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ABSTRACT

Early childhood caries (ECC) is one of the most prevalent chronic diseases affecting 
children worldwide, and thus its etiology, diagnosis, and prognosis are of particular 
clinical significance. This study aims to test the ability of salivary microbiome and 
electrolytes in diagnosing ECC, and their interplays within the same population. We 
here simultaneously profiled salivary microbiome and biochemical components of 331 
children (166 caries-free (H group) and 165 caries-active children (C group)) aged 4-6 
years. We identified both salivary microbial and biochemical dysbiosis associated with 
ECC. Remarkably, K+, Cl-, NH4

+, Na+, SO4
2-, Ca2+, Mg2+, and Br- were enriched while 

pH and NO3
- were depleted in ECC. Moreover, the dmft index (ECC severity) 

positively correlated with Cl-, NH4
+, Ca2+, Mg2+, Br-, while negatively with pH and 

NO3
-. Furthermore, machine-learning classification models were constructed based on 

these biomarkers from saliva microbiota, or electrolytes (and pH). Unexpectedly, the 
electrolyte-based classifier (AUROC = 0.94) outperformed microbiome-based 
(AUROC = 0.70) one and the composite-based one (with both microbial and bio
chemical data; AUC = 0.89) in predicting ECC. Collectively, these findings indicate 
ECC-associated alterations and interplays in the oral microbiota, electrolytes and pH, 
underscoring the necessity of developing diagnostic models with predictors from 
salivary electrolytes.
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Introduction

Early childhood caries (EEC) is one of the most 
prevalent chronic diseases of children worldwide 
[1]. Severe EEC, an aggressive form of dental caries, 
can lead to acute pain, sepsis, and potential tooth loss 
and even interfere with the children’s quality of life, 
nutrition, and school participation [2]. Most impor
tantly, once started, the damage to teeth is irreversi
ble, with ECC-affected children continuing to suffer 
from a higher risk for caries onsets and even tooth 
loss over their entire lifespan [3]. In addition, ECC 
incurs enormous societal costs [4,5]. For instance, 
some of the children who suffer from dental 

treatment-related anxiety or are challenging to treat 
successfully in the dental chair require general 
anesthesia for the treatment of caries [6]. Therefore, 
the early diagnosis and prognosis of ECC and pre
ventive intervention are of particular clinical 
significance.

For the assessment and early detection of ECC, 
visual or visual-tactile detection combining with bite- 
wing radiography has been commonly employed 
[7,8]. A commonly used method is the International 
Caries Detection and Assessment System (ICDAS), 
which has shown to be an accurate and reproducible 
method to detect early lesions based on clinical visual 
appearance [9]. Radiographs are more sensitive than 
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clinical inspection for detecting approximal lesions, 
estimating lesion depth, and monitoring lesion beha
vior [10,11]. However, this chair-side check by 
a dental explorer might not be friendly to children 
due to the discomfort of intraoral instruments. 
Moreover, radiography cannot distinguish active 
lesions from arrested ones [12]. Additionally, limita
tions of other useful tools aiding in caries detection 
are also not insignificant [13,14], such as Optical 
Coherence Tomography (OCT), Fibre-optic 
Transillumination (FOTI), and Electrical Caries 
Monitor (ECM). The principal issue of OCT is the 
lack of commercial availability due to its high cost 
and, moreover, determination of the lesion depth in 
relation to the pulp is prevented because the pulp 
chambers do not appear clearly in the OCT images 
[15]. Although FOTI offers dentists and patients 
a three-dimensional image of carious lesions, it is 
not useful for the determination of lesion size, 
depth, volume, and mineral content [16]. ECM has 
shown superior performance to FOTI and radiogra
phy in the early lesion [11], but the inconsistent 
probe contact with the tooth surface could result in 
variations in producibility [17]. The lesion activity 
assessment will assist in the treatment decision, par
ticularly when preventive options should be imple
mented [18]. Therefore, the development of risk- 
assessment methods that are objective, accurate, 
reproducible, patient-friendly, and readily accessible 
has become a top priority in this field.

ECC has been widely associated with oral micro
biome dysbiosis. Salivary microbiome dysbiosis, 
allowing the promotion of cariogenic bacteria that 
lead to sustained demineralization of tooth tissue, 
has been implicated in dental caries [19–22]. 
Evidence from our and other studies demonstrated 
that the saliva microbial biomarkers could serve as 
a non-invasive and host-friendly proxy for risk 
assessment of ECC [22,23]. However, these organis
mal markers were tested in relatively small cohorts 
(e.g. sample sizes ranging from 25 to 50), and only 
exhibited a moderate performance (e.g. area under 
the receiver operating characteristic curve (AUROC) 
ranging from 68% to 78%) in predicting dental caries 
status [20,22,23]. Surveys and validation in larger 
children cohorts that include more inter-individual 
and biogeographic heterogeneity in the oral micro
biome thus are urgently needed to refine the land
scape of critical dysbiotic microbiota 
underlying ECC.

