in the latter shortcut. Again, we used an exponential window function L(τ), so that
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exponentially filtered activities x̂ and ŷ can be calculated as in [98]:

tSTDP
dx̂ECðtÞ

dt
¼ xECðtÞ � x̂ECðtÞ and tSTDP

dŷðtÞ
dt
¼ yðtÞ � ŷðtÞ; ð34Þ

where τSTDP determines the width of the learning window.

Weight values are constrained to the interval [0, wmax]. The weights of WPP-CA1 and

WPP-SUB were initialized to small random values from a uniform distribution in ½0;wmax
init �.

For each iteration in a consolidation cycle of duration Tc, i.e., every ΔT = 5ms, we chose a

random input position and a random object to calculate the activities in all layers. These activi-

ties were then used to update the weights as given in Eq (33).

Assessing the strength of memories in SC, PPCA1, and PPSUB. To assess the memory

strength encoded in a pathway, we determine the activity yplace of place-coding cells (in either

CA1 or SUB) in response to an object o 2 {1, . . ., Nobjects} along the object-to-place pathway

under consideration (e.g., for PPCA1 it would be from object-coding cells in EC to place-coding

cells in CA1). From this response we decode the memorized place of the object using Bayesian

inference. However, the response is usually corrupted due to various factors such as imperfect

imprinting, consolidation, or interference with other memories. Assuming that these imper-

fections result from a superposition of many statistically independent factors, we use a Gauss-

ian likelihood:

pðyplacejpÞ ¼ N ðmðpÞ; snoiseIÞ; ð35Þ

where N is the multivariate Gaussian probability density function, σnoise is the standard devia-

tion of the noise, i.e., the imperfections. I is the identity matrix, i.e., we assumed uncorrelated

noise in the responses.

The expected activity μ(p) depends on the location p and is given by the activity that would

result from the activation of place-coding cells in EC or DG-CA3, i.e., by Eqs (30), (23) and

(24). Because the connections between place-coding cells in DG-CA3, CA1, and SUB are

scaled identity matrices, the expected activity μ(p) is essentially a place-cell code:

mðpÞ / xplace
CA3 ðpÞ: ð36Þ

To avoid a dependence on overall activity levels, μ(p) and yplace are normalized to zero mean

and unit variance.

Using Bayes’ theorem we can now calculate the posterior probabilities of the places that

coded for the given response yplace:

pðpjyplaceÞ ¼
pðyplacejpÞpðpÞ

P
p pðyplacejpÞpðpÞ ð37Þ

¼
pðyplacejpÞ

P
p pðyplacejpÞ

ðassuming a flat priorÞ ð38Þ

/ exp
� ðyplace � mðpÞÞ2

2s2
noise

� �

; ð39Þ

where for Eq (38) we used a flat prior, because the environment was uniformly sampled in the

simulations. To avoid the explicit evaluation of the sum in the denominator, we normalise the

evaluated place probabilities to sum to one. We make use of the linear relationship of the place
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response given an object (see Eqs (23) to (26)):

yplaceðoÞ ¼ ðMobject;placeÞ
TxobjectðoÞ ð40Þ

where the matrix Mobject,place is either Vobject;place
SC , Wobject;place

PP-CA1 , or Wobject;place
PP-SUB , depending on the

pathway for which the strength of the memory is assessed. This allows to compute the poste-

rior probability of the place given an object (Fig 4B and 4C):

pðpjoÞ / exp
� ðyplaceðoÞ � mðpÞÞ2

2Ns2
noise

� �

: ð41Þ

Memory consolidation over many days. To simulate a single consolidation cycle (i.e., a

storage of a new memory followed by a single consolidation phase), we alternated the imprint-

ing of a new place-object association (Eq (31)) with a consolidation phase of length Tc. Before

starting the experiments, we equilibrated the weights WPP-CA1 and WPP-SUB by simulating

Nequi consolidation cycles. At day 0 we imprinted the object ô: the memory which was tracked.

After each following consolidation phase the place probabilities along the different pathways

were calculated for object ô according to Eq (41) (see Fig 4C).

Lesion experiments. Remondes and Schuman [27] lesioned the perforant path (tempor-

oammonic pathway) during a Morris water maze consolidation experiment. Their finding evi-

denced a role of the perforant path in memory consolidation by showing that the precise time-

point of the lesion after memory acquisition determined whether the memory persisted (see

Fig 4D).

