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Immune landscape and a novel immunotherapy-related gene
signature associated with clinical outcome in early-stage lung
adenocarcinoma
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Abstract
Patients with early-stage lung adenocarcinoma (LUAD) exhibit different overall survival (OS) rates and immunotherapy re-
sponses. Understanding the immune landscape facilitates the personalized treatment of LUAD. The immune cell populations in
tumour tissues were quantified to depict the immune landscape in early-stage LUAD patients in The Cancer Genome Atlas
(TCGA). Early-stage LUAD patients in three immune clusters identified by the immune landscape exhibited different survival
potentials. A prognostic immune-related gene signature was built to predict the survival of early-stage LUAD patients. Several
machine learning methods (support vector machine, naive Bayes, random forest, and neural network-based deep learning) were
applied to train the classifiers to identify the immune clusters in early-stage LUAD based on the gene signature. The four
classifiers exhibited a robust effect in identifying the immune clusters. A random forest regression model identified that TP53
was the most important gene mutation associated with the immune-related signature. Furthermore, a decision tree and a nomo-
gram were constructed based on the immune-related gene signature and clinicopathological traits to improve risk stratification
and quantify risk assessment for individual patients. Five external test cohorts were applied to validate the accuracy of the
immune-related signature. Our study might contribute to the development of immunotherapy and the personalized treatment
of early-stage LUAD.

Key messages
& Immune landscape correlates with the clinical outcome of early-stage adenocarcinoma (LUAD).
& Machine learning methods identifies a prognostic gene signature to predict the survival and prognosis of early-stage LUAD.
& TP53 gene mutation status correlates with the immune landscape in early-stage LUAD.
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Introduction

Lung adenocarcinoma (LUAD) is one of the most complex
and heterogeneous malignancies. Its incidence has been in-
creasing in younger cohorts of males and females in recent
years [1]. Low-dose computerized tomography (CT) screen-
ing and positron emission tomography/CT screening help the
early diagnosis of LUAD. Therefore, stage I non-small cell
lung cancer patients have 5-year survival rates of 83% (stage
IA) and 71% (stage IB) [2]. However, the survival rate drops
to 50% for stage II patients due to the minimal improvement
of adjuvant chemotherapy [2]. Thus, identifying a new strate-
gy for the treatment of early-stage LUAD is urgent. One study
showed an impressive treatment effect by anti-PD-1 mAb
blockade in a small number of early-stage non-small cell lung
cancer patients in the neoadjuvant setting [3]. Moreover, some
studies revealed tremendous benefits from the checkpoint
blockade therapy in patients with a low tumour burden
[4–6]. Hence, the immune checkpoint blockade therapy serves
as a promising therapeutic strategy for early-stage LUAD. In
addition, increasing evidence indicates the important roles of
the immune microenvironment in the progression and malig-
nancy of cancers and in affecting the immunotherapy response
[4, 7, 8]. A detailed understanding of the immune microenvi-
ronment may aid in the development of immunotherapy
strategies.

In this study, we identified the immune landscape of early-
stage LUAD. Three clusters were obtained by unsupervised
clustering of the abundance of immune cell populations in
early-stage LUAD tissues. Key immune-related genes were
identified by the differentially expressed gene (DEG) analysis
among the three clusters. An immune-related gene signature
was built and assessed by several computational biology and
machine learning methods. Through detailed bioinformatics
analyses of RNA-seq data and clinical data, we describe the
association of the immune gene signature and prognosis of
early-stage LUAD patients.

Methods

Dataset preparation and data processing

The Cancer Genome Atlas (TCGA) RNA-seq datasets and
clinical data from LUAD patients were downloaded from
the UCSC Xena browser (https://xenabrowser.net/).
GSE42127, GSE37745, GSE50081, GSE29013, and
GSE72094 were downloaded from the GEO database (http://
www.ncbi.nlm.nih.gov/geo/). Early-stage LUAD patients
with TNM stages I–II were filtered by the criteria. CCLE cell

line transcriptome data were downloaded from the CCLE da-
tabase (https://portals.broadinstitute.org/ccle).

Implementation of single-sample gene set
enrichment analysis and gene ontology analysis

Single-sample gene set enrichment analysis (ssGSEA) was
performed to derive the enrichment scores of each immune-
related cell population by the R package GSVA [9]. The com-
putational approach used in our study included immune cell
types that are involved in innate immunity and adaptive im-
munity [10]. The hallmark gene sets were obtained from the
Molecular Signatures Database (MSigDB). Gene ontology
(GO) analysis was performed by using the clusterProfiler
package [7].

