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Abstract

Background: Lower selection intensities in indigenous breeds of Chinese pig have resulted in obvious genetic and
phenotypic divergence. One such breed, the Nanyang black pig, is renowned for its high lipid deposition and high
genetic divergence, making it an ideal model in which to investigate lipid position trait mechanisms in pigs. An
understanding of lipid deposition in pigs might improve pig meat traits in future breeding and promote the
selection progress of pigs through modern molecular breeding techniques. Here, transcriptome and tandem mass
tag-based quantitative proteome (TMT)-based proteome analyses were carried out using longissimus dorsi (LD) tissues
from individual Nanyang black pigs that showed high levels of genetic variation.

Results: A large population of Nanyang black pigs was phenotyped using multi-production trait indexes, and six
pigs were selected and divided into relatively high and low lipid deposition groups. The combined transcriptomic
and proteomic data identified 15 candidate genes that determine lipid deposition genetic divergence. Among
them, FASN, CAT, and SLC25A20 were the main causal candidate genes. The other genes could be divided into lipid
deposition-related genes (BDH2, FASN, CAT, DHCR24, ACACA, GK, SQLE, ACSL4, and SCD), PPARA-centered fat
metabolism regulatory factors (PPARA, UCP3), transcription or translation regulators (SLC25A20, PDK4, CEBPA), as well
as integrin, structural proteins, and signal transduction-related genes (EGFR).

Conclusions: This multi-omics data set has provided a valuable resource for future analysis of lipid deposition traits,
which might improve pig meat traits in future breeding and promote the selection progress in pigs, especially in
Nanyang black pigs.
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Background
In pigs, lipid deposition is a complex and economically
important trait that has evolved alongside the fattening
efficiency, meat quality, reproductive performance, and
immunity traits [1–3]. Subcutaneous, visceral, and intra-
muscular adipose tissues deposited within muscle fibers,
well known as intramuscular fat (IMF or marbling), are
the major components of the lipid deposition trait in
pigs. Although these lipid tissues have unique metabolic
mechanisms [4], they maintain a positive genetic correl-
ation with the subcutaneous, visceral, and intramuscular
adipose tissues [5–7]. Current commercial breeds such
as Landrace and Yorkshire have undergone long-term
and high-intensity selection processes for growth rate
and muscle deposition characteristics, and this has re-
sulted in a low lipid deposition trait. An improved un-
derstanding of lipid deposition in pigs might improve
pig meat quality traits for future breeding and help to
improve pig selection when using modern molecular
breeding techniques.
A comparative analysis between extreme IMF content

phenotypes in Iberian × Landrace crossbred pigs has
helped to identify genetic variant locus associated with
lipid deposition [8]. Furthermore, three pairs of full-
sibling Danish Landrace pigs with extreme opposite back-
fat thickness phenotypes were also recently compared as
well as the prenatal muscle transcriptomes of Tibetan
pigs, Wujin pigs, and large White pigs [9, 10]. Xing et al.
explored the underlying mechanisms between Songliao
black and Landrace pigs using a multi-omics approach, in-
cluding DNA-seq and RNA-seq [9, 11, 12]. Although sev-
eral studies have previously attempted to identify genes
and pathways involved in lipid deposition traits, to the
best of our knowledge, sufficient phenotyping samples are
currently lacking or do not consider the noise from the
different genetic backgrounds, especially between western
commercial and Chinese indigenous breeds.
Compared with Western commercial pigs, Chinese in-

digenous pigs exhibit a slower growth rate and less lean
meat content, but they have superior lipid deposition.
Lower selection intensity in Chinese indigenous breeds
has resulted in obvious genetic and phenotypic differen-
tiation [11]. The Nanyang black breed of pig is indigen-
ous to the central region of China [13]. Mineral content,
marble stripes, meat color, and IMF content in Nanyang
black pigs is significantly higher than those in imported
breeds (P < 0.01) [14–16]. The Nanyang black pig is,
thus, an ideal research model for lipid deposition. Con-
sidering that obesity poses an escalating health threat
worldwide, a deeper understanding of the mechanisms
underlying lipid deposition and metabolic changes would
be beneficial. To explain the differences in lipid depos-
ition, we identified pairs of Nanyang black pigs with di-
vergent lipid deposition traits and established a lipid

genetic differentiation model. Longissimus dorsi (LD)
skeletal muscle is one of the largest skeletal muscles of
the back spanning the entire thoracic and lumbar re-
gions and has previously been used to evaluate meat
quality in the meat processing industry [17, 18]. Tran-
scriptome and proteomic profiling of the longissimus
dorsi (LD) tissues from Nanyang black pigs with diver-
gent phenotypes was performed to screen candidate
genes for lipid deposition. This study focused on the
identification of candidate genes that influence lipid de-
position and provides crucial expression information for
the molecular mechanisms of adipose deposition traits
in pigs.