ECC is recognized as a multifactorial disease 
mainly caused by the complex metabolic interactions 
between the oral microbiome, diet, and many host 
factors [24]. The dynamic changes of saliva electro
lytes reflect the variation of microenvironment along 

with the occurrence of ECC. In the development of 
caries, the relationship between demineralization and 
remineralization is affected by the presence of saliva, 
which promotes the transport of electrolytes, bacteria, 
and fermentable carbohydrates to the tooth surface 
[25]. Among them, Ca2+ and PO4

3- are contained in 
enamel hydroxyapatite. Once the enamel is deminer
alized, these electrolytes are released to saliva [26]. F− 

incorporated with calcium and phosphate, which is 
taken up by demineralized tooth substrate, forms 
a fluorapatite crystalline structure by remineraliza
tion, thus increasing resistance to the next acid chal
lenge [27]. Na+, K+, Mg2+ and Cl− can substitute for 
calcium and phosphate in the crystal lattice of the 
various mineral phases present in the teeth, thereby 
potentially affecting tooth demineralization and remi
neralization interaction [28,29]. NO3

− is mainly 
transported to the salivary glands, through the action 
of nitrate reductase in the oral cavity, then it is 
quickly reduced to NO2

−. These salts are rapidly 
acidified when encountering some bacteria such as 
Lactobacillus, Actinomyces, and Streptococcus mutans, 
which are related to cariogenic effects [30]. Br- has 
important functions in the formation of collagen IV 
and in the activation of α-amylase in saliva [31]. Urea 
and ammonia, which are produced by arginine-rich 
protein, play a role in maintaining a neutral pH in the 
oral cavity [32]. Thus, a comprehensive understand
ing of the dynamics of salivary constituents and 
properties in the larger children study is required 
for assessing its potential for better diagnosis and 
prediction of ECC.

Given that both oral microbiome and salivary bio
chemical environments can contribute to the etiology 
of ECC, here we further address three critical ques
tions in a 331-member Chinese cross-sectional study 
consisting of both ECC and healthy individuals. (i) 
Do saliva microbial communities assemble differen
tially at different host disease states in a large-scale 
study? (ii) Do various saliva electrolytes, pH, and 
total protein differentially distribute across disease 
states? Does ECC feature a co-occurrence network 
of saliva microbiota and electrolyte components? 
(iii) What is the predictive power of the salivary 
microbiota and electrolyte biomarkers distinguishing 
the caries children from the healthy ones?

Materials and methods

Study design

Our study involved 4 to 6 years old children enrolled 
in 22 kindergartens in China. According to the 4th 
National Oral Health Survey, the mean caries preva
lence for 4- to 6-year-old children is 70% in China. In 
a pilot study, 70% of the 4- to 6-year-old children in 
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China had at least one tooth with untreated caries 
[33]. We further estimated the sample size of the 
study employing the following formulate [34].

N ¼ 1:96ð Þ
2
� p� 1 � pð Þ=d2 

where N = sample size, p = prevalence = 70%, 
d = margin of error = 15%. Therefore, the calculated 
minimum sample size was 36 children per group. The 
sample size of our study was 331 (165 caries-active 
and 166 caries-free children), far exceeding the calcu
lated minimum sample size.

Inclusion criteria were as follows: (1) Both gen
ders, aged from around 4 to 6 years; (2) Participants 
(or legal parents or other guardians for children) 
provided informed consent; (3) Children could coop
erate with the sampling. The exclusion criteria con
sidered individuals: (1) No orthodontic treatment or 
malocclusion or severe gingival or periodontal dis
eases; (2) Absence of any systemic or congenital dis
eases, emotional or intellectual disabilities, 
developmental malformations, bacterial or severe 
infections in other parts of the body; (3) No emer
gency dental recall in the last 3 months; (4) No 
antibiotics, probiotics, professionally applied fluorine 
vanish and orthodontic appliance within the past 3 
months. The fluorine excluded in this study refers to 
the professionally applied fluoride vanish within 
3 months, while we cannot exclude the use of fluoride 
in water and dentifrice.

Local authorities and children’s parents were 
informed of the study objectives and procedures. 
Parents who agreed to the participation of their 
children signed the informed consent form accord
ing to the approval of the ethical committee of 
Qingdao University. Then, a clinical oral examina
tion was performed on those children in 22 kinder
gartens in Qingdao, China. Information about 
children’s age, gender, and whether they had used 
antibiotics, probiotics, fluoride, and dental appli
ances in the past 3 months was collected using 
questionnaires. According to the eligibility criteria, 
331 children were selected for saliva sample collec
tion, including 165 children (94 boys and 71 girls) 
diagnosed with active caries (dmft ≥ 4, C group) and 
166 healthy children (81 boys and 85 girls; dmft = 0, 
H group).

All teeth were evaluated according to the criteria 
recommended by the World Health Organization 
(WHO) using dmft index (the number of decayed, 
missing, and filled teeth in deciduous dentition for 
primary teeth) [35]. The clinical examination was 
carried out using a visual-tactile method with 
a dental mirror and WHO probe 5 s per dental sur
face under artificial light use [36]. In our study, the 
healthy group consisted of children with intact 

healthy teeth surfaces. Children with clinical signs 
of early caries or white spots were not included in 
the H group. White spot lesions were differentiated 
from developmental enamel defects simply on clinical 
grounds based on the association of the lesions with 
the area of mature plaque and location on the tooth, 
i.e. white lesion appearing to occur adjacent to the 
gingival margin, and extending along the buccal or 
lingual surfaces [37], combined with the aspect of the 
lesion when dry (white chalk looking versus dry).