In our simulations we implemented a lesion by setting all PPCA1 weights to 0 (WPP-Ca1 = 0)

and by disabling their plasticity. Like in the experimental setup of [27], we lesioned either right

before or 21 days after presentation of object ô. For each day and lesioning protocol, the place

probabilities, Eq (41), along the pathways can then be calculated. The pathway with the highest

inferred object position probability was then selected, and the summed probabilities per quad-

rant were calculated for this pathway. To account for exploration versus exploitation (see, e.g.,

[103]) of the rats, the inferred probabilities were linearly mixed with a uniform distribution

over the quadrants. We used 70% explore versus 30% exploit for the plots in Fig 4D. Note that

we assumed that the probabilities per quadrant correspond to the time spent in each quadrant.

Consolidation in a hierarchical rate-based network

Fig 5 demonstrates the consolidation of memories in a hierarchy of connected neural popula-

tions. In the model, signals flow along distinct neocortical neural populations to the hippocam-

pal formation (HPC) and back into neocortex (black arrows in Fig 5A). Shortcut connections

exist between the neocortical populations (colored arrows in Fig 5A). All connections carry

the same transmission delay D.

Every day new memories are imprinted into the weight matrix representing the HPC. The

model describes the transfer of the memories into neocortex during Ncycle consolidation

phases, of which there is one per night (for all model parameters and values, see Table 2).

In contrast to the model for Fig 4, we do not consider object-place associations, but directly

analyse correlations between a stored memory weight matrix and the weight matrices that

describe the neocortical shortcut connections.

Model details. We consider a hierarchy of 2L neocortical populations with L = 8 shortcut

connections. Activities of the populations that project towards the HPC are given by vectors

xi(t) and the activities of the populations leading away from the HPC by vectors yi(t) (i 2
{1, . . ., L}). At each iteration, the activities xL(t) (i.e., the neocortical population most distal
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from the HPC) are sampled from a Gaussian distribution with a mean input rate r and a stan-

dard deviation r/2. The sampled activities are rectified to be non-negative (r max(r, 0)),

hence yielding a rectified Gaussian distribution. The activities on all other layers are then

determined by their respective connections. For simplicity, we assume that weight matrices

connecting subsequent populations in the hierarchy (black arrows in Fig 5A) are identity

matrices that are scaled such that activity levels remain comparable along the hierarchy (see

below). The results do not depend on this simplifying assumption. The population activities

along the HPC directed path are then given as

xi ¼ xiþ1ðt � DÞ; 8i 2 f1; ::; L � 1g: ð42Þ

In Fig 5, we modelled the HPC as a single neural population, with activities given by

yHPCðtÞ ¼ VT

HPCx1ðt � DÞ: ð43Þ

Here, VHPC is the hippocampal-formation weight matrix into which new memories are

imprinted (see below).

The first outward-directed neocortical population receives input from the HPC and

through a shortcut connection from the activities x1,

y
1
ðtÞ ¼ 1

2
WT

1
x1ðt � DÞ þ 1

2
yHPCðt � DÞ : ð44Þ

Using Eq (43), we obtain

y
1
ðtÞ ¼ 1

2
WT

1
x1ðt � DÞ þ 1

2
VT

HPCx1ðt � 2DÞ : ð45Þ

Note that Eq (45) is slightly different from Eq (1) because we have included the delay D now

also in the direct pathway, for consistency; this does not influence the learning dynamics or

the applicability of the theoretical analyses because the same delay is included in the learning

rule in Eq (48). Subsequent activities yi of populations projecting away from HPC are calcu-

lated as

yiðtÞ ¼
1

2
WT

i xiðt � DÞ þ
1

2
yi� 1
ðt � DÞ; 8i 2 f2; ::; Lg; ð46Þ

where Wi are the direct shortcut connections from the populations xi to the populations yi.

Table 2. Parameters for simulations in Fig 5.

Ncycle 1000 number of consolidation cycles

Tc 150 s consolidation time per sleep cycle

ΔT 5 ms integration time step

N 256 neurons per neuron population

L 8 number of neocortical populations

r 10 spikes/s mean firing rate

D 5 ms transmission delay

λ 0.5 relative strength of new memory to HPC weights (see Eq 47)

wmax 2/N maximum weight

Aþi 0.4 � wmax � qi−1 height of potentiating learning window for connections between populations at level i
A�i � 1:00008 � Aþi height of depressing learning window for connections between populations at level i

q 0.5 learning rate decrease factor

τSTDP 20 ms time constants of learning window (see Eq 34)

Nequi 1000 equilibration consolidation cycles run before the simulation starts

https://doi.org/10.1371/journal.pcbi.1009681.t002
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Memory imprinting to the HPC weight matrix VHPC is analogous to the imprinting used in

Fig 4 (compare Eq (31)). Before each consolidation phase, new memories were sampled from a

binomial distribution B(1, 0.5). The HPC weights were then updated as

VHPC  VHPC þ
l½Bð1; 0:5Þ�norm

1

1 � l

� �norm

1

; ð47Þ

where ½M�norm
1

denotes the L1 normalization of each row of the matrix M and 0< λ< 1 is the

strength of a new memory.