Differently expressed gene analysis

DEG analysis was performed by using the limma package
[11]. An empirical Bayesian approach was applied to estimate
the gene expression changes using moderated t tests. The ad-
justed p value for multiple testing was calculated using the
Benjamini-Hochberg correction. The DEGs were defined as
genes with an adjusted p value less than 0.01.

LASSO Cox regression

LASSO (least absolute shrinkage and selection operator) is an
important regularization in many regression analysis methods.
Here, we applied LASSO Cox regression. L1-norm was ap-
plied to penalize the weight of the model parameters.
Unimportant parameters shrunk to zero, and the remaining
genes were used to build a gene signature. An immune-
related signature-based risk score formula was established
by including individual normalized gene expression values
weighted by their LASSO Cox coefficients:

∑
i
Coefficient mRNAið Þ � Expression mRNAið Þ

Classifier construction

The TCGA cohort was randomly divided into training sets and
testing sets. The training sets were applied to train the three
classifiers. The object of support vector machine (SVM) was
to find a hyperplane in an N-dimensional space that distinctly
classifies the data points. Hyperplanes are decision boundaries
that help classify the data points. Support vectors are points
that are closer to the hyperplane and influence the position and
orientation of the hyperplane. Hinge loss is applied to opti-
mize the maximum margin. Random forest is a supervised
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learning algorithm. It can be used both for classification and
regression. In our analysis, we used a random forest classifi-
cation method for classifier construction and a random forest
regression method for the analysis of the association between
gene mutations and the immune-related gene signature. Naive
Bayes is a probabilistic classifier that is based on the Bayes
theorem. The neural network was performed with an activa-
tion function (Python script for the construction of the neural
network is in Doc. S1). We built the four classifiers to predict
the immune clusters in the analysis.

Random forest algorithm for feature importance
ranking

A random forest algorithm was applied to find the most crit-
ical mutations associated with the immune signature-based
risk score [12]. Briefly, the gene mutation dataset and immune
cell signature-based risk score were applied to find the most
important gene mutations associated with the immune
signature-based risk score. The ranger package was used to
find the best hyperparameter in the regression process and
build the model [13].

Decision tree and nomogram construction

A diagnostic decision tree was constructed with the rpart
package [14]. The trimming parameter was set as default. A
nomogram was constructed with the rms package [15].
Multiple Cox regression was performed to construct the
nomogram.

Immunotherapy response prediction

The TIDE website (http://tide.dfci.harvard.edu/) was used to
predict the response to immunotherapy.

Results

Immune landscape of early-stage LUAD

The early-stage LUAD cohort was obtained from the TCGA
LUAD cohort (Supplementary Table 1). The immune land-
scape of early-stage LUADwas depicted with several immune
cell populations. The abundance of 24 immune cell popula-
tions was estimated by the ssGSEA algorithm. The early-stage
LUAD tumour tissues were clustered into 3 clusters (clusters
A, B, and C) by using the hierarchical clustering method
(Fig. 1a). The association of overall survival (OS) with differ-
ent clusters of early-stage LUAD was analyzed by a pairwise
log-rank test (Fig. 1b). The results indicated that cluster C had

a favourable survival probability compared with cluster A and
cluster B. DEG analysis was performed for the three clusters.
The volcano plot in Fig. 2a shows the DEGs among each of
the clusters. The Venn diagram in Fig. 2b shows that 610
genes overlapped among all three clusters. Among the 610
genes, 271 genes were immune-related genes (Doc. S2, fil-
tered by immune-related gene list from https://www.innatedb.
com/redirect.do?go=resourcesGeneLists). The expression
levels of the 610 genes are exhibited in the heatmap in Fig.
2c. Unsupervised clustering showed similar clustering results
compared with the clustering by immune cell populations,
which revealed the potential association of the 610 genes
with the immune cell population in early-stage LUAD. GO
analysis was performed based on the 271 immune-related key
regulators in early-stage LUAD and 271 other genes (Fig. 2d
and e). The results indicated that T cell activation and T cell
differentiation were the most significant terms, which further
confirmed the association of the 610 overlapping genes with
immune regulation in early-stage LUAD.