Prior to the clinical data collection, the calibration 
procedures were conducted for the diagnosis of den
tal caries in a pilot study. These procedures sequen
tially involved theoretical training with the 
examination of photographs of different dental con
ditions, clinical examinations, and the determination 
of intraexaminer and interexaminer agreement. The 
process was conducted by a researcher with experi
ence in epidemiological studies involving the indices 
to be employed (gold standard). Kappa coefficients 
were calculated, with an interval of 7 days between 
two examinations for the determination of intraexa
miner agreement. The calibration procedures were 
performed on 20 children in the same age group 
until achieving excellent intraexaminer and interexa
miner agreement (>0.80).

Saliva sample collection

Saliva samples were collected at the same period, in 
the morning from 8:00 to 10:00. Children were 
required not to brush their teeth in the morning 
before sampling. No drinking or eating was allowed 
for at least 90 min before collection. Subjects sat on 
ordinary chairs and were placed in Coachman’s 
posture at the time of sampling, with their heads 
slightly downward, hands palmed on their thighs, 
and slightly forward bending. These subjects were 
asked to slowly spit natural, unstimulated saliva 
into a 50 mL centrifugal tube for 5 min. Samples 
were recorded and transferred to 4°C until the end 
of the collection. The saliva samples were centri
fuged at 3,000 rpm at room temperature for 
10 min, and the supernatant was then stored in 
a refrigerator of −80°C.

Biochemistry components analysis

The stored saliva was thawed naturally. For each 
individual, 2 mL saliva samples were taken for bio
chemistry components analysis. Saliva was centri
fuged at 13,000 rpm for 10 min and the clear 
supernatant was obtained for analysis. The pH values 
of saliva were measured by a digital pH meter. First, 
a pH 7.0 buffer was used to calibrate. Once the pH 
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electrode was immersed in one saliva samples, the 
electrode should be infiltrated into distilled water 
prior to the next test. The infiltration part of the 
electrode was wiped off with filter paper and cor
rected with the buffer of pH 7.0. An automatic 
enzyme labeling instrument determined the concen
trations of total protein in saliva. Absorbance was 
measured at 595 nm to evaluate the level of the 
total saliva protein. As for the determination of sali
vary ions, a chromatography unit was used to deter
mine concentrations using specific columns. The 
chromatography unit was calibrated with the use of 
a standard eluent. Before analysis, all samples were 
filtered through 0.45 μM membrane filters to remove 
suspended particles. The treated samples were 
injected into the ion chromatography system. The 
anions we tested included sodium (Na+), potassium 
(K+), calcium (Ca2+), ammonium salt (NH4

+), mag
nesium (Mg2+), and cations included chlorine (Cl−), 
phosphate (PO4

3-), nitrate (NO3
−), nitrite (NO2

−), 
sulfate (SO4

2-), fluoride (F−) and bromine (Br−). 
Chromatographic data were acquired and processed 
by software (Peaknet 6.2) integrated in the ion chro
matography system. Calibration and linearity checks 
were performed according to a previous protocol 
[38]. All of the above tests were performed in 
triplicate.

DNA extraction, PCR amplification, and 
sequencing of the salivary microbiome

Salivary genomic DNA was extracted by the Qiagen 
DNeasy Blood & Tissue DNA kit (Qiagen Valencia, 
CA), according to the manufacturer’s instructions 
[39,40]. Two milliliters of unstimulated saliva were 
taken into a microcentrifuge tube by centrifugation 
for 10 min at 13,000 rpm. The precipitate was re- 
suspended by buffer ALT and the mixture was incu
bated for 30 min at 37°C. Then, 20 μL of proteinase 
K was added and the mixture was incubated over
night at 56°C. Afterward, 200 μL buffer and 100 μL of 
ethanol were added. DNA yield and DNA purity were 
determined using NanoDrop ND-100 (NanoDrop 
Technologies, DE, USA), A 260/280 nm was used 
for protein contamination, and A260/230 nm for 
salt and phenol contamination. The V3-V4 region 
of the 16S ribosomal RNA (rRNA) gene was amplified 
using universal primers for pyrosequencing for all 
331 volunteers. PCR amplification reaction mixtures 
in triplicate for each sample were pooled at approxi
mately equal amounts and sequenced. The quality of 
the amplified PCR product was verified by electro
phoresis (2% agarose gel) and PCR products were 
sequenced using Roche 454 FLX Titanium (GS- 
Titanium; 454 Life Sciences, Branford, CT, USA).

