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Abstract

Since chaos systems generally have the intrinsic properties of sensitivity to initial conditions,

topological mixing and density of periodic orbits, they may tactfully use the chaotic ergodic

orbits to achieve the global optimum or their better approximation to given cost functions

with high probability. During the past decade, they have increasingly received much atten-

tion from academic community and industry society throughout the world. To improve the

performance of particle swarm optimization (PSO), we herein propose a chaotic proportional

integral derivative (PID) controlling PSO algorithm by the hybridization of chaotic logistic

dynamics and hierarchical inertia weight. The hierarchical inertia weight coefficients are

determined in accordance with the present fitness values of the local best positions so as to

adaptively expand the particles’ search space. Moreover, the chaotic logistic map is not only

used in the substitution of the two random parameters affecting the convergence behavior,

but also used in the chaotic local search for the global best position so as to easily avoid the

particles’ premature behaviors via the whole search space. Thereafter, the convergent anal-

ysis of chaotic PID controlling PSO is under deep investigation. Empirical simulation results

demonstrate that compared with other several chaotic PSO algorithms like chaotic PSO

with the logistic map, chaotic PSO with the tent map and chaotic catfish PSO with the logistic

map, chaotic PID controlling PSO exhibits much better search efficiency and quality when

solving the optimization problems. Additionally, the parameter estimation of a nonlinear

dynamic system also further clarifies its superiority to chaotic catfish PSO, genetic algorithm

(GA) and PSO.

1 Introduction

The emergence of chaotic systems was initially described by Lorenz [1] and by Hénon [2]. The

two famous chaotic attractors bearing their names are the cornerstone of chaos theory in mod-

ern literatures. Chaos can be described as a deterministic behaviorial characteristic of bounded

nonlinear systems. Chaotic systems generally exhibit the following properties: sensitive to
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initial conditions, topologically mixing, and dense in periodic orbits. Although they usually

appear to be stochastic, they are conditionally deterministic and periodically ergodic through

the whole search space. These distinct merits have caused great concerns from many scientific

disciplines including geology, mathematics, microbiology, biology, computer science, eco-

nomics, engineering, finance, algorithmic trading, meteorology, philosophy, physics, politics,

population dynamics, psychology, and robotics. Up to now, chaos theory has become a

very active area of research and its applicability is also vastly broadened. Scholars and practi-

tioners all over the world make full use of it to investigate the control, synchronization, predic-

tion and optimization problems of nonlinear dynamic systems by following chaotic ergodic

orbits.

As is known, finding out optimal solutions is a hard and significant task in a good many

nonlinear dynamic systems. Optimization problem solving is chiefly concerned about the

quantitative and qualitative study of optima to pursue and the methods of finding out them.

The emergent optimization techniques are usually divided into three distinct classes: natural

phenomena, physical phenomena and mathematical computational phenomena. They often

tend to exploit evolutionary heuristics to solve the solutions. In addition, being deterministic

and ergodic, chaos is combined with evolutionary heuristics and acts as a prominent role in

solving optimization problems. There exist two chaotic ways to be applied to optimization

areas [3–5]. The first way is to introduce chaos into a unified ensemble like neural network.

The harmonic combination of neurons and non-equilibrium dynamics with diverse concomi-

tant attractors can completely use chaotic ergodic orbits to pursue the global optimum. The

another way is to closely combine evolutionary variables with chaotic attractors and edges.

Their generic philosophy is as follows: mapping the relevant variables or ensemble in the prob-

lems from the chaotic space to the search space, and then utilizing chaotic ergodic orbits to

search the optima instead of using random orbits. Meanwhile, in order to obtain the objective,

sensitivity to initial conditions has to be taken into consideration seriously. More inspiringly,

great progresses pertaining to chaotic optimization heuristics have been made in the past

decade [6–14]. Simultaneously, some recent remarkable work on the study of PSO is worth

noting [15–18].

Liu et al. proposed a hybrid particle swarm optimization algorithm by incorporating logistic

chaos and adaptive inertia weight factor into PSO, which reasonably combines the population-

based evolutionary PSO search ability with chaotic search behavior [6]. In [7], Cai et al. pre-

sented a chaotic PSO method based on the tent equation to solve economic dispatch problems

with generator constraints. Compared with the traditional PSO method, the chaotic PSO

method has good convergence property accompanied by the lower generation costs and can

result in great economic effect. Hong elucidated the feasibility of applying a chaotic PSO algo-

rithm to choose the suitable parameter combination for a support vector regression model.