All shortcut connections Wi showed plasticity similar to Eqs (33) and (34), i.e.

dWi

dt
¼ Aþi x̂ iðt � DÞ y

T

i ðtÞ þ A
�

i xiðt � DÞ ŷ
T

i ðtÞ ð48Þ

and

tSTDP
dx̂ iðtÞ

dt
¼ xiðtÞ � x̂ iðtÞ and tSTDP

dŷ iðtÞ
dt
¼ yiðtÞ � ŷ iðtÞ; ð49Þ

with parameters τSTDP, Aþi , and A�i specified in Table 2. Weights were constrained to the inter-

val [0, wmax] with wmax ¼
2

N and N being the number of neurons per layer. Initial weights were

drawn from a uniform distribution in this interval. To increase memory lifetime in the system,

learning rates were decreased along the hierarchy such that the learning rate in layer i is

smaller than that in layer 1 by a factor qi−1. Hence, layers closer to the HPC are more plastic

than more remote layers.

Before starting the main simulation of Ncycle consolidation cycles, we equilibrated the

weight matrices by simulating Nequi consolidation cycles.

Assessing the strength of memories in neocortical weight matrices. To assess the decay

of memory in the system, a reference memory Vref, i.e. a specific realization from a row-nor-

malized binomial distribution B(1, 0.5), was imprinted according to Eq (47) to VHPC at time

t = 0. The memory pathway correlation, i.e., the Pearson correlation of this reference memory

with all shortcut weight matrices Wi was then calculated.

In analogy to the Methods on Fig 4, the maximum correlation (across layers) was taken as

the overall memory signal of the system. This yields the power law in Fig 5B. The noise level

indicated in Fig 5B is the standard deviation of the correlation between two random matrices

drawn from a binomial distribution B(1, 0.5) and then row-normalized, both having sample

size N2. Considering the central limit theorem, the noise level will be approximately 1/N.

Theoretical analysis of hierarchical consolidation

As outlined in the Results and illustrated in Fig 5, the suggested consolidation mechanism can

be hierarchically iterated and leads to power law forgetting when the learning rates in the vari-

ous pathways are suitably chosen. To get a theoretical understanding of this behaviour, let us

consider the architecture shown in the Fig 6A, which is a generalized version of Fig 5A. The

network consists of a hierarchy ofN + 1 input layers andN + 1 output layers. For mathematical

simplicity, the network is assumed to be linear (in contrast to the model described in Fig 5A,

which was nonlinear due to biologically motivated weight constraints), and the representation

in the input layers is assumed to be the same, i.e., the weight matrices between the input layers

(indicated in black in Fig 6A) are all simply the identity matrix (in contrast to the model

described in Fig 5A where the identity matrices were also scaled). Similarly, we also assume

that all weight matrices between the output layers are also the identity matrix. The mathemati-

cal derivations presented in the following can be generalized to arbitrary weight matrices both
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in the input and the output pathways, but we prefer to treat the simple case to avoid cluttered

equations and to make the theoretical approach more accessible.

We assume that due to newly acquired memories during the day, the weight matrix

W0(t) (earlier called VHPC) that represents the memory trace in the hippocampus is

varying in time, with an exponentially decaying autocorrelation function with time constant

toverwrite : htrðW0ð0Þ
TW0ðtÞÞit / expð� t=toverwriteÞ, where tr denotes the trace of a square matrix.

All other pathways that project from an input layer to an output layer are plastic according

to STDP. To derive the learning dynamics for these pathways, we first have to calculate the

activity yi in the i-th output layer,

yiðtÞ ¼
Xi

j¼0

cijW
T

j xjðt � DijÞ ; ð50Þ

where xj denotes the activity in input layer j and cij denote weighting factors that determine the

impact of the jth pathway, i.e. the indirect pathway viaWj, on output layer i. These weighting

factors are needed, because we would like to keep the weight matrices on a similar scale, but

avoid that the activity increases from one output region to the next, because more synaptic

pathways converge onto “later” output layers. The symbol Dij = 2D(i − j) (defined only for

i� j) denotes the total additional delay that is accumulated on the connection from the i-th

input layer to the i-th output layer that traverses the j-th direct “shortcut” pathway, relative to

the direct shortcut from input layer i to output layer i. For simplicity, we assumed that all con-

nections have the same delay D. In a very similar way as in Eq (3), the learning dynamics of the