Results
Phenotypes of two groups of Nanyang black pigs with
divergent lipid depositions
Lipid deposition traits in the LD tissue of the Nanyang
black pigs with high-and low-lipid-depositions are shown
in Table 1 and Fig. 1. Lipid deposition-related traits such
as IMF and fat content were determined for the tissue
slices using the Soxhlet extraction process and freezing
sections and were found to be significantly different be-
tween the two groups (P < 0.05). The backfat thickness of
the live and slaughtered, TFA, and TFA/total dry matter
showed the same trend between the high and low lipid de-
position groups, although the difference was not signifi-
cant. It is of note that the significance level of the tissue
slice was higher than that from the IMF measurements.
By combining the backfat thickness, IMF, fat content in
the issue slices, and total fatty acids (TFA)/total dry matter
analyses 6 Nanyang black pigs were selected for further
analysis and identified as high-fat deposition (HF) and
low-fat deposition (LF) groups.

Transcriptomic analysis between the high and low lipid
deposition groups
The cufflinks program identified a total of 342.8 million
clean reads and approximately 94.94% of the clean reads
were mapped to the Sus scrofa genome sequence. In de-
tail, 52.9–60.4 million clean reads were obtained for each
sample, and the mapping rates ranged from 94.75 to
95.17%. The clean Q30 base rate varied from 93.96–
94.83% (Additional file 1).
By integrating the Fragments Per Kilobase of exon

model per Million mapped fragments (FPKM) values to
evaluate the gene expression levels, 25,879 genes were
identified, and calculated using the FPKM values; of
these, 16,597 were detected in all 6 pigs, and they were
referred to as positively expressed genes [19]. To deter-
mine the accuracy of the grouping, intra- and inter-
group correlation analysis was performed for the gene
expression of the six pigs, from the perspective of the
FPKM values and count numbers, respectively

Wang et al. BMC Genomics          (2021) 22:441 Page 2 of 14



(Additional file 2 A and B). Regardless of the FPKM
value or the number of genes, the high lipid deposition
group (HF01, HF02, and HF03) was clustered together
first and was clearly separated from the low lipid depos-
ition group (LF01, LF02, and LF03).
There were 481 differentially expressed genes (DEG)

identified (|log2 fold change| > 1) that were significant (q-
value < 0.01). Among them, 331 DEGs had higher expres-
sion levels in the HF group than in the LF group, while
150 DEGs displayed opposing tendencies (Fig. 2). Myosin
light chain 10 (MYL10), Contactin 2 (CNTN2), stearoyl-
CoA desaturase (SCD), and gamma-aminobutyric acid
type A receptor gamma1 subunit (GABRG1) had large
values with |log2 fold changes > 6. MRPL57 (mitochon-
drial ribosomal protein L57) was the most significantly dif-
ferentially expressed gene, with a -log(q-value) > 20.

Functional and clustering annotations of the DEGs
To further utilize the DEG information, they were fur-
ther interpreted using GO and KEGG analyses to iden-
tify the related biological functions and pathways. After
integrating the number of clustered genes and the

significance levels, skin development, collagen fibril
organization, extracellular fibril organization, TBP-class
protein binding, and proteasome-activating ATPase ac-
tivity terms were identified as among the most clustered
items (P < 0.01) (Additional file 3). KEGG analysis using
the DAVID and KOBAS tools helped to validate the 18
most clustered KEGG pathways (gene number ≥ 3, P <
0.05) (Additional file 3). Among them were multiple sig-
naling pathways that were involved in lipid formation
and metabolism, including fatty acid biosynthesis, PPAR
signaling pathway, steroid biosynthesis, fatty acid metab-
olism, Notch signaling pathway, and the AMPK signaling
pathway, which accounted for more than 50% of the sig-
nificant enrichment pathways. The most significant and
maximum number of enriched genes were in the prote-
asome. The proteasome pathway has important and
complex functions, and plays important roles in cell
cycle control, apoptosis, oxidative stress, DNA repair,
gene transcription regulation, cancer occurrence, and
signal transduction. Proteasome degradation has been
reported to participate in the relative expression of lipid
processing [20, 21]. Overall, the results of the functional

Table 1 Phenotypic data for the slaughter and meat quality of the Nanyang black pigs

Name High lipid deposition group Low lipid deposition group P-value

Age (day) 196 196 1

Live weight (kg) 91.120 88.317 0.517

Backfat thickness of live (mm) 49.120 38.033 0.074

Backfat thickness of slaughter (mm) 37.610 30.433 0.074

H2O (g/100 g) 71.997 72.523 0.474

IMF (%) 5.370 4.570 0.043

Fat content in tissue slice by Oil Red O (%) 10.010 8.070 0.027

TFA (g/100 g) 4.170 3.703 0.120

TFA/Total dry matter (%) 1.49 1.35 0.179

H2O (g/100 g): percentage of water content in total matter; IMF: intramuscular fat; Fat content in tissue slice by Oil Red O (%): percentage of Oil Red O-stained
field in total slice; TFA: total fatty acids; n = 6 in every group

