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Toward causality and improving external validity
Peter Bühlmanna,1

“Felix, qui potuit rerum cognoscere causas,” from the
Latin poet Virgil (1), literally translated as “Fortunate,
who was able to know the causes of things,” hints at
the importance of causality since a very long time ago.
In PNAS, Bates et al. (2) start their contribution with the
sentence “The ultimate aim of genome-wide associa-
tion studies (GWAS) is to identify regions of the ge-
nome containing variants that causally affect a
phenotype of interest,” and they provide a highly in-
novative and original statistical methodology to pro-
vide sound answers to this aim. As we will argue, the
causal inference problem is ambitious, and one has to
rely on assumptions. The assumptions in ref. 2 are easy
to communicate; the ability to communicate underly-
ing assumptions makes their approach transparent,
and, in our own assessment, their assumptions are
very plausible.

When we observe correlation or dependence be-
tween some variables of interest, a main question is
about the directionality: whether one variable is the
cause or the effect of another one. Of course, it may
happen that neither is true, because of hidden con-
founding. See Fig. 1 for a schematic view where all
observed variables are exhibiting association depen-
dence between each other but these are, in part, aris-
ing due to unseen hidden factors. If we were able to
gain knowledge of causal directionality, obviously, this
would lead to much improvement in understanding
and interpretability of an underlying system. In Fig.
1, this means to infer the directed causal relations be-
tween the observed variables.

Association measures alone, like correlation or
from (multivariate potentially nonlinear) regression,
based on so-called observational data (data from the
“steady state”), cannot provide answers to direction-
ality and hence for causality in general; one needs
additional assumptions or data from other experimen-
tal design settings. A randomized control trial (RCT) is
a powerful gold standard for inferring causality, thanks
to its very special experimental design (cf. ref. 3 and
also Perturbation Data as Input). However, unfortu-
nately, this gold standard method is often infeasible

or unethical to do. In the absence of RCTs, other meth-
odology has to be used, always relying crucially on
some assumptions. Bates et al. (2) provide a highly
interesting approach with plausible assumptions for
causal inference in the particular field of GWAS; see
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Fig. 1. Observed and true system in two different
settings (A and B setting and C and D setting). Response
variable Y (phenotype) and covariates Xj ðj=1,2Þ (for
example, SNPs). (A and C) Observed variables X1,X2,Y
in blue. An undirected edge represents association
between the corresponding variables, for example, in
terms of correlation or of (nonlinear) regression
dependence (partial correlation) given all other observed
variables. (B and D) True underlying systems, with
observed variables in blue and hidden latent variable H in
red. A directed edge represents a direct causal relation
between the corresponding variables, with tail being the
cause and head being the effect (i.e., the variable which
is directly influenced by the causing variable). (A and B)
Setting where all arrows between Xj to Y in B must point
to Y, as in (most) GWAS. (C and D) The arrow direction in
D between Xj and Y can go either way, as in general
situations. The true underlying systems in B and D
generate the association dependence in A and C, in
terms of correlation or (nonlinear) regression
dependence. Looking at such associations leads to
spurious findings, that is, false positives with respect to
causality.
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below. Before discussing this, we briefly elaborate more generally
on the purpose of causality.

Main Scope of Causality
Besides having improved understanding of a mechanism, thanks
to causal knowledge, we highlight two main (additional) goals of
causal inference. They are often less ambitious and more realistic
than inferring the entire network or graph with corresponding
functional edge weights as in Fig. 1.

Predicting Specific Interventions: Treatment Effect
A classical goal of causality is prediction of an intervention or
manipulation which has not been observed before. Causality
gives quantitative answers to questions like: What would happen
if we treat a patient with a certain drug (and the treatment inter-
vention has not been done yet)? What would happen if we knock
out a certain gene (and the gene intervention has not been per-
formed yet)? Thus, causality gives an answer to a “what if I do”
question (4, 5). In many applications, having accurate predictions
to such questions is highly desirable.

Robustness against Unspecific Perturbations: External
Validity
The problem tackled in ref. 2 is perhaps not so directly related to
specific interventions, since it deals with single-nucleotide poly-
morphisms (SNPs) in GWAS where interventions on SNPs cannot
be done. As a thought experiment, however, one can still think
about what would happen to a disease status if a certain SNP were
intervened on. Our message is that, even in absence of the pos-
sibility of doing direct interventions, causal inference is highly
interesting (besides the interpretation issue mentioned above).
The main reason is that the causal structure leads to certain in-
variances and robustness, as we briefly explain next.

Most scientific studies come with the claim that findings and
results generalize to other individuals or populations and aim for
external validity. In other words, the goal is replicability of find-
ings: We want to infer results which are stable across different
subpopulations, where each of the latter may be a perturbed
version of a reference. Interestingly, such stability across different
subpopulations or different perturbations has a very intrinsic re-
lation to causality: Regression on the causal variables, the causal
solution, exhibits (some) robustness or stability against perturba-
tions arising from different subpopulations (6–8), and hence, a
causal solution with its robustness leads to improved replicability
and better external validity (in new studies, for new patients, etc.).
In our view, this is a major advantage of the approach and findings
from ref. 2: Their methodology, due to targeting causal relations,
improves external validity!