Sequence analyses, OTU clustering and taxonomy 
assignment

The raw sequences were filtered based on sequence 
length, quality, primer with Trimmomatic (v0.36), 
Pear (v0.9.6), and Flash (v1.20), and the low-quality 
or chimeric sequences were removed with Vsearch 
(v2.7.1). Downstream bioinformatics analysis was 
performed using the Parallel-Meta 3 software pack
age. Both binary and source code packages are 
available at http://bioinfo.single-cell.cn/parallel- 
meta.html. Parallel-Meta 3 is popular used for 16S 
rRNA copy number calibration, diversity statistics, 
taxonomical comparison of microbial communities, 
comprehensive biomarkers selection and interac
tion network construction [41]. Clustering of the 
operational taxonomic unit (OTU) was conducted 
at 97% similarity level using the GreenGenes data
base [42]. Based on the results of OTUs, the micro
bial richness index (Chao1) and species diversity 
indices (Shannon index and Simpson index) were 
calculated to evaluate α diversity of the oral salivary 
microbiome. The distance between each pair of 
microbiota was computed based on the weighted 
and unweighted Meta-Storms algorithm [43], which 
was used to quantify the differences between any 
two samples.

S. mutans and Prevotella pallens were selected 
species for technical verification. S. mutans was 
found to be related with a variety of electrolytes in 
our study. P. pallens was not found to have 
a significant association with ECC in this study, yet 
their genus Prevetolla was associated with ECC in our 
previous study [22]. The absolute amounts of 
S. mutans were assessed by the specific qPCR primer 
Sm-F2 and Sm-R2. The primer sequence (5ʹ→3ʹ) was 
GCAGTCA 
AGGGGTGGAAATCG and TGGACGGCTTG 
TTGCAGGAATAC respectively, and the amplicon 
size was 188 bp [44]. Another primer pair for 
P. pallens was 5ʹ AGCCTGAACCAGCCAAGTAG 
and 3ʹ CATAGCATACTTA-TTCCTGGCCG. The 
gene copy number was calculated based on the stan
dard curve of each primer system with the 
LightCycler 480 software 1.5 (Roche). The relative 
abundance of S. mutans and P. pallens identified via 
qPCR was described in the following table. The cor
relation results showed that the relative abundance of 
S. mutans and P. pallens was consistent with the 
result of 16S rRNA sequencing (r = 0.64 for 
S. mutans and r = 0.72 for P. pallens, p < 0.05).

Statistical analyses

The statistical analyses were carried out via 
R (Version 2.15.0), including the chi-squared test, 
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Wilcoxon rank sum test, permutational multivariate 
analysis of variance (PERMANOVA), and Spearman 
correlation. Biochemical statistics were presented as 
mean ± standard deviation, and the chi-squared test 
compares these two groups. Indices of Shannon, 
Simpson, and Chao1 between status and gender 
were compared by the Wilcoxon rank-sum test and 
further, the correlation of the above indices and the 
dmft index were estimated using the Spearman cor
relation coefficient. The influence of disease status 
and gender on the microbial community was calcu
lated with PERMANOVA. The relative abundance 
of taxonomic groups at six phylogenetic levels 
between the C and H groups was evaluated with 
Wilcoxon rank-sum test. ‘ECC-enriched’ represents 
those microbial/biochemical indices with signifi
cantly increased relative abundance/concentration 
level in ECC children compared with healthy con
trols, while ‘ECC-depleted’ means those microbial/ 
biochemical indices with significantly decreased 
relative abundance/concentration level in ECC chil
dren compared with healthy controls. Spearman 
correlation coefficients were used to evaluate the 
correlations among saliva biochemical components, 
caries activity (dmft index), and bacterial abun
dances. A P-value less than 0.05 was considered as 
statistically significant.

Establishing the ECC diagnostic model using 
a machine learning technique

Random Forest models were trained to identify disease 
status using the default parameters of the 
R implementation of algorithm (randomForest package 
in R, ntree = 5,000, using default ‘mtry’ of p/3, where 
p is the number of input taxa). We used random 
sampling to divide the dataset into a training set 
(90%) and a testing set (10%) so that to balance each 
dataset. To construct and optimize the diagnostic 
model, models were built based on biochemical indices 
alone, microbiomes alone, and both biochemical and 
microbial indices collectively. The ‘rfcv’ function esti
mated the minimal number of top-ranking discrimina
tion taxa required for classifying over 100 iterations. 
The results were evaluated with a 10-fold cross- 
validation method and this process was repeated ten 
times. Then, the average of probability was reported as 
a result. In the 100 iterations of the algorithm, the 
sorting list of taxa was determined according to the 
order of feature importance reported by Random 
Forests. The performances of models were assessed by 
AUROC (area under the receiver operating character
istic curve), and a high area under the curve represents 
both high recall and high precision.

Data availability

The sequencing data in this study have been sub
mitted to the Microbiome Search Engine (MSE) 
[45] and NCBI Sequence Read Archive, and can be 
accessed through the project ID P_SCC0005 (http:// 
mse.single-cell.cn/index.php/mse/get_by_project/P_ 
SCC0005) and BioProject numbers PRJNA717886.