Fig. 1 Oil red O staining and fatty acid analysis in longissimus dorsi (LD) tissue. A: Oil red O staining using frozen LD samples from each of the 6
pigs, HF: high-fat deposition group, LF: low-fat deposition group; B: Statistical analysis of the ratio of Oil red O-stained regions using students’ T
test. Magnification: 16 ×
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analysis revealed that large lipid deposition differences in
the two groups, and that the proteasome pathway was
the most enriched.
From the KEGG analysis, 26 candidate genes were iden-

tified to be involved in the lipid deposition-related path-
way, which included peroxisome proliferator activated
receptor alpha (PPARA), proteolipid protein 1 (PLP1),
acetyl-CoA carboxylase alpha (ACACA), GNAS complex
locus (GNAS), stearoyl-CoA desaturase (SCD), uncoupling
protein 3 (UCP3), uncoupling protein 5 (UCP5), 24-

dehydrocholesterol reductase (DHCR24), solute carrier
family 25 member 20 (SLC25A20), pyruvate dehydrogen-
ase kinase 4 (PDK4), squalene epoxidase (SQLE), secreted
frizzled related protein 2 (SFRP2), acyl-CoA synthetase
long chain family member 4 (ACSL4), CCAAT enhancer
binding protein alpha (CEBPA), glycerol kinase (GK), cata-
lase (CAT), fatty acid synthase (FASN), and epidermal
growth factor receptor (EGFR) (Fig. 3A, green rhombus).
K-means analysis in STRING was also introduced to
screen candidate genes. Clustering analysis with K = 5

Fig. 2 Transcriptome differences between the LD tissue samples from the high and low lipid deposition pigs. A: Plot showing the log2 (fold
change HF vs. LF) and the –log2 (q-value), where the red and green circles indicate the up-and down-regulated DEGs (|log2 fold change| > 1), q-
value < 0.01); B: Heat map of the DEGs in the different lipid deposition groups

Fig. 3 Gene interaction and functional clustering. A: Gene interactions with pathways, pink circle: relative pathway, green rhombus; gene
symbols; B: Gene functional clustering by STRING 11.0, yellow: lipid deposition-related gene; blue: eight PPARA-centered fat metabolism
regulatory factors; green: transcription regulators; red: proteolysis-related genes, cyan: integrin genes, structural proteins, and signal
transduction-related genes
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showed that proteolysis-related genes (red), transcription
regulators (green), integrin genes, structural proteins, sig-
nal transduction-related gene clusters (cyan), lipid
deposition-related genes (yellow), and the PPARA-
centered fat metabolism regulatory factor gene group
(blue) were enriched (Fig. 3B). All the DEGs from Fig. 3B
were used to detect the upstream regulatory TFs and mo-
tifs/tracks using iRegulon (Fig. 4). By combining candidate
genes from the lipid-related pathways and the K-means
analysis in STRING, 14 candidate genes were found to
overlap, namely, lipid metabolism genes (DHCR24,
ACACA, GK, CAT, SCD, SQLE, FASN, and ACSL4), tran-
scription regulators (PDK4, CEBPA, and SLC25A20),
PPARA-centered fat metabolism regulatory factors

(PPARA, UCP3), and a signaling transduction gene
(EGFR).

Validation of the transcriptome via qRT-PCR
The expression trends for all 14 genes in the LD tissues
were consistent with the results of the transcriptome
analysis. In addition to the ACACA gene, the expression
of the 13 genes from the BF tissue were also consistent
with the results of the transcriptome analysis (Fig. 5;
Table 2). This showed that the results from the tran-
scriptome sequencing were reliable. And the differences
in the expression trends for the ACACA gene in the
muscle and adipose tissues suggests that it may play a
special role in the development of intramuscular fat.

Fig. 4 iRegulon analysis of the DEGs from the transcriptomic analysis. All genes analyzed were previously identified in Fig. 3B. Analysis of A: 27
proteolysis-related DEGs; B: 19 transcription regulator-related DEGs; C: 16 integrin genes, structural proteins, and signal transduction-related DEGs;
D: 24 lipid deposition-related DEGs; E: 8 PPARA-centered fat metabolism regulatory factor gene-related DEGs
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TMT-based proteomic analysis between high and low
lipid deposition groups
We identified 69,815 peptide-spectrum matches (PSM) that
matched 14,317 peptides, of which 11,467 were unique single
peptides, and there were 2036 quantified proteins (Additional
file 4 A). Most of the proteins were identified by 1–10 pep-
tides (Additional file 4 B). The correlation coefficient is an
important parameter when measuring the clusters between
samples. As shown in Additional file 4 C, the variation be-
tween the biological replicates was small, especially in the
high lipid deposition group. Intra-group correlation is an im-
portant parameter when measuring reproducibility within a
group. The intra-group correlation was higher than the cor-
relation between the groups, and this could be useful for sub-
sequent data analysis.