The optimized model provides the theoretical exploration of the electric load forecasting sup-

port system [8]. In [9], Wang and Liu proposed a logistic chaotic PSO approach to generate

the optimal or near-optimal assembly sequences of products. The proposed method is vali-

dated with an illustrative example and the results are compared with those obtained using the

traditional PSO algorithm under the same assembly process constraints. Chuang et al. pre-

sented accelerated chaotic PSO with an acceleration strategy and used it to search through

arbitrary data sets for appropriate cluster centers. Results of the robust performance from

accelerated chaotic PSO indicate that this method an ideal alternative for solving data cluster-

ing problem [10]. In [11], Chuang et al. proposed chaotic catfish PSO. Statistical analysis of the

experimental results indicate that the performance of chaotic catfish PSO is better than the

performance of PSO, chaotic PSO, catfish PSO. In [12], Wang et al. developed an approach for

grey forecasting model, which is particularly suitable for small sample forecasting, based on

Empirically characteristic analysis of chaotic PID controlling particle swarm optimization

PLOS ONE | https://doi.org/10.1371/journal.pone.0176359 May 4, 2017 2 / 24

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0176359


chaotic PSO and optimal input subset. The numerical simulation result of financial revenue

demonstrates that developed algorithm provides very remarkable results compared to tradi-

tional grey forecasting model for small dataset forecasting. More recently, Gandomi et al.

introduced chaotic accelerated PSO and applied it to solving three engineering problems. The

results show that chaotic accelerated PSO with an appropriate chaotic map can clearly outper-

form standard accelerated PSO, with very good performance in comparison with other algo-

rithms and in application to a complex problem [13]. In [14], Xu et al. presented a novel

robust hybrid PSO based on piecewise linear chaotic map and sequential quadratic program-

ming. This novel algorithm makes the best of ergodicity of the piecewise linear chaotic map to

help PSO with the global search while employing the sequential quadratic programming to

accelerate the local search. Qin et al. presented an improved PSO algorithm with an inter-

swarm interactive learning strategy by overcoming the drawbacks of the canonical PSO algo-

rithm’s learning strategy. The algorithm is inspired by the phenomenon in human society that

the interactive learning behavior takes place among different groups [15]. Zhang et al. pro-

posed a novel vector coevolving particle swarm optimization algorithm [16]. Du et al. pre-

sented a heterogeneous strategy PSO, in which a proportion of particles adopts a fully

informed strategy to enhance the converging speed while the rest is singly informed to main-

tain the diversity [17]. Niu et al. proposed a new variant of PSO, named symbiosis-based alter-

native learning multiswarm particle swarm optimization [18].

Since PID controllers can successfully adopt a weighted PID term sum to determine a new

control variable and further minimize the error over time between a desired setpoint variable

and a measured process variable, PID controlling law has been widely used in various industry

control systems. Since Lu et al. proposed a PID controlling PSO algorithm and successfully

applied it to estimating the parameters of vertical takeoff and landing aircrafts [19, 20]. There-

fore, in this paper, in order to improve the performance of the algorithm and broaden its more

applications, we propose a novel hybrid PSO algorithm which we call chaotic PID controlling

PSO. The hierarchical inertia weight coefficients, PID controller, and chaotic logistic map are

simultaneously incorporated into PSO to improve the PSO nonlinear dynamics. The hierar-

chical inertia weight coefficients are determined in accordance with the present fitness values

of the local best positions. The chaotic logistic map is used in both the substitution of the two

random parameters and the chaotic local search of for the global best position. Successively,

the convergent analysis of chaotic PID controlling PSO is deeply investigated. For the purpose

of performance evaluation of chaotic PID controlling PSO, empirical experiments are con-

ducted on some complex multimodal functions. Then it is further used in estimating the

parameters of a nonlinear dynamic system in engineering. These simulation results prove the

better effectiveness and efficiency of chaotic PID controlling PSO when solving the optimiza-

tion problems, compared with other chaotic PSO algorithms and meta-heuristics such as cha-

otic PSO with the logistic map [6], chaotic PSO with the tent map [7], chaotic PSO [10],

chaotic catfish PSO [11], pure random search (PRS) [21], GA [22], multistart (MS) [23], simu-

lated annealing (SA) [23], taboo search (TS) [24], standard PSO (SPSO) [25, 26], chaotic simu-

lated annealing (CSA) [27] and center PSO (CenterPSO) [28].