Results

Profound dysbiosis of salivary microbiota in ECC

We assigned 331 children into the C group 
(dmft = 9.01 ± 2.8; n = 165) and H group (dmft = 0; 
n = 166) according to their caries states determined 
by the dmft index [35]. There was a balanced gender 
and age distribution between the H and C groups 
(chi-squared test, p > 0.05). We qualitatively and 
quantitatively measured the differences of the sali
vary microbiota with and without ECC in microbial 
diversity and composition. Firstly, alpha diversity 
indices, including Shannon index, Simpson index, 
and Chao1, were significantly higher in the 
C group as compared with the H group 
(p = 0.0062, 0.0048, 0.0074, respectively), yet not 
associated with gender (p = 0.28, 0.35, 0.72, respec
tively; Figure 1). Next, to assess microbial structure 
alterations (i.e. beta diversity) in ECC, we calculated 
the Meta-Storm distance between all pairs of sam
ples and compared the community structures within 
and between disease states. We found that the dis
ease state was the most dominant factor explaining 
the variation in the salivary microbiomes (p = 0.001, 
F = 3.22). Moreover, the degree of variations in the 
C group was significantly less than that in the 
H group, suggesting that ECC microbiomes were 
significantly relatively similar and conserved, 
whereas the healthy ones were relatively variable 
(p = 0.03; Figure S1). Lastly, we further identified 
differentially abundant taxa (i.e. ‘ECC-enriched’ and 
‘ECC-depleted’ taxa) between two host groups at 
each of the six phylogenetic levels (i.e. phylum, 
class, order, family, genus, and species levels; 
Figure 2, S2). At the genus level, ECC children 
exhibited an increased relative abundance of 
Prevotella, Mogibacterium, or Atopobium 
(p = 8.40e-4, 8.81e-3, 1.57e-4, respectively; Figure 
2A). Moreover, a few bacterial species under these 
genera, including Prevotella melaninogenica, 
Atopobium rimae and Atopobium parvulum, 
S. mutans and Streptococcus AY020 were found to 
be enriched in the C group (p = 2.08e-4, 4.01e-4, 
7.96e-4, 9.20e-20, 5.32e-3, respectively; Figure 2B). 
Conversely, at the genus level, Porphyromonas and 
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Capnocytophaga (their representative species: 
Porphyromonas CW034 and Capnocytophaga sputi
gena) were less abundant in the C group than in the 
H group (ECC-depleted; p = 2.67e-4, 6.37e-3, 1.28e- 
5, 1.05e-3, respectively; Figure 2C) while 
Streptococcus australis/sanguinis depleted in ECC as 
well (p = 6.68e-3; Figure 2D). Furthermore, we 
found that the dmft index positively correlated 

with the relative abundance of S. mutans (ECC- 
enriched; p = 5.37e-22, rho = 0.52; Figure 3), while 
negatively correlated with Porphyromonas CW034 
(ECC-depleted; p = 0.006, rho = −0.24; Figure 3).

Figure 1.Comparison of indices of α diversity between status and gender. The p value for each comparion was present within 
the boxplot. The Shannon, Simpson, and Chao1 indices were significantly higher in the C group (p = 0.0062, 0.0048, 0.0074), 
while none of these indices were significantly different between gender (p > 0.05).
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Key saliva biochemical components underlying 
ECC pathogenesis

Next, we pinpointed a wide array of ECC-associated 
biochemical markers (i.e. the ‘ECC-enriched’ and ‘ECC- 
depleted’). The electrolytic concentrations of K+, Cl−, 
NH4

+, Na+, SO4
2-, Ca2+, Mg2+, and Br− were signifi

cantly higher in the C group (p = 6.63e-4, 1.49e-11, 
1.63e-4, 1.63e-3, 1.31e-3, 5.68e-6, 4.98e-7, 1.29e-8 
respectivelly; Table 1), while levels of pH and NO3

− 

were significantly higher in the H group (p = 9.95e-5, 
2.72e-5, respectivelly; Table 1). Among them, we identi
fied positive correlations between levels of certain ECC- 
enriched electrolytes, including Cl−, Br−, Mg2+, Ca2+ and 
NH4

+ and the dmft index (p = 2.66e-8, 2.74e-6, 2.43e-4, 
3.98e-3, 1.59e-2, respectively; rho = 0.33, 0.29, 0.24, 0.20, 
0.18, respectively; Figure 4A). In contrast, changes in the 
ECC-depleted electrolyte (NO3

−) level and pH value 
were negatively correlated with the dmft index 
(p = 4.62e-4, 2.21e-2, respectively; rho = −0.23 for pH 
value, −0.17 for NO3

− level; Figure 4B). Besides, no 
difference between the two groups was noted for the 
concentration of total protein. The relative abundance 
of S. mutans (caries-enriched taxon) showed a positive 
correlation with the concentration of Cl−, Br−, K+, and 
Mg2+ respectively (ECC-enriched electrolytes; p = 2.25e- 
8, 4.76e-5, 1.41e-2, 2.87e-2, respectively, rho = 0.35, 0.29, 
0.23, 0.22; Figure 4C), whereas Lautropia mirabillis 
positively correlated with NO3

− (ECC-depleted electro
lyte; rho = 0.24, p = 6.66e-3; Figure 4C). The abundance 
of L. mirabillis was not statistically significantly different 

between the two groups but trended to be lower in ECC 
samples.