Prognostic model construction

The 271 immune-related regulators were used to build a prog-
nostic model to predict the OS of early-stage LUAD patients.
LASSO Cox regression penalized the unimportant features in
the regularization process, and 12 features (BIRC3, RIPK2,
GSG2, TICAM2, ETS1, LCP1, KEL, CD1B, CTSW, CCR2,
CD160, and CXCR6) were finally selected for the final model
construction (Fig. 3a–b). The risk score for each patient was
calculated based on the expression level of the 12 genes with
the coefficient in the model. The risk score formula was
established as follows:
∑
i
Coefficient mRNAið Þ � Expression mRNAið Þ. The early-

stage LUAD patients were separated into a high-risk group
and a low-risk group by the median cut-off value (Fig. 3c–d).
The heatmap in Fig. 3e shows the expression level of the 12
genes. The KM plot revealed that early-stage LUAD patients
with a low-risk score had a favourable survival outcome com-
pared with patients with a high-risk score (HR = 4.32,
p < 0.001) (Fig. 3f). ssGSEAwas performed for each patient
in the early-stage LUAD cohort (Fig. 3g). The results revealed
that MTOR1 signalling, TNF-α signalling via NF-KB, hyp-
oxia, and several other pathways were highly related to the
immune-related gene signature-based risk score by using the
Spearman’s test. Hypoxia, which plays crucial roles in drug
resistance in LUAD, had a coefficient of 0.42 with the
immune-related gene signature-based risk score (Fig. 3h).
MTOR1 signalling, which contributes to the malignancy and
tumour progression of LUAD, had a coefficient of 0.45 with
the immune-related gene signature-based risk score (Fig. 3i).
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TNF-α signalling via NF-KB, which is involved in the me-
tastasis and angiogenesis of LUAD, had a coefficient of 0.43
with the immune gene signature (Fig. 3j). To further identify
the potential role of the immune-related signature-based risk
score in LUAD, we also performed ssGSEA in CCLE lung
cancer cell lines (Fig. 4a). The Spearman’s test revealed a high
correlation between the immune-related gene signature-based
risk score and TNF-α signalling via NF-kB or immune-related
pathways, which further confirmed the findings in TCGA tu-
mour tissues (Fig. 4b–c).

Construction of four classifiers for identifying
the immune status

The early-stage LUAD cohort was randomly divided into
training and testing data sets. Four classifiers, which included
naive Bayes, random forest, support vector machine, and neu-
ral network-based deep learning, were trained based on the
transcriptome data of the immune-related gene signature
(Fig. 5a). The confusion matrix depicted the prediction accu-
racy of the three classifiers in the testing data set. Figure 5b
illustrates the accuracy of the random forest classifier. The
average prediction accuracy of the four classifiers was above
0.8 in the testing set, indicating robust efficiency in identifying
different immune clusters in early-stage LUAD by the four
classifiers (Fig. 5c–f). The results above confirmed the

importance of the immune-related gene signature in the im-
mune microenvironment of early-stage LUAD.

Correlation between the immune-related signature
and somatic gene mutations

The Spearman test revealed that the correlation coefficient
was 0.15 between the immune-related gene signature-based
risk score and total mutations (Fig. 6a). A random forest re-
gression algorithm was used to identify the correlation be-
tween somatic gene mutations and the immune gene signa-
ture. A feature importance method was applied to reveal key
somatic gene mutations that are highly associated with the
immune-related gene signature. Among the 20most important
features, TP53 is the gene mutation with the greatest feature
importance (Fig. 6b).

Subgroup survival analysis

The immune-related signature serves as a promising marker to
predict overall survival in different subgroups, including fe-
male (HR = 4.94, CI 2.63–9.26, p < 0.001), male (HR = 3.79,
CI 1.8–8, p < 0.001), KRAS-wild type (KRAS-WT) (HR =
5.2, CI 2.23–12.04, p < 0.001) and KRAS-mutated (KRAS-
Mut) (HR = 5.18, CI 2.23–12.04, p < 0.001), EGFR-wild type
(EGFR-WT) (HR = 4.75, CI 2.6–8.69, p < 0.001), EGFR-
mutated (EGFR-Mut) (HR = 3.05, CI 0.95–9.78, p = 0.061),

Fig. 1 Immune landscape of early-stage LUAD and TME characteristics.
a Unsupervised clustering of early-stage LUAD tissues using ssGSEA
scores from immune cell types. The mutation status of TP53, KRAS,
TTN, MUC16, CSMD3, and EGFR; survival; sex; age; lymph node
metastasis; and TNM stage are shown as patient annotations in the lower
panel. Hierarchical clustering was performed with Euclidean distance and

Ward linkage. Three distinct immune infiltration clusters, termed cluster
A, cluster B, and cluster C, were defined. b Kaplan-Meier curves for the
OS of early-stage LUAD patients showed that the cluster C group had a
favourable outcome compared with the other groups. TME, tumour mi-
croenvironment; TCGA, The Cancer Genome Atlas; OS, overall survival
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stage I (HR = 4.81, CI 2.66–8.72, p < 0.001), stage II (HR =
6.82, CI 1.64–28.36, p = 0.008), old (> 60) (HR = 5.9, CI
2.42–14.41, p < 0.001), young (< 60) (HR = 4.14, CI 2.31–
7.4, p < 0.001), TP53-wild type (TP53-WT) (HR = 5.9, CI
2.28–10.7, p < 0.001), and TP53-mutated (TP53-Mut)
(HR = 3.72, CI 2.1–6.61, p < 0.001) patients (Fig. 7).