Fig 6. Mathematical analysis of the hierarchical consolidation network. (A) The mathematical analysis is performed

for a network consisting of N + 1 input andN + 1 output layers. All output layers (except output layer 0) weight the

input from the previous layer with a factor α and the input via the shortcut pathway with a factor 1 − α, to ensure that

activity does not rise as increasingly many pathways converge onto the output layers. Input layer i is hence connected

to output layer i through a shortcut connection with weight matrix (1 − α)Wi (except for the bottom-most layers i = 0,

for which no factor 1 − α is required). All connections between input layers are set to the identity matrix I, and all

connections between output layers are set to αI, for notational simplicity in the derivations. The math can be

generalized to arbitrary connection matrices, as long as the network is linear. Each connection introduces a synaptic

delay of D. The multi-synaptic pathway from input layer i to output layer i via shortcut connection j 6¼ i has a total

delay of (2(i − j) + 1) � D, so the difference in delays between the pathway through shortcut i and shortcut j is Dij = 2(i −
j) � D. (B) The similarityOi of the weight matrixW0 (in which memory traces are initially stored) and the shortcut

connectionWi as a function of the time elapsed after storage (colored lines), and their maximum (black line).

Simulations shown forD = 2 ms, α = 0.8, ηi = 2−i and STDP time constant τSTDP = 40 ms.

https://doi.org/10.1371/journal.pcbi.1009681.g006
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weight matrixWi in the direct path can be written as

dWi

dt
�
DWi

T
� Zi

Xi

j¼0

cij

Z

LðtÞhxiðtÞx
T

i ðt þ t � DijÞit dt
� �

Wj ð51Þ

where ηi denotes the learning rate for the i-th pathway. For simplicity, we will assume that

the different components of the input signal vector xi(t) are uncorrelated amongst each other,

and have identical temporal autocorrelations that are also independent of the layer index:

hxiðtÞxT
i ðt þ tÞit ¼ If ðtÞ, where I is the identity matrix. The learning dynamics then simplify

to

dWi

dt
� Zi

Xi

j¼0

cijAðDijÞWj ð52Þ

with A(D) ≔
R
L(τ)f(τ − D) dτ.

To measure the degree to which a memory trace that is stored in the weight matrixW0 at

time t = 0 is still present in the j-th shortcut pathway at a later time t, we compare the weight

matrixWj(t) at time t to the weight matrixW0(0) at time t = 0. We quantify the correlation of

these two matrices by calculating the summed overlap of the column vectors:

OiðtÞ ¼ tr½W0ð0Þ
TWiðtÞ� : ð53Þ

Note that the overlaps Oi(t) are real numbers, and that their temporal dynamics for the

shortcut connections (i.e., for all i> 0) are dictated by the dynamics of the weight matrices in

the network:

d
dt
OiðtÞ ¼ tr W0ð0Þ

T dWiðtÞ
dt

� �

ð54Þ

� Zi

Xi

j¼0

cijAðDijÞ tr½W0ð0Þ
TWjðtÞ� ð55Þ

¼ Zi

Xi

j¼0

cijAðDijÞOjðtÞ : ð56Þ

To capture the exponential decay of the initially stored memories in the “hippocampal” weight

matrixW0 due to the storage of new memories, the set of dynamical equations is completed by

d
dt
O0ðtÞ ¼ �

1

toverwrite
O0ðtÞ : ð57Þ

Note that the dynamics of the overlaps Oi form a linear dynamical system.

To show that this mathematical description shows a power-law behavior akin to the simu-

lated system in Fig 5, we simulated the equations with the following parameter choices. Consis-

tent with the exponential decay of the learning rates in the simulations, we chose the learning

rates as ηi = 2−i. The weighting factors cij were chosen based on the assumption that output

layer i (for i> 0) receives a fraction α of its input from the output layer i − 1 below, and a frac-

tion 1 − α via its direct shortcut connection (associated with the weight matrixWi). Taking

into account that the signal reaching layer i through shortcut connection j traverses several of

these weighting stages (Fig 6A), this choice yields cij = αi−j for j = 0 and cij = αi−j(1 − α) for
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j> 0. Note that
Pi

j¼0
cij ¼ 1, so the activity level in different output layers should be similar.

Finally, we assume that each synaptic transmission generates a fixed delay D and that the auto-

correlation function f(τ) decays much more quickly than the STDP learning window. In this

case, we can approximate AðDijÞ ¼ exp � 2D ði� jÞ
tSTDP

� �
.

For the simulations illustrated in Fig 6, we chose τSTDP = 40 ms as the time constant of an

exponentially decaying STDP learning window for positive delays τ> 0, and we set A+ = 1 in

Eq (12). Furthermore, we used D = 2 ms. As shown in the Fig 6B, the maximum of the overlaps

Oj indeed approximates a power law decay.
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