The predictive power of the salivary electrolyte 
pool is superior to that of microbiota in 
discriminating ECC

In this study, we observed the substantial alterations 
in the saliva microbiota and the biochemical compo
sitions of the ECC group relative to those of the 
healthy controls. These findings raised three key 
questions: (i) whether we can develop the diagnostic 
model of ECC based on the biochemical profile as 
well as, if not better than, the oral microbiota; (ii) if 
yes, which feature set could offer a better prediction 
performance; (iii) whether a combined feature set, 
including both the salivary microbiomes and bio
chemical constituents, can further improve the 
model performance. To address these questions, we 
trained three sample classifiers for predicting ECC 
states using Random Forests (RF) algorithm based 
on features from oral microbiota alone, biochemical 
components alone, and a combined set to distinguish 
the ECC from the healthy control group, respectively. 
The model performance was evaluated via the area 
under the Receiver Operator Curve (AUROC) using 
a 10-fold cross-validation approach (Materials and 
methods). Then, we ranked the features by built-in 
RF importance scores in each predictive model for 
feature selection.

Figure 2.Relative abundance of significantly diverse genera and species in the C group and the H group. Each dot represented 
a sample. The H group in the blue box (n = 166), while the C group in the red one (n = 165). The ECC-enriched taxa were 
presented at the genus (A) and species (B) level, and the ECC-depleted taxa were shown at the genus (C) and species (D) level 
as well.PRINTER: Can the figures be increased to make them more readable?.
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As for the salivary microbiome data, we trained an 
RF classifier based on the genus-level profile for 
which AUROC reached 0.70 (95% CI: 63.86%- 
75.15%, accuracy = 0.65; Figure 5A). The perfor
mance improvement was maximized by employing 
the top-32 most discriminatory genera, many of 
which (e.g. Atopobium, Prevotella, Mogibacterium, 
and Neisseria) have been reported to be associated 
with dental caries (Figure 5B) [46–49]. Intriguingly, 
as compared with the oral-microbiota-based classi
fier, the ECC classifier performed better based on 
the biochemical indices, including 12 salivary 

electrolytes, pH, and total protein (AUROC = 0.94, 
95% CI: 91.50%-96.91%, accuracy = 0.89; Figure 5C). 
Consequently, 11 salivary electrolytes were selected as 
the optimal marker set, offering the best classification 
performance in the reduced model (Figure 5D). 
Unexpectedly, we found that the composite model 
only exhibited a moderate classification and did not 
outperform the electrolyte-based model 
(AUROC = 0.89, 95% CI: 85.81%-92.80%, accu
racy = 0.82; Figure 5E), suggesting that the two sets 
of salivary features could not be complementary in 
predicting ECC using the RF algorithm. In the feature 
selection, the performance in the reduced models was 
optimized when only the top six most discriminatory 
variables were employed, all of which were derived 
from salivary electrolytes (i.e. Cl−, Mg2+, Na+, NO3

−, 
Br−, NO2

−; Figure 5F).

Discussion

Saliva is considered the most crucial host-related 
factor that could affect dental caries development 
and play a key role in maintaining children’s health 
[50,51]. This study aimed to explore the value of both 
the salivary microbiome and biochemical compo
nents for ECC etiology and diagnosis. Firstly, we 
evaluated the salivary microbiome diversity and 
found that the C group exhibited a reduced microbial 
diversity compared to healthy children, reported in 
both caries children and adults [52–54]. With the 
development of caries, an ecological disruption of 
the normal, healthy bacterial community occurs 

Figure 3.Correlations between microbiome at the species level and the host’s ECC severity (i.e. dmft index). In ECC, an 
abundance of Streptococcus mutans showed a positive correlation with the dmft index; while an abundance of 
Porphyromonas CW034 showed a negative correlation with the dmft index. rho: Spearman correlation coefficient.

Table 1. Comparisons of biochemical parameters between 
the H and C group. (**: p < 0.01; ***: p < 0.001).

Saliva 
components

C group 
Mean ± SD

H group 
Mean ± SD

p value 
(Chi-squared 

test)

K+ (mg/L) 813.29 ± 224.38 748.11 ± 202.95 6.63e-4***
Cl− (mg/L) 621.68 ± 180.91 497.26 ± 120.99 1.49e-11***
NH4

+ (mg/L) 191.04 ± 63.38 165.65 ± 55.81 1.63e-4***
Na+ (mg/L) 106.24 ± 68.25 79.36 ± 38.88 1.63e-3**
SO4

2- (mg/ 
L)

21.68 ± 9.15 18.60 ± 6.04 1.31e-3**

Ca2+ (mg/L) 14.47 ± 6.01 11.48 ± 6.26 5.68e-6***
Mg2+ (mg/ 

L)
3.86 ± 2.12 3.15 ± 2 .40 4.98e-7***

Br− (mg/L) 2.19 ± 1.52 1.47 ± 0.89 1.29e-8***
TP (mg/L) 1219.26 ± 381.93 1133.45 ± 319.02 0.24 NS
PO4

3- (mg/ 
L)

472.60 ± 173.37 454.85 ± 145.24 0.24 NS

F− (mg/L) 33.43 ± 18.24 30.71 ± 15.01 0.11 NS
NO2

− (mg/ 
L)