Risk stratification of early-stage LUAD patients
by decision tree and nomogram

The transcriptome data from patients who did not receive im-
munotherapy were used to predict the response to immuno-
therapy by TIDE. Sankey plots showed that patients with high

Fig. 2 DEG analysis identified key immune-related genes. a The volcano
plot showing the DEGs among different clusters. b The Venn diagram
showing the key immune-related genes by the overlapping of DEGs
between cluster A and cluster B, cluster B and cluster C, and cluster A

and cluster C. c The heatmap showing the expression level of the
immune-related genes and other genes in the TCGA cohort. d GO anal-
ysis based on the immune-related genes. e GO analysis based on other
genes
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immune-related signature-based risk scores had poor re-
sponses to immunotherapy and unfavourable survival out-
comes (Fig. 8a). Univariate and multivariate Cox analyses
were performed with immune signature-based risk score and
other clinicopathological features (TNM stage, TP53mutation
status, EGFR mutation status, KRAS mutation status, gender,
age). Results revealed that the risk score had greater HR than
TNM stage, age, and TP53 mutation status in both univariate
and multivariate Cox analysis, which indicated that the

immune signature-based risk score may be a promising pre-
dictor (Supplementary Table 2). A decision tree was construct-
ed to improve risk stratification for overall survival in early-
stage LUAD patients (Fig. 8b). TNM stage, TP53 mutation
status, age, and immune-related gene signature-based risk
score were applied to build the decision tree, with three dif-
ferent risk subgroups identified. Three clusters (low-risk, in-
termediate-risk, and high-risk groups) were identified as the
outcome of the decision tree. As shown in the Kaplan-Meier
curve in Fig. 8c, overall survival differed markedly among the
three risk subgroups.

With the goal of quantifying the risk assessment and surviv-
al probability for individual early-stage LUAD patients, a no-
mogram was generated with the immune-related gene
signature-based risk score together with other clinicopatholog-
ical traits (TNM stage, age, and TP53 mutation status) (Fig.
8d). The prediction line (red line 3-year survival probability
prediction, and blue line 5-year survival probability prediction)
of the nomogram was close to the ideal performance (45-
degree dotted line) in the calibration analysis (Fig. 8e), suggest-
ing a high level of accuracy of the nomogram (Fig. 8d).

Fig. 4 The correlation between the ssGSEA score and immune-related
signature-based risk score in CCLE lung cancer cell lines. a ssGSEA
revealed the most significant hallmarks correlated with the immune-
related signature in CCLE lung cancer cell lines. b The correlation

between the TNF-α signalling ssGSEA score and immune-related signa-
ture-based risk score. c The correlation between the IL-6/JAK/STAT3
signalling ssGSEA score and immune-related signature-based risk score

�Fig. 3 Construction of a prognostic immune-related gene signature. a
LASSO Cox regression with L1 regularization. b Distribution of
LASSO coefficients of the hypoxia-related gene signature. c Risk score
distribution for each patient. d Survival overview. eHeatmap showing the
expression profiles of the signature in low- and high-risk groups. f
Patients in the high-risk group exhibited worse overall survival than those
in the low-risk group. g ssGSEA revealed the most significant hallmarks
correlated with the immune-related signature. h The correlation between
the hypoxia ssGSEA score and immune-related signature-based risk
score. i The correlation between mTORC1 signalling ssGSEA score
and immune-related signature-based risk score. j The correlation between
TNF-α signalling ssGSEA score and immune-related signature-based
risk score

J Mol Med (2020) 98:805–818 811



Validation of the immune-related gene signature
in external cohorts

Five GEO datasets (GSE42127, GSE37745, GSE50081,
GSE29013, and GSE72094) were used to validate the prog-
nostic effect of the immune-related gene signature. Kaplan-
Meier analysis and Cox regression were applied in each co-
hort, showing the risk stratification capacity of the immune-
related gene signature for survival prediction (Fig. 9a–e).