Causal Inference Methods
Inferring causality from data is an ambitious task and crucially re-
lies on the design of experiments or additional, often nontestable,
assumptions.

Perturbation Data as Input
Learning causal structure and effects is easier with access to data
from different perturbations of the system of interest. As men-
tioned already, the gold standard is a perturbation in the form of
an RCT. There, the experimenter has the ability to do an inter-
vention at a variable (being a candidate to be causal) or to assign a
treatment: The randomization breaks all dependencies between
the intervened variable and any possible hidden confounder. The

powerful conclusion is that, after randomization, if there is an ef-
fect left between the intervened or treatment variable and a re-
sponse of interest, it must be a (total) causal effect. An RCT leads
to stability and external validity of (regression or group compari-
son) effects for a large class of perturbations. This is exactly the
aim in, say, development of robust pharmacotherapy: The medi-
cation or active treatment effects should be “always” externally
valid. If an RCT is infeasible, perturbation data from (non-
randomized) specific interventions or from unspecific changes of
environment still are much more informative than having only
access to observational data. Information from perturbation data
leads to invariances and stability of (regression) effects which are
induced by the different environments but where one has not
really control over the “nature” of the perturbations which are
either harmless or harmful for inferring (regression) effects. How-
ever, roughly speaking, when observing more perturbations, one
can identify more invariance, stability, and robustness, and,
eventually, the causal structure and effects (8). Thus, the most
challenging setting for inferring causal effects happens when only
observational data from the “steady state” are available.

The Approach by Bates et al. (2) Using Observational
Data Only
The method in ref. 2 uses only observational data as input.
However, two main assumptions are exploited. First, the direc-
tionality is naturally postulated pointing from genetic SNPs to the
phenotype; that is, if there is unconfounded regression associa-
tion between a phenotype Y and an SNP variable Xj, it must be
directed Xj →Y. This is the situation in Fig. 1 A and B. The same
directionality is assumed from parental haplotypes to offspring
SNPs. Second, for inferring unconfounded regression association,
that is, the regression strength which is left after having adjusted
for potential hidden confounding, a special so-called trio design
study leads, in an elegant way, to such unconfounded regression
effects. The assumption is that the stochastic mechanism of SNPs
conditional on the parental haplotypes, that is, the corresponding
conditional distribution, is independent of other potential hidden
confounders, and this, in turn, allows the conclusion that a (po-
tentially nonlinear) regression association between an SNP and a
phenotype, given all other SNPs and the parental haplotypes,
must imply a causal dependence. This is in exact analogy to an
RCT: Conditioning on the haplotypes serves as a substitute for
randomization! Bates et al. (2) refer to this as “variation in inheri-
tance as a randomized experiment.” Both assumptions can be
clearly communicated and are very plausible, and this makes the
claimed causal findings very convincing. Of course, there can still
be violations of assumptions, and the authors mention unmea-
sured SNPs or selection bias, to name two prominent examples.
Nevertheless, overall, the methodology in ref. 2 is a huge step
forward to come closer to “true underlying causality.”

Besides the way the methodology deals with fundamental
assumptions for causality, it provides finite-sample statistical
guarantees on the false discovery or the family-wise error rate. The
main assumption here is that the model by Haldane (9) is assumed
to be “true” (i.e., a very good approximation), and the inference
techniques build on earlier beautiful work on simulating synthetic
false features which then serve for counting false positives (10, 11).

Particularly fascinating is the possibility to include external
(nontrio design) GWAS data to improve power; trio design studies
are rare and of much lower sample size than standard GWAS
studies, which may come at large scale. As illustrated in ref. 2, one
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can use any machine learning algorithm on external GWAS data to
potentially improve power while the finite-sample guarantee on
false positive detection is still valid.

Additional Thoughts
Bates et al. (2) nicely demonstrate the use of external data to
potentially enhance power for detecting causal SNPs in trio de-
sign studies. Reversing the role of using external data, one could,
and perhaps should, also use part of them to validate the results
(and not use them in the discovery phase); see also ref. 12. As
mentioned in Robustness against Unspecific Perturbations: Ex-
ternal Validity, if the inferred structure is causal, it should exhibit
some external validity on new data, ideally, across a few datasets
from different environments or subpopulations. As a proposal,
one could inspect the stability of the conditional distribution of
the phenotye given the found causal SNPs, for example, by
testing conditional independence of the phenotype and the en-
vironments given the causal phenotypes (13, 14). In particular, this
could be done with standard, nontrio design GWAS external
datasets which are available through various platforms.

In the absence of having trio design studies and in the absence
of postulating directionality (as in GWAS from SNPs to pheno-
types), the causal inference problem is much harder. Fig. 1 C and
D indicates this setting, which includes, for example, tran-
scriptomics or proteomics in biology where postulating direc-
tionality is often difficult or error prone. Perturbation data will play
a crucial role for reliably making progress toward inferring causal
structures and effects. Even when it is not possible to have ran-
domized experiments, nonrandomized perturbations help mas-
sively. For fields like molecular biology and many others,
prioritizing good candidates with respect to being causal is very
valuable, even when strict statistical confidence statements seem
out of scope (15). Clearly, such causal prioritization should be
performed by causal inference methods rather than pure associ-
ation techniques, where the latter range from simple correlation to
advanced nonlinear regression or classification machine learning.
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