3.00 ± 4.66 3.47 ± 4.77 0.83 NS

pH value 6.83 ± 0.19 6.88 ± 0.20 9.95e-5***
NO3

− (mg/ 
L)

13.41 ± 17.72 30.75 ± 66.27 2.72e-5***

TP, total protein 
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through glycolytic activity. Some dominant bacteria 
such as acidogenic and aciduric taxa can better adapt 
to the highly dynamic environment, thus resulting in 
the reduction of biodiversity in the oral environment. 
Moreover, we observed significant shifts in the saliva 
bacterial composition of the ECC relative to health, 
and identified both ECC-enriched taxa and ECC- 
depleted taxa. In addition to the classic cariogenic 
model of S. mutans [55,56], our study also identified 
a few novel bacteria positively associated with dental 
caries, such as Atopobium spp., Prevotella spp., and 
Neisseria spp [46,49,57,58]. Prevotella spp., which 
were consistently the main predictors of ECC 
reported in our previous studies [22]. They may 
play key roles in dentin caries progression, mainly 
involved in proteolysis and infiltrating the degrada
tion of organic matrix in dentin [59]. In contrast, the 
ECC-depleted bacterial taxa, such as Porphyromonas 
CW034 and S. sanguinis may provide a protective 
function against dental caries [55,60]. Especially, in 
the in vitro models, S. sanguinis clearly exhibited an 
antagonistic interaction with S. mutans [61]. Taken 
together, these results indicated the global alterations 
in the oral microbiota accompanying the shift from 
health to caries and highlighted the necessity of 
employing differentially abundant taxa as the diag
nostic and predictive markers.

Next, we characterized salivary constituents and 
properties, including inorganic ions (electrolytes), 

organic molecules (i.e. total protein), and physico
chemical property (i.e. pH), associated with ECC. 
Overall, ECC-affected saliva exhibited a distinct elec
trolytic pattern compared to healthy ones. For exam
ple, our results confirmed that salivary pH significantly 
decreased in caries patients and even negatively corre
lated with ECC severity [34]. It has been documented 
that, in a caries circumstance, acid-producing and 
acid-resistant bacteria thrive through the glycolytic 
activity and culminate in demineralization events of 
tooth tissue after a cariogenic challenge with frequent 
carbohydrates [1,22]. From this perspective, it is plau
sible that the promotion of hydrogen ions can be 
developed as a qualitative and quantitative indicator 
of the ECC state. Moreover, the nitrate concentration 
in saliva decreased significantly in the caries state and 
negatively correlated with ECC severity. It was 
reported that in the caries condition, nitrate tends to 
be converted to nitrite by the over-abundance anaero
bic and facultative anaerobic bacteria. Nitrite can be 
further transformed into nitrous acid, which was 
inherently unstable and easily decomposed to nitric 
oxide (NO) [62] especially in the acidic pH environ
ment [63]. It has been suggested that an individual is 
in the progress of preventing cariogenic acidogenic 
bacteria with the ability of reducing large amounts of 
nitrate to nitrite [62]. Interestingly, it is widely 
accepted that ammonium can neutralize the acid and 
decrease the H+ level of the oral the microenvironment 

Figure 4.Correlations between biochemical components and the host’s ECC severity (i.e. dmft index), as well as microbiome at 
the species level. Each point represented a sample. In ECC, (A) the concentrations of Cl−, Br−, Mg2+, Ca2+, and NH4

+ showed 
positive correlations with the dmft index, while in (B) pH, the concentration of NO3

− showed negative correlations with the dmft 
index. (C) Correlations between species and electrolytes were present. The relative abundance of Streptococcus mutans 
abundance was positively correlated with the levels of Cl−, Br−, K+, Mg2+; Lautropia mirabilis was positively correlated with the 
NO3

− level. rho: Spearman correlation coefficient. PRINTER: Can these figures be increased to make them more readable?.
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to promote remineralization processes [64]. As a result 
of a compensatory response, we found that caries 
patients had an enrichment in the electrolytic concen
tration of NH4

+ compared to healthy controls, which 
was consistent with the relevant research [65].

Saliva acts as a transporter of many ions, such as 
calcium, phosphate and fluoride, which are essential 
for the promotion of remineralization. At a normal pH, 
the calcium and phosphate in saliva are supersaturated, 
so demineralization will not occur. Acids of bacterial 
origin and acids in food or beverages tend to shift the 
balance towards mineral loss [28]. On the one hand, 
the acid-induced demineralization of enamel can pro
mote a more significant mobilization of saliva electro
lytes due to the increased mineral dissolution and the 
release of inorganic elements (e.g. Na+, Ca2+, K+, Mg2+, 
and Cl−) [66,67]. On the other hand, saliva is also 
considered as a buffering pool that could shift the 
dynamic equilibrium between demineralization and 
remineralization for controlling the dental caries activ
ity [68–70]. Inorganic components in saliva can parti
cipate in the remineralization of the apatite crystal 

structure, which directly contributes to the mainte
nance of enamel integrity and mitigating the damage 
caused by acid-producing bacteria [67,71]. Ion substi
tutions that may occur in bioapatite include substitu
tion of magnesium and sodium for calcium, 
substitution of fluorides and chlorides for hydroxyl 
sites, and carbonates for phosphate and hydroxyl sites 
[28]. These biochemical processes can raise an envir
onmental supersaturation of electrolytes (e.g. calcium 
and fluoride) around and inside the biofilm structure 
of the tooth surface [71], which can be highly indicative 
of the oral health status. Collectively, identification of 
these biochemical markers may permit a more refined 
understanding of the caries pathogenesis and clarify 
significant etiologic factors in the shift from health to 
disease.