Discussion

Increasing evidence shows that the immune microenviron-
ment is involved in the progression and malignancy of
LUAD [16–19]. Immunotherapy serves as a promising thera-
peutic strategy for early-stage cancer patients with a low tu-
mour burden. The objective of this study was to depict the
immune landscape of early-stage LUAD and establish a prog-
nostic and immunotherapy-relevant gene signature. With the
help of several bioinformatic and machine learning methods,

we identified and assessed the immune landscape of early-
stage LUAD. Key immune-related genes were obtained by
using the DEG analysis. A prognostic and immunotherapeutic
gene signature was identified with the key immune-related
genes. A random forest regression algorithm was applied to
identify the key gene mutations associated with the immune-
related gene signature. The decision tree and nomogram help
improve the predictive power and accuracy of the model.

Early-stage LUAD tissues were clustered into three clus-
ters. The log-rank test revealed the difference in OS of early-
stage LUAD patients in the three clusters. The above results
indicated the influence of the tumour immune microenviron-
ment on the prognosis of early-stage LUAD patients. There
were 610 genes obtained from the DEG analysis among the
three clusters. Among the 610 genes, 271 genes were
immune-related genes, which constituted a large proportion
of the total of 610 genes. We performed the GO analysis for
the immune-related genes and other genes. Strikingly, both
results showed a relationship with immune-related enrich-
ments. One study revealed that LUAD tumour tissues had a
strongly reduced CD8+ T effector/Treg ratio compared with

Fig. 5 Classifier construction based on key immune-related genes. a
Schematic diagram for training and testing the classifiers. b The relation-
ship between tree building and the error rate in the random forest classi-
fier. c The confusion matrix for the random forest classifier. d The

confusion matrix for the naive Bayes classifier. e The confusion matrix
for the support vector machine classifier. f The confusion matrix for the
neural network classifier
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normal tissues. The altered T cell ratio resulted from a signif-
icant reduction in CD8+ T cells expressing granzyme B and
IFNγ and from a significant expansion of CD39hiCD38hiPD-
1hiCTLA4hiFoxp3hi Tregs at the tumour site [18]. In our anal-
ysis, we highlighted the importance of the 610 genes in mod-
ulating T cell activation and entry into the tumour lesions.

The BIRC3 gene had the largest coefficient in the immune-
related gene signature. The primary role of BIRC3 is
inhibiting apoptosis by binding to the tumour necrosis factor
receptor-associated factors TRAF1 and TRAF2. In recent
studies, BIRC3 was identified as a gene involved in
chemoresistance in breast cancer and gliomas [20, 21]. The
TNF-α pathway controls the expression of BIRC3 and helps
protect breast cancer cells against apoptosis [22]. In our anal-
ysis, BIRC3 is one of the most important features of the
immune-related gene signature. ssGSEA showed a high cor-
relation between the immune-related gene signature-based
risk score and the TNF-α pathway. Overall, we concluded that
BIRC3 is an important key regulator that cross-links the
TNF-α pathway and immune response in early-stage
LUAD. Considering the heterogeneity in LUAD tumour tis-
sues, we also performed ssGSEA in lung cancer cell lines.
Strikingly, Spearman’s test revealed a coefficient of 0.77 be-
tween the immune-related gene signature-based risk score and

the TNF-α pathway. TNF-α pathway-mediated inflammatory
responses play decisive roles in tumour development, includ-
ing initiation, promotion, invasion, and metastasis.
Inflammatory activities in the tumour microenvironment also
affect immune surveillance and responses to therapy [23]. One
study revealed that the activation of NF-κB in immune cells
induces the production of cytokines that activate NF-κB in
cancer cells to induce chemokines that attract more inflamma-
tory cells into the tumour [24]. This protumorigenic feedback
loop contributed to tumour progression. In early-stage LUAD,
we found that TNF-α-mediated inflammation was associated
with immune activity based on the high correlation between
the TNF-α pathway and the immune-related signature.
Disrupting the crosstalk between the TNF-α pathway and
the immune responsemay be a potential target in the treatment
of early-stage LUAD. The immune response is conventionally
considered an anti-tumour mechanism. Interestingly, in our
analysis of CCLE lung cancer cell lines, the immune-related
gene signature-based risk score showed a high correlation
with the IL-6/JAK/Stat3 pathway, which is consistent with
the notion that antitumorigenic and protumorigenic immune
and inflammatorymechanisms coexist in developing tumours,
but if the tumour is not rejected, the protumorigenic effect
dominates [24]. In the tumour microenvironment, IFN-γ,

Fig. 6 The association of the immune signature with early-stage LUADgenemutations. a The correlation between the immune signature and early-stage
LUAD gene mutations. b Distribution of gene mutations correlated with the immune signature
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which is produced by cytotoxic CD8+ and CD4+ Th1 T cells,
is considered the major anti-tumour immune effectors, where-
as the cytokines IL-6, TNF, IL-1β, and IL-23, which are pro-
duced by tumour-associated macrophages or myeloid-derived
suppressive cells, are generally recognized as dominant
tumour-promoting factors [25]. In our analysis, the high cor-
relation between the immune-related gene signature-based
risk score and the IL-6/JAK/Stat3 pathway highlighted the
tumour-promoting effect of the IL-6/JAK/Stat3 pathway in
early-stage LUAD [4, 26].