The DEP analysis identified 99 DEPs, of which 63 were
upregulated in the HF group and 36 were downregulated
(Additional file 5). The 99 DEPs were analyzed using the
QuickGO website (Additional file 6). Most were found
to be involved in precursor metabolites and energy pro-
duction, redox reactions, phosphate metabolism pro-
cesses, phosphorylation, energy production by oxidation
of organic components, oxidative phosphorylation, cellu-
lar respiration, and electron transport (Fig. 6A). Among
them, BP had the most significant enrichment in redox
reactions, energy metabolism, and fat absorption and
metabolism, while MF had the most significant enrich-
ment in steroid hormone binding and lipid binding. The
KEGG functional enrichment analysis of the DEPs re-
vealed that the TCA cycle, pyruvate metabolism, and

Fig. 5 Gene overlapping and validation. A: Genes that overlapped between KEGG and STRING. Yellow: lipid deposition-related gene; blue: eight
PPARA-centered fat metabolism regulatory factors; green: transcription regulators; cyan: integrin genes, structural proteins, signal transduction-
related genes; B: qRT-PCR of the 14 DEGs from the LD and backfat (BF) tissues

Table 2 Log2FoldChanges from the RNA-seq and qRT-PCR analysis of 14 DEGs

log2FoldChange
in RNA-seq

q value log2FoldChange
in qRT-PCR of LD

P value log2FoldChange in qRT-PCR
of backfat tissue

P value

ACACA 2.390 7.6381E-06 1.989 0.021 −0.903 0.044

GK 1.498 0.00504505 1.468 0.040 1.566 0.027

SQLE 1.695 0.00123394 2.271 0.038 1.670 0.040

FASN 3.513 0.00887994 1.678 0.039 2.620 0.049

SCD 6.395 0.00011995 3.529 0.024 1.478 0.038

DHCR24 2.623 5.1834E-06 1.732 0.034 2.011 0.002

ACSL4 −1.360 0.00237211 − 1.623 0.030 − 1.774 0.004

CAT −1.264 0.00027508 −1.224 0.018 −1.410 0.003

PPARA 2.278 9.7765E-07 0.593 0.034 1.033 0.041

UCP3 −1.756 0.00023243 −1.564 0.040 −2.374 0.010

PDK4 −4.015 0.00096681 −2.125 0.019 −1.580 0.045

CEBPA 1.821 0.004614 2.822 0.042 1.578 0.023

SLC25A20 −1.458 0.00114154 −0.838 0.025 −1.193 0.048

EGFR 1.172 0.00289223 0.677 0.041 1.165 0.020
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PPAR signaling pathways, myocardial contraction, ke-
tone body synthesis and metabolism, HIF-1 signaling
pathway, carbon and nitrogen cycle, oxidative phosphor-
ylation, and Parkinson’s syndrome (Fig. 6B). Based on
the functional analysis of the DEPs, 9 were screened for
further analysis, including 3-hydroxybutyrate dehydro-
genase 2 (BDH2), FASN, SLC25A20, eukaryotic transla-
tion initiation factor 3 subunit E (EIF3E), CAT, periaxin
(PRX), filamin A (FLNA), transferrin receptor (TFRC),
and myelin protein zero (MPZ) (Table 3).

Candidate gene screening with the combined
transcriptome and proteome data
A Venn diagram was produced for the lipid deposition-
related candidate DEPs and DEGs, and it showed that
three genes overlapped, FASN, CAT, and SLC25A20, and

they were identified as lipid deposition related genes
(Fig. 7). While FASN and CAT displayed a consistent
tendency between the mRNA and protein, SLC25A20
displayed the opposite tendency. Moreover, several
DEGs were not detected in the proteomic analysis, in-
cluding DHCR24, ACACA, GK, and UCP3.

Discussion
Asian wild pigs were derived from ancient wild boars ap-
proximately 1.2–0.8 million years ago and the domesti-
cation of the pig in China occurred ∼9000 years ago [22,
23]. Nanyang black pigs are one of the three main Chin-
ese indigenous pig breeds in Henan Province and the
quality of their meat is higher than that of Western
commercial breeds (China National Commission of Ani-
mal Genetic Resources 2011) [15]. Lower selection

Fig. 6 Differentially expressed protein identification and function analysis. A: GO analysis of the DEPs. B: KEGG analysis of the DEPs

Table 3 Statistics for the candidate genes identified from the transcriptome and proteome

Gene
name

log2FC of
mRNA

q-
value

FC of
protein

P-
value

Annotated pathways

BDH2 −1.2750 0.0000 0.6771 0.0425 Synthesis and degradation of ketone bodies, butanoate metabolism,
Metabolic pathways