Finally, we assessed the predictive power of the 
salivary electrolytes, pH and total protein as well as 
oral microbiota for discriminating ECC status using 
machine-learning analyses. Similar to our recent stu
dies [22], the machine-learning model based on sal
iva bacterial profiles can classify disease states with 

Figure 5.Disease classification based on salivary profiles. (A) Classification performance of Random Forest model using the 
microbial profile, (C) biochemical components, and (E) all of the variables of biochemical and microbial indices, assessed by the 
area under the receiver operating a characteristic curve with the distribution of sensitivity and specificity. (B) Microbial taxa, (D) 
biochemical components, and (F) all profiles of salivary indices with most important were ranked in descending order by their 
discriminating power to the accuracy of the model. The bar length at each row indicated the relative contribution of the taxa to 
the RF model. The inset of (B), (D) and (F) showed the relationship between the numbers of variables included in the model 
based on the saliva indices and the corresponding model performance. PRINTER: Can Figure B, D and F be increased to make 
them more readable?.
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a moderate performance. Interestingly, the predic
tive power of disease classifier based on salivary 
electrolytes outperformed that based on the oral 
microbiota. The seemingly unexpected findings pro
vide novel insights into developing ECC diagnostic 
tools using saliva samples. (i) The underexplored 
host variables may confound the oral microbiome 
association with disease and limited its predictive 
power in discriminating the disease status in 
a relatively large study. Despite the great potentials 
in predictive modeling of human diseases, studies 
also clearly demonstrated that many under-sampled 
factors (e.g. individual’s genetics, diet, lifestyle, phy
siological state, etc.) can contribute to the variation 
of the oral microbiome among individuals [72,73]. 
Among these, oral disease states can only explain less 
than 10% of the variation in the oral microbiome. 
Thus, how to detrend the effect of other confounding 
factors on saliva microbiota for developing micro
biome-based diagnostic and predictive tools for den
tal caries remains particularly challenging and merits 
further investigation [74–76]. (ii) Salivary electro
lytes and pH can be more sensitive to the physiolo
gical changes on the tooth surfaces than oral 
microbiota. ECC is essentially an outcome of the 
continuous demineralization of the crystalline 
mineral structure of the dental hard issues [77,78]. 
From this perspective, saliva electrolytes should be 
highly indicative of the speed and direction of the 
cariogenic pathways in the disease development (i.e. 
de- and re-mineralization dynamic process) [78,79]. 
Moreover, electrolytes are more stable in salivary 
fluid and relate to the ultimate products of complex 
metabolic interactions between host and microbiome 
[80]. From the perspective of clinical practice, the 
electrolyte-based diagnostic model should merit 
more attention in the future study. Finally, consider
ing the simplicity, efficiency and cost-effectiveness of 
a diagnostic or prediction tool of ECC in the clinical 
practice, oral microbiome profiling still have appar
ent limitations. For example, it heavily relies on 
DNA sequencing, which is subject to time- 
consuming and cost issues. These limitations hamper 
its broad applications to the on-site disease diagnosis 
or prediction in the clinical settings. In contrast, the 
ECC diagnostic model based on salivary biochemical 
indices is a more patient- and doctor-friendly 
method and holds the potential to be developed as 
a remote and automated approach [81].

However, there are also limitations that should be 
emphasized. First, we only analyzed saliva samples, 
but we have no idea of plaque samples, which could 
provide different results. Second, we compared pH 
values, total protein, and some specific electrolytes, 
but the metabolites were not measured. Third, func
tional information of the microbiome was unre
vealed. Lastly, our research is a preliminary 

exploratory experiment to understand the ability of 
saliva biochemical indicators and microbiome to dis
tinguish caries and health and provide ideas and new 
biomarkers for risk assessment. In the subsequent 
work, we will conduct follow-up studies including 
more indices and following up the survey to evaluate 
the predictive power of these markers on caries.

In summary, our study showed that the microbial 
abundance and electrolytic concentration differed 
between ECC and healthy individuals and these bio
markers also exhibited strong correlations with disease 
severity. The ECC diagnostic models were established 
and compared based on the quantitative profiles of 
saliva microbial and biochemical compositions. Saliva 
samples are host-friendly and straightforward for mon
itoring and evaluating caries risk regularly and effec
tively. The classifier based on biochemical features 
outperformed the salivary microbiomes-based and 
composite-based one (both microbial and biochemical 
data) in predicting the ECC status. The salivary elec
trolyte levels can reflect the balance of demineralization 
and remineralization in the micro-environment that is 
positively associated with the onset and progression of 
dental caries, thus providing an essential proxy for 
developing a better diagnostic model.
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