To further illustrate the importance of the immune-related
gene signature in early-stage LUAD, we trained four classi-
fiers based on the transcriptome of the immune-related gene
signature. SVM, random forest, naive Bayes, and neural
network-based deep learning all showed high accuracy in
identifying the immune clusters. Taken together, the results
above revealed the strong connection between the immune-

related gene signature and the immune cell populations in
early-stage LUAD tissues.

TP53 is the most important feature associated with the
immune-related gene signature, which was identified by using
the random forest regression algorithm. TP53 mutation status
has been found to be associated with immune cell infiltration
in many cancers [27–29]. Patients with TP53 mutations
tended to have a larger immune-related gene signature-based
risk score than patients with TP53 wild type. Nonetheless, the
immune-related gene signature can stratify risk in both TP53
mutation and wild type conditions. The relationship between
TP53 and immune response may be a promising target in
early-stage LUAD patients.

In our previous study, we found that lymph node
metastasis-related biomarkers, DNA epigenetic regulation,
and other clinicopathological and molecular mechanisms
could affect the survival of LUAD patients [30, 31]. In this

Fig. 7 The subgroup survival analysis. p < 0.05 is considered as significant. HR, CI, and p value for univariate Cox analysis is shown in each survival plot
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study, we highlighted the importance of the immune land-
scape in early-stage LUAD. Through the combination of
immune-related gene signatures and other clinicopathological
features, we built a decision tree and a nomogram to stratify
high-risk early-stage LUAD patients. During the trimming
step of the decision tree, the decision tree exhibited a strong
relationship between the immune-related signature-based risk
score and the OS of early-stage LUAD patients.Moreover, the
immune-related signature also served as a prognostic factor
when constructing the nomogram. We checked the relation-
ship between the immunotherapy response and the immune-

related gene signature. Interestingly, patients who had larger
immune-related gene signature-based risk scores usually had
poor immunotherapy responses, which further validates the
prognostic value of the immune-related gene signature.

In this study, we depicted the immune landscape and
established a novel immune-related gene signature to discrim-
inate high-risk patients with early-stage LUAD. Through de-
tailed bioinformatics analyses of RNA-seq data and clinical
data, we confirmed that the immune gene signature is a pow-
erful predictor. Integrated with clinicopathological traits, we
built a decision tree to optimize risk stratification for OS and a

Fig. 8 Combination with clinicopathological traits to improve risk
stratification and survival prediction. a The association between the
immune-related signature-based risk score and immunotherapy response.
b A decision tree was constructed to improve risk stratification. c OS

differed markedly among the three risk subgroups from the decision tree.
dA nomogramwas constructed to quantify risk assessment for individual
patients. e Calibration analysis indicated a high accuracy for survival
prediction
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nomogram to quantify risk assessment for individual patients.
Our model could be a useful tool for personalized manage-
ment of early-stage LUAD patients.

Acknowledgments Open Access funding provided by Projekt DEAL.
We would like to thank Haowen Deng for helpful discussions.

Author contributions XWB and YFW conceived and designed the exper-
iments. XWB performed the analysis. XWB, RS, and YFWwrote the paper.
XWB, TYZ, and RS reviewed the draft. XWB andRS contributed equally to
the manuscript. All authors read and approved the final manuscript.

Funding information We greatly thank the China Scholarship Council
(CSC) for supporting the research and work of Xuanwen Bao (No.
201608210186), Tianyu Zhao (No. 201708120056), and Run Shi (No.
201708320347).

Data availability The datasets supporting the conclusions of this article
are available in the Xena browser (https://xenabrowser.net/) repository.

Compliance with ethical standards

Competing interests The authors declare that they have no competing
interests.