FASN 3.5126 0.0089 1.3604 0.0213 Fatty acid biosynthesis, Metabolic pathways, Insulin signaling pathway

SLC25A20 −1.4577 0.0011 0.7753 0.0326 Fatty acid oxidation, Metabolism of lipids and lipoproteins, Thermogenesis,
Fatty acid, triacylglycerol, and ketone body metabolism, Metabolic pathways,

EIF3E −1.2736 0.0007 1.2355 0.0263 RNA transport, Hepatitis C, mTOR Pathway

CAT −1.2643 0.0003 1.5619 0.0351 FoxO signaling pathway, glyoxylate and dicarboxylate metabolism, Metabolic pathways,
Carbon metabolism, Longevity regulating pathway, Amyotrophic lateral sclerosis (ALS)

PRX 1.4445 0.0042 1.3672 0.0068 Regulation of RNA splicing

FLNA 1.6611 0.0007 1.2641 0.0129 MAPK signaling pathway, Focal adhesion, Salmonella infection, Proteoglycans in cancer,
Cytoskeletal Signaling

TFRC 1.9311 0.0116 1.9358 0.0218 HIF-1 signaling pathway, Endocytosis, Phagosome, Hematopoietic cell lineage

MPZ 3.0469 0.0084 22.725 0.0280 Cell adhesion molecules (CAMs), Neural crest differentiation

log2FC of mRNA: log2FC value between HF and LF group in transcriptome; q-value: adjusted P value in transcriptome; FC of protein: fold-change value between
HF and LF group in proteomic
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intensity in Nanyang black pigs has resulted in obvious
genetic and phenotypic differentiation, especially in lipid
deposition traits [11]. Genetic diversity provides the
basic information required for research into genetics and
breeding [17, 24, 25]. Consequently, the detailed genetic
mechanisms for lipid deposition in Nanyang black pigs
requires further investigation. In the present study, live
screening was performed, and phenotypic differences be-
tween the groups were confirmed by assessing their
slaughtering backfat thickness, IMF, fatty acid, and Oil
Red O staining. The results showed that the Nanyang
black pigs were suitable to screen for genes related to fat
deposition. Subsequently, a multiple omics method was
adopted to compare high and low lipid deposition
groups sourced from a local pig breeding farm. Although
there have been several comparative studies on pig lipid
deposition and several lipid-related genes have been re-
ported, most of these investigations have been carried by
analyzing the differences between species or between
different physiological stages [3, 10, 17, 24–28].
According to the central dogma of molecular biology,

the process from genome to transcriptome to proteome
is a step-by-step process that is extremely complex and
has been perfected throughout evolution. The transcrip-
tome is sensitive and can identify almost all genes
expressed in the tissue. Here, the number of positively
expressed genes identified in this study was 16,579; how-
ever, coding genes need to be translated into proteins, so
further screening using proteomics was required. Tran-
scriptome responses may be triggered by a variety of fac-
tors, such as transcription factors [12]. While the
current sensitivity of proteomics is not currently precise

enough to detect all proteins. After database compari-
sons, the number of positively expressed proteins identi-
fied was 2036, which was lower than that of the
transcriptome. Although some DEPs (CMYA1, IGHG,
LOC100522678, and LOC100623720) were not detected
in transcript level, all of them were mot well annotated
(https://www.ncbi.nlm.nih.gov/) [29]. Theoretically, des-
pite complex post-transcriptional controls, the relation-
ship between mRNA and protein levels should be
positively correlated. Previous studies have reported a
medium or low positive correlation between the tran-
scriptome and proteome [10, 30, 31]. In this study, the
correlation index between DEGs from the RNA-seq and
DEPs from the TMT analysis was approximately 0.7
(P < 0.05), which indicates that the high-throughput data
was of high quality and the screening results were mod-
erately reliable. While the combined analysis of the tran-
scriptome and proteome data can provide more accurate
and comprehensive gene expression information than
single omics data, some genes from the single omics re-
sults were also discussed here to compliment the com-
bined results [12, 19]. Here, we have focused on
screening the candidate genes regulating lipid deposition
by combining DEGs and DEPs.
In this investigation, the DEGs and DEPs of FASN,

SLC25A20, and CAT were found to overlap. FASN,
encoded by a gene located in a QTL region associated
with fatty acid composition and involved in fatty acid
metabolism, has been widely reported as a marker gene
for lipogenesis in cattle [32], mice [33], rats [34], and
pigs [35]. FASN was expressed at significantly higher
levels in the high fatty acid group, which was in