The remainder of the paper is organized as follows. Section 2 depicts the dynamical model,

hierarchical inertia weight, chaotic local search for the global best position, whole procedure

and convergent analysis of chaotic PID controlling PSO. Section 3 presents the experimental

study of conducting chaotic PID controlling PSO on some complex multimodal functions

together with other chaotic PSO in [6, 7, 11]. Section 4 depicts the application of parameter

estimation of a nonlinear dynamic system using chaotic PID controlling PSO. Section 5 gives

the conclusions and future work.
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2 Analysis and methods

2.1 Representation of chaotic PID controlling PSO

SPSO is a stochastic population-based algorithm which is modeled on the behaviors of insects

swarming, animals herding, birds flocking, and fish schooling where these swarms search for

food in a collaborative manner, and it was originally introduced by Kennedy and Eberhart in

1995 [25, 26]. It is usually used for the optimization of continuous nonlinear systems. Since

SPSO uses a simple swarm emulating mechanism to guide the particles to search for globally

optimal solutions and implements easily, it has succeed in solving many real-world optimiza-

tion problems. In order to improve the performance of the SPSO algorithm and achieve the

specific goals of accelerating convergence speed and avoiding local optima, we herein bring

forward a novel PSO approach called CPIDSO.

In this part, we discuss the dynamical model, hierarchical inertia weight, chaotic local

search for the global best position, and give a full description of the procedure of chaotic PID

controlling PSO in turn.

2.1.1 Dynamical model of chaotic PID controlling PSO. SPSO is a kind of typically sto-

chastic standard algorithm to search for the best solution by simulating the movement of the

flocking of birds or fish. It works by initializing a flock of birds or fish randomly over the

searching space, where each bird or fish is called a particle. These particles fly with certain

velocities and find the global best position after some generations. At each generation, they are

dependent on their own momentum and the influence of their own local and global best posi-

tions xlbest and xgbest to adjust their own next velocity v and position x to move in turn. SPSO is

clearly depicted as follows

vðt þ 1Þ ¼ opso � vðtÞ þ c1 � rand1 � ðxlbest � xðtÞÞ þ c2 � rand2 � ðxgbest � xðtÞÞ ð1Þ

xðt þ 1Þ ¼ vðt þ 1Þ þ xðtÞ ð2Þ

, where ωpso, c1 and c2 denote the inertia weight coefficient, cognitive coefficient and social

coefficient, respectively, and rand1, rand2 are both random values between 0 and 1. Besides, v
is clamped to a given range [-vmax, + vmax].

Supposing ϕ1 = c1 � rand1, ϕ2 = c2 � rand2, ϕ = c1 � rand1+c2 � rand2 and y ¼
�2

�
, after intro-

ducing a proper PID controller into Eqs (1) and (2) [19, 20], we may obtain the following Eq

(3). Please note that t in the Eq (3) denotes the present iterative generation and are not the

absolute time metric. Actually, the PSO system is a continuous system. Therefore, we have

used the PID controlling model in the context.

vðt þ 1Þ ¼ wpso � vðtÞ

þ� � ð1� yÞ � kp � ðxlbest � xðtÞÞ þ ki �
R t

0
ðxlbest � xðtÞÞ � dt þ kd �

dðxlbest � xðtÞÞ
dt

� ��

þy � kp � ðxgbest � xðtÞÞ þ ki �
R t

0
ðxgbest � xðtÞÞ � dt þ kd �

dðxgbest � xðtÞÞ
dt

� ��

ð3Þ

, where kp ¼ eðwpso� 1Þ� t
MaxT , ki ¼ eðwpso� 1Þ� t

MaxT

1þeðwpso� 1Þ� t
MaxT

, kd ¼ eðwpso� 1Þ� t
MaxT

� �2
,MaxT is the maximum

generation.

If the random parameters rand1 and rand2 in Eq (1) of SPSO are chaotic, they can ensure

the optimal ergodicity throughout the search space. Furthermore, there are no fixed points,

periodic orbits, or quasi-periodic orbits in the behaviors of the chaotic systems. Therefore,
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they are necessarily substituted by the two sequences Cr(t) and (1 − Cr(t)) generated via the fol-

lowing logistic map Eq (4)

Crðtþ1Þ ¼ m � CrðtÞ � ð1 � CrðtÞÞ; i ¼ 0; 1; 2; � � � ; n: ð4Þ

, where Cr(0) is generated randomly for each independent run, but it is not equal to {0, 0.25,

0.5, 0.75, 1}, and μ is equal to 4. Obviously, Cr(t) is distributed in the interval (0, 1.0). So the

driving parameter μ of the logistic map controls the behavior of Crt as the iteration number t
goes to infinity. So ϕ and θ are changed into the following Eqs (5) and (6).