Consent for publication Not applicable.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes weremade. The images or other third party material in this article
are included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Mao Y, Yang D, He J, Krasna MJ (2016) Epidemiology of lung
cancer. Surg Oncol Clin 25(3):439–445

2. Besse B, Johnson M, Janne P, Garassino M, Eberhardt W, Peters S
et al (2015) 16LBA phase II, single-arm trial (BIRCH) of
atezolizumab as first-line or subsequent therapy for locally ad-
vanced or metastatic PD-L1-selected non-small cell lung cancer
(NSCLC). Eur J Cancer 51:S717–S7S8

3. Chaft JE, Forde PM, Smith KN, Anagnostou V, Cottrell T, Taube
JM, et al (2017) Neoadjuvant nivolumab in early-stage, resectable
non-small cell lung cancers. Am Soc Clin Oncol

4. LavinY, Kobayashi S, Leader A, Amir ED, Elefant N, Bigenwald C
et al (2017) Innate immune landscape in early lung adenocarcinoma
by paired single-cell analyses. Cell 169(4):750–65.e17

5. Gibney GT, Weiner LM, Atkins MB (2016) Predictive biomarkers
for checkpoint inhibitor-based immunotherapy. Lancet Oncol
17(12):e542–ee51

6. Huang AC, PostowMA, Orlowski RJ, Mick R, Bengsch B, Manne
S, Xu W, Harmon S, Giles JR, Wenz B, Adamow M, Kuk D,
Panageas KS, Carrera C, Wong P, Quagliarello F, Wubbenhorst
B, D’Andrea K, Pauken KE, Herati RS, Staupe RP, Schenkel JM,
McGettigan S, Kothari S, George SM, Vonderheide RH,
Amaravadi RK, Karakousis GC, Schuchter LM, Xu X, Nathanson
KL, Wolchok JD, Gangadhar TC, Wherry EJ (2017) T-cell invigo-
ration to tumour burden ratio associated with anti-PD-1 response.
Nature 545(7652):60–65

7. Fehrenbacher L, Spira A, Ballinger M, Kowanetz M, Vansteenkiste
J, Mazieres J, Park K, Smith D, Artal-Cortes A, Lewanski C,
Braiteh F, Waterkamp D, He P, Zou W, Chen DS, Yi J, Sandler A,
Rittmeyer A (2016) Atezolizumab versus docetaxel for patients
with previously treated non-small-cell lung cancer (POPLAR): a
multicentre, open-label, phase 2 randomised controlled trial.
Lancet 387(10030):1837–1846

8. Bao X, Shi R, Zhang K, Xin S, Li X, Zhao Y, et al (2019) Immune
landscape of invasive ductal carcinoma tumor microenvironment
identifies a prognostic and immunotherapeutically relevant gene
signature. Front Oncol. 2019-September-18;9(903). English

9. Hänzelmann S, Castelo R, Guinney J (2013) GSVA: gene set var-
iation analysis for microarray and RNA-seq data. BMC
Bioinformatics 14(1):7

10. Bindea G, Mlecnik B, Tosolini M, Kirilovsky A, Waldner M,
Obenauf AC, Angell H, Fredriksen T, Lafontaine L, Berger A,
Bruneval P, Fridman WH, Becker C, Pagès F, Speicher MR,
Trajanoski Z, Galon J (2013) Spatiotemporal dynamics of
intratumoral immune cells reveal the immune landscape in human
cancer. Immunity 39(4):782–795

11. Smyth GK (2005) Limma: linear models for microarray data.
Bioinformatics and computational biology solutions using R and
Bioconductor: Springer. p. 397–420

12. Bao X, Shi R, Zhang K, Xin S, Li X, Zhao Y, Wang Y (2019)
Immune landscape of invasive ductal carcinoma tumor microenvi-
ronment identifies a prognostic and Immunotherapeutically rele-
vant gene signature. Front Oncol 9:903

13. Wright MN, Ziegler A (2015) Ranger: A fast implementation of
random forests for high dimensional data in C++ and R. arXiv
preprint arXiv:150804409

14. Therneau T, Atkinson B, Ripley B, Ripley MB (2015) Package
‘rpart’. Available online: http://cran.ma.ic.ac.uk/web/packages/
rpart/rpart pdf (accessed on 20 April 2016)

15. Harrell FE Jr (2013) rms: Regression modeling strategies. R pack-
age version 4.0–0. City

16. Alifano M, Mansuet-Lupo A, Lococo F, Roche N, Bobbio A,
Canny E, Schussler O, Dermine H, Régnard JF, Burroni B, Goc J,
Biton J, Ouakrim H, Cremer I, Dieu-Nosjean MC, Damotte D
(2014) Systemic inflammation, nutritional status and tumor im-
mune microenvironment determine outcome of resected non-
small cell lung cancer. PLoS One 9(9):e106914

17. Taube JM, Klein A, Brahmer JR, Xu H, Pan X, Kim JH, Chen L,
Pardoll DM, Topalian SL, Anders RA (2014) Association of PD-1,
PD-1 ligands, and other features of the tumor immune microenvi-
ronment with response to anti–PD-1 therapy. Clin Cancer Res
20(19):5064–5074