Fig. 7 Venn plot of the candidate proteins and DEGs for lipid deposition

Wang et al. BMC Genomics          (2021) 22:441 Page 8 of 14

https://www.ncbi.nlm.nih.gov/


accordance with its fatty-accumulating functions that
were identified in previous studies [35, 36]. Consistent
expression tendencies for the FASN also helped to valid-
ate the accuracy of our multi-omics studies. CAT, a key
regulator of oxidative stress, also showed higher levels in
the high lipid deposition group. This indicates that it is
upregulated to compensate for the H2O2 accumulation
induced by the high lipid levels. Generally, the oxidative
status of pork helps to determine its pH value after
slaughter, drop loss, and IMF content [37]. Additionally,
endogenous catalase regulates the polarization of adipose
macrophages, thus inhibiting inflammation and insulin
resistance in humans [38]. Catalase-knockout mice
showed exacerbated insulin resistance, amplified oxida-
tive stress, and accelerated macrophage infiltration into
white adipose tissues [38]. Unlike FASN and SLC25A20,
CAT displayed a divergent expression pattern between
its mRNAs and proteins, indicating complex post-
transcriptome regulatory mechanisms and functional
networks either from multiple-omics [39] or CAT ana-
lysis [40]. PPAR signaling pathways were significantly
clustered with P < 0.05 in the DEPs covering FASN and
SLC25A20. SLC25A20 is a key molecule that transfers
acyl-carnitine esters to free carnitine across the mito-
chondrial membrane during mitochondrial beta-
oxidation. SLC25A20, like FABP4, ACOX1, CYP4A24,
and PDK4, is also known as a PPARA target gene, which
had a main function of fatty acid β-oxidation [41]. In all,
FASN, CAT, and SLC25A20 were all causal genes deter-
mining lipid deposition in LD.
BDH2, was also identified as a DEG and DEP; how-

ever, functional analysis of the DEGs involved in lipid
deposition missed BDH2. BDH2 is distinct from mito-
chondrial type-BDH1, as it plays a role in cytosolic ke-
tone body utilization and in secondary systems for
energy supply during starvation [42]. For lipid depos-
ition, BDH2 expression was reported to be positively as-
sociated with adiposity by generating precursors for lipid
and sterol synthesis [43, 44]. However, BDH2 is also
regarded as a fatty acid oxidation gene functioning with
CYP4A3 [45]. In the present study, the mRNA and pro-
tein levels of BDH2 were all significantly downregulated
in the high lipid deposition group, suggesting that BDH2
in the Nanyang black pigs was more likely to be related
to fatty acid oxidation and could be identified as a candi-
date gene for lipid traits. The detailed mechanisms for
these processes require further analysis. Upstream tran-
scriptional factor analysis of the 24-lipid deposition-
related genes showed that NR2F1, NR1H2, and DMRT2
were mainly clustered (NES > 5.042) by FASN, SCD,
ACSL4, CAT, and BDH2. NR2F1 and NR1H2 are best
known as nuclear oxysterol receptors and physiological
master regulators of lipid and cholesterol metabolism
[46], while DMRT2 was mainly reported as a myogenic

regulator [47]. Here, we screened three upstream tran-
scriptional factors regulating lipid deposition-related
DEGs, especially DMRT2.
Other DEGs (DHCR24, ACACA, GK, SQLE, ACSL4,

SCD, PDK4, CEBPA, EGFR, PPARA, and UCP3) were
screened using KEGG and K-means algorithms. Unfor-
tunately, the TMT-based quantitative proteomics could
not detect them. Most of them showed overlaps with
previous omics studies, especially ACACA, ACSL4, SCD,
PDK4, CEBPA, EGFR, PPARA, and UCP3 [10, 26, 48,
49]. DHCR24 and SQLE are involved in lipid metabolism
and cholesterol synthesis, as reported previously for
granulosa cells through FSH and FOXO1 [50]. The up-
regulation of GK is related to higher lipid biosynthesis
[51, 52]. In the present study, all the genes mentioned
were upregulated in the HF group, in addition to ACSL4,
UCP3, and PDK4, which had also been reported in pre-
vious investigations [32, 53]. As reported previously,
ACSL4 and UCP3 were associated with lipogenesis. It
should be noted that ACACA displayed an opposite ten-
dency in the LD and backfat tissues and high expression
levels in the HF groups LD tissue and the LF groups
backfat tissue; a similar phenomenon was observed in a
previous investigation [54]. ACACA was also a key lipo-
genic enzyme involved in hepatic lipid deposition. There
have been many controversial studies of the multiple
roles involving ACACA in mono- and poly-unsaturated
fatty acid content and performance traits [54, 55]. Sta-
chowiak et al. further reported that ACACA shows a dis-
tinct expression pattern in the subcutaneous fat and LD
muscle of Landrace pigs [56]. This indicates that
ACACA might be involved in determining the direc-
tional deposition of the lipids and this should be investi-
gated further in the future.