18. Suzuki K, Kadota K, Sima CS, Nitadori J-i, Rusch VW, Travis WD
et al (2013) Clinical impact of immunemicroenvironment in stage I
lung adenocarcinoma: tumor interleukin-12 receptor β2 (IL-
12Rβ2), IL-7R, and stromal FoxP3/CD3 ratio are independent pre-
dictors of recurrence. J Clin Oncol 31(4):490

�Fig. 9 The gene signature serves as a valuable marker for poor survival in
several external cohorts. a–e Patients with higher risk scores exhibited
worse overall survival among different external cohorts

J Mol Med (2020) 98:805–818 817

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


19. Xuanwen Bao, Run Shi, Tianyu Zhao, YanfangWang, (2020) Mast
cell‐basedmolecular subtypes and signature associated with clinical
outcome in early stage lung adenocarcinoma. Molecular Oncology

20. Mendoza-Rodríguez M, Romero HA, Fuentes-Panana EM, Ayala-
Sumuano J-T, Meza I (2017) IL-1β induces up-regulation of
BIRC3, a gene involved in chemoresistance to doxorubicin in
breast cancer cells. Cancer Lett 390:39–44

21. Wang D, Berglund A, Kenchappa RS, Forsyth PA, Mulé JJ, Etame
AB (2016) BIRC3 is a novel driver of therapeutic resistance in
glioblastoma. Sci Rep 6:21710

22. Frasor J, Weaver A, Pradhan M, Dai Y, Miller LD, Lin C-Y,
Stanculescu A (2009) Positive cross-talk between estrogen receptor
and NF-κB in breast cancer. Cancer Res 69(23):8918–8925

23. Chow MT, Möller A, Smyth MJ, editors (2012) Inflammation and
immune surveillance in cancer. Seminars in cancer biology.
Elsevier

24. Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflamma-
tion, and cancer. Cell. 140(6):883–899

25. Zamarron BF, Chen W (2011) Dual roles of immune cells and their
factors in cancer development and progression. Int J Biol Sci 7(5):
651–658

26. Chang Q, Bournazou E, Sansone P, Berishaj M, Gao SP, Daly L
et al (2013) The IL-6/JAK/Stat3 feed-forward loop drives tumori-
genesis and metastasis. Neoplasia (New York, NY) 15(7):848

27. Wichmann G, Rosolowski M, Krohn K, Kreuz M, Boehm A, Reiche
A, Scharrer U, Halama D, Bertolini J, Bauer U, Holzinger D, Pawlita
M, Hess J, Engel C, Hasenclever D, Scholz M, Ahnert P, Kirsten H,
Hemprich A, Wittekind C, Herbarth O, Horn F, Dietz A, Loeffler M,
for the Leipzig Head and Neck Group (LHNG) (2015) The role of
HPV RNA transcription, immune response-related gene expression
and disruptive TP53 mutations in diagnostic and prognostic profiling
of head and neck cancer. Int J Cancer 137(12):2846–2857

28. McAlpine JN, Porter H, Köbel M, Nelson BH, Prentice LM,
Kalloger SE et al (2012) BRCA1 and BRCA2 mutations correlate
with TP53 abnormalities and presence of immune cell infiltrates in
ovarian high-grade serous carcinoma. Mod Pathol 25(5):740–750

29. Menendez D, Shatz M, Resnick MA (2013) Interactions between
the tumor suppressor p53 and immune responses. Curr Opin Oncol
25(1):85–92

30. Wang Y, Zhang Q, Gao Z, Xin S, Zhao Y, Zhang K, Shi R, Bao X
(2019) A novel 4-gene signature for overall survival prediction in
lung adenocarcinoma patients with lymph node metastasis. Cancer
Cell Int 19(1):100

31. WangY,DengH,Xin S, ZhangK, Shi R, BaoX (2019) Prognostic and
predictive value of three dna methylation signatures in lung adenocar-
cinoma. Frontiers in Genetics. 2019-April-24;10(349). English

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

J Mol Med (2020) 98:805–818818


	Immune...
	Abstract
	Abstract
	Abstract
	Introduction
	Methods
	Dataset preparation and data processing
	Implementation of single-sample gene set enrichment analysis and gene ontology analysis
	Differently expressed gene analysis
	LASSO Cox regression
	Classifier construction
	Random forest algorithm for feature importance ranking
	Decision tree and nomogram construction
	Immunotherapy response prediction

	Results
	Immune landscape of early-stage LUAD
	Prognostic model construction
	Construction of four classifiers for identifying the immune status
	Correlation between the immune-related signature and somatic gene mutations
	Subgroup survival analysis
	Risk stratification of early-stage LUAD patients by decision tree and nomogram
	Validation of the immune-related gene signature in external cohorts

	Discussion
	References