Conclusions
In conclusion, we identified 481 DEGs using high-
quality RNA-seq and 99 DEPs using a TMT-based quan-
titative proteomic analysis. By combining the transcrip-
tome and proteome profiles, 15 genes were identified as
being associated with genetic divergence. These genes
were divided into lipid deposition-related genes (BDH2,
FASN, CAT, DHCR24, ACACA, GK, SQLE, ACSL4, and
SCD), PPARA-centered fat metabolism regulatory fac-
tors (PPARA and UCP3), transcription or translation
regulators (SLC25A20, PDK4, and CEBPA), integrin,
structural proteins, and signal transduction-related genes
(EGFR). Among them, FASN, CAT, and SLC25A20 were
the main causal candidate genes. Upstream transcrip-
tional factor analysis validated the three-lipid deposition-
related genes NR2F1, NR1H2, and DMRT2. According
to the results obtained in the present study, the genetic
mechanisms of divergence in the Nanyang black pigs are
complex and determined by multiple genes. This study
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provides valuable information for further research of the
molecular mechanisms underlying porcine lipid depos-
ition traits, especially those for Nanyang black pigs. Tak-
ing advantage of the causal genes for lipid deposition
could improve the breeding of Nanyang black pigs and
help to preserve Chinese indigenous breeds.

Materials and methods
Ethics statement
The experimental 12 pigs used were all obtained from a
national elite reservation farm in Neixiang, MuYuan
Foods co ltd, China, as per their permission. Slaughter
and sampling were all carried out under tight supervi-
sion to minimize animal suffering. The Animal Welfare
Committee of the State Key Laboratory for Agro-
Biotechnology of the China Agricultural University ap-
proved all procedures for animal care (approval number,
SKLAB-2012-04-07). Furthermore, all experiments were
conducted in accordance with approved relevant guide-
lines and regulations during slaughter, sampling, and
sample conservation.

Animals
The Nanyang black pig population composing of 12
Nanyang black pigs was in Neixiang county of Nanyang
City and were all housed for their lifespan in the stand-
ard environmental conditions, with a natural, uncon-
trolled room temperature. All diets were formulated to
provide essential nutrients to meet NRC requirements of
China in 2012. The relative humidity and temperature of
the piglet houses were maintained at 60–65% and 25–
28 °C, respectively. The animals were fed three times a
day and had access to water ad libitum. Pedigree infor-
mation is available for all animals. Backfat thickness be-
tween the 3rd and 4th last ribs of sibling female pigs
from a pen was measured using real-time B-mode ultra-
sonography with an HS1500 convex scanner (Honda
Electronics, Toyohashi, Japan). All the twelve pigs were
slaughtered and the LD and backfat tissues were excised
and sampled for qRT-PCR. Six pigs were used for IMF
measurements, cryotome observations, and transcrip-
tome and proteome analysis. Backfat thickness was mea-
sured using Vernier calipers.

Phenotype measurements and histological observations
To evaluate the production performance of the sows, es-
pecially their lipid deposition traits, we measured IMF
using the Soxhlet extraction method, as previously de-
scribed [18, 19]. Their fatty acids were also measured
using gas chromatography-mass spectrometry (GC-MS)
(Agilent 7890A, CA, USA). Measurements of the 6 indi-
viduals were performed using three technical replicates.
Samples of LD muscle stored at − 80 °C were embedded
in optimum cutting temperature (OCT) compound and

dissected along the horizontal axis into 19–20 nm thick
pieces. The frozen sections were then stained with Oil
Red O and hematoxylin eosin for 5 min and 1min, re-
spectively [18]. Viewing and imaging were conducted
using a microscope (× 1.6; Nikon, Tokyo, Japan) in a
white field; three fields of horizon were selected ran-
domly and saved for later statistical analysis using Image
J (Version:1.8.0).

RNA extraction and sequencing
LD and backfat samples were homogenized, and RNAs
were extracted in Trizol (Invitrogen, USA) according to
the manufacturer’s instructions. Isolated total RNA was
quantified (Nanodrop, ND2000) and quality controlled
with typical curves (Agilent, Bioanalyzer 2100). Only
high-quality RNA (RNA integrity number, RIN > 7.0)
was used to construct the cDNA libraries (TruSeq RNA
Sample Preparation Guide, Illumina Inc., San Diego,
CA). All libraries were sequenced on a HiSeq 4000 (Illu-
mina Inc., San Diego, CA, USA) with PE (paired end;
150 bp). The obtained raw data were filtered to clean
data with fastp (version 0.12.3) by removing reads con-
taining adapters, low-quality reads, and reads containing
more than 5% N (default parameters), and they were
then mapped to the pig reference genome of Sus scrofa
11.1.92 (ftp://ftp.ensembl.org/pub/release-92/fasta/sus_
scrofa/dna/Sus_scrofa.Sscrofa11.1.dna.toplevel.fa.gz)
using HISAT2 (version 2.0.5) [57, 58]. The number of
fragments per kilobase of the transcripts per million
mapped reads (FPKM) was used to determine the levels
of gene expression with cufflinks (version 2.2.1) [59].
The HTSeq (version 0.6.1) [60] using “intersection-
strict” mode and a minimum alignment quality of 10
was used to construct the read counts matrix as the
DESeq2 input data. DESeq2 [61] with outlier replace-
ments and independent filtering was adopted to detect
the differentially expressed transcripts between the high
and low lipid deposition groups. The differentially
expressed genes (DEGs) between the groups were identi-
fied using a statistical significance of |log2 fold change| >
1 and q-value (adjustment for P value) < 0.01.

Functional annotation of differentially expressed genes
Gene Ontology (GO) terms and the Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathways were used to
annotate the transcriptome results. DAVID 6.8 [62] and
KOBAS3.0 [63] were adopted, and only GO terms or
KEGG pathways that were found to overlap by the two
websites were regarded as candidates (P < 0.05). More-
over, interaction networks between the DEGs were also
analyzed using STRING11.0 [64]. Clustering of the STRI
NG networks was performed using an embedded k-
means algorithm, with a number of expected clusters de-
termined empirically [65]. Furthermore, to screen the
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possible regulators or transcription factors that were ac-
tivating or inhibiting gene expressing, iRegulon v1.3. was
used to identify transcription factors regulating DEGs
expressing in silico [66]. Gene interaction diagrams were
constructed using Cytoscape 3.8.2 (http://www.
cytoscape.org/) according to the manufacturer’s
instructions.

Quantitative real-time PCR (qRT-PCR)
Total RNA was extracted for qRT-PCR analysis in the
LD and backfat tissues of the 12 pigs, which included
the high lipid group (n = 6) and the low lipid group (n =
6). In all, 14 DEGs were chosen randomly for qRT-PCR
(ACACA, GK, SQLE, FASN, SCD, DHCR24, ACSL4,
CAT, PPARA, UCP3, PDK4, CEBPA, SLC25A20, and
EGFR) (Additional file 7). Among them, ACACA, GK,
SQLE, FASN, SCD, DHCR24, PPARA, CEBPA, and EGFR
were upregulated, while ACSL4, CAT, USP3, PDK4, and
SLC25A20 were downregulated in the high-lipid group.
All experiments were performed in triplicates. Relative
gene expression levels were normalized to the levels of
GAPDH and HPRT. The 2−ΔΔCt method was used to
evaluate the relative gene expression levels [67]. All ex-
periments were carried out using the CFX96TM Real-
Time System (Bio-Rad, Hercules, CA, USA). Data are
presented as means ± standard error. The differences in
the values were evaluated using Duncan’s multiple com-
parison with a Bonferroni justification by using SAS 9.2.
The differences were considered significant at P < 0.05
and highly significant at < 0.01.

Tandem mass tag based proteomics
Isobaric tandem mass tags (TMTs) were used to detect
differentially expressed proteins (DEPs) in the pigs with
divergent lipid traits [68]. The LD tissue was digested
and labeled with TMT labels and then analyzed using li-
quid chromatography-tandem mass spectrometry (LC-
MS/MS). A six-plex TMT strategy and high-
performance liquid chromatography (HPLC) fraction-
ation of 15 times followed by LC-MS /MS using Q-
Exactive HF-X (Thermo Scientific, CA) was used to
identify the DEPs. This process allowed for three simul-
taneous replicates in a single run, guaranteeing high
confidence and robust statistics for quantitative mea-
surements [69].
The LC-MS/MS data were searched for in the “Uni-

prot_Sus scrofa_ 50068–20180925 _Uniprot.fasta” data-
base (https ://www.uniprot .org/uniprot/?query=
taxonomy:9823) using Max Quant 1.6.0.16 (Thermo
Fisher Scientific) for peptide identification and quantifi-
cation. At least two unique peptides for a unique pro-
tein, with a q-value < 0.01, were screened for further
quantification. The quantification level for the unique
peptide was corrected as the proportion of the total

intensity of the assigned peptides. Peptide-spectrum
match (PSM) filtering was performed using linear dis-
criminant analysis, as described previously [70]. Relative
protein expression levels were normalized to the median
average peptide ratio. Fold changes of > 1.2, < 0.833, and
a P < 0.05, were set as the thresholds with which to iden-
tify the DEPs. Fisher’s exact test in QuickGO (http://
www.ebi.ac.uk/QuickGO/) was used to evaluate the sig-
nificance level of the GO TERM after the DEP enrich-
ment. KEGG enrichment was carried out using KEGG
API (https://www.kegg.jp/kegg/rest/keggapi.html).

Statistical analysis
The results shown in the tables and figures represent at
least three independent trials or until reproducible re-
sults were obtained. Data are presented as the mean ±
standard error (SE). Student’s t-tests were performed
using Statistical Analysis System software (SAS, version
9.2, SAS Institute Inc., Cary NC, USA) to examine the
significance of the differential expression levels among
the groups, and the differences among the groups were
considered significant at P < 0.05 and highly significant
at P < 0.01.
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