� ¼ c1 � CrðtÞ þ c2 � ð1 � CrðtÞÞ ð5Þ

y ¼
c2 � ð1 � CrðtÞÞ

c1 � CrðtÞ þ c2 � ð1 � CrðtÞÞ
ð6Þ

Concerning the inertia weight coefficient, we adopt the following hierarchical Eq (7) [6]

wpso ¼
wpsomin þ

ðwpsomax � wpsominÞðf � fminÞ
favg � fmin

; f � favg

wpsomax; f > favg

8
>>><

>>>:

ð7Þ

, where wPsomax and wPsomin represent the maximum and minimum of wpso, f is the current objec-

tive value of the particle, favg and fmin are the average and minimum objective values of all par-

ticles, respectively. In addition, the cognitive coefficient is supposed to decrease linearly from 2

to 0 while the social coefficient is supposed to increase linearly from 0 to 2.

Consequently, our proposed chaotic PID controlling PSO is comprised of Eqs (2) and (3).

2.1.2 Chaotic local search of chaotic PID controlling PSO. In chaotic PID controlling

PSO, we introduce the following logistic Eq (8) in the process of the chaotic local search for the

global best position xgbest to improve the mutation mechanism

Cxgbest;iðtþ1Þ ¼ m � Cxgbest;iðtÞ � ð1 � Cxgbest;iðtÞÞ; i ¼ 1; 2; � � � ; n ð8Þ

, where Cxgbest,i(t) denotes the ith chaotic variable, and μ is equal to 4. Obviously, Cxgbest,i(t) is

distributed in the interval (0, 1.0) under the conditions that the initial Cxgbest,i(0) 2 (0, 1) and

that Cxgbest,i(0) =2 {0.25, 0.5, 0.75}. In general, the chaotic variable has special properties of ergo-

dicity, pseudo-randomness and irregularity. Since a minute difference in the initial value of

the chaotic variable would result in a considerable difference in its long time behavior, the cha-

otic variable can travel ergodically over the whole search space. Therefore, these merits of the

chaotic variable can help the global optimum keep away from the local optima.

The procedure of the chaotic local search for the global best position based on the above-

mentioned logistic Eq (8) can be illustrated as follows:

Step 1: Set t = 0 and map the decision variables xgbest,i(t) i = 1, 2, . . ., n among the intervals

(xmin, i, xmax, i) to the chaotic variables Cxgbest,i(t) located in the intervals (0, 1) using the follow-

ing Eq (9).

Cxgbest;iðtÞ ¼
xðtÞgbest;i � xmin;i
xmax;i � xmin;i

; i ¼ 1; 2; � � � ; n ð9Þ

Step 2: Determine the chaotic variables Cxgbest,i(t + 1) for the next iteration using the logistic

Eq (8) according to Cxgbest,i(t).

Empirically characteristic analysis of chaotic PID controlling particle swarm optimization
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Step 3: Convert the chaotic variables Cxgbest,i(t + 1) to the decision variables xgbest,i(t + 1) using

the following Eq (10).

xgbest;iðtþ1Þ ¼ xmin;i þ Cxgbest;iðtþ1Þðxmax;i � xmin;iÞ; i ¼ 1; 2; � � � ; n ð10Þ

Step 4: Evaluate the new solution with the decision variables xgbest,i(t + 1).

Step 5: If the new solution is better than the predefined criterion or the predefined maxi-

mum iteration reaches output the new solution as the result of the chaotic local search for the

global position; otherwise, let t = t + 1 and go back to Step 2.

2.1.3 Procedure of chaotic PID controlling PSO. Consequently, based on the aforemen-

tioned contexts, our proposed chaotic PID controlling PSO can be depicted below in detail.

Step 1: Initialize parameters including the number PN of particles, dimensional size D of

each particle, maximum generation numberMaxT, initial chaotic logistic values Cr(0) and

Cx(0), initial chaotic tent value Cx1(0), initial position x and velocity v of each particle, inertia

weight coefficient wpso, and cognitive coefficient c1, social coefficient c2. Calculate the initial fit-

ness of each particle, and set the initial local best position xlbest and global best position xgbest.
Step 2: Calculate the three parameters kp, ki and kd of the PID controller. Then in terms of

Eqs (2) and (3), calculate the next velocity v(t) and position x(t) of each particle. Next, calculate

the fitness of each particle, set the local best position xlbest and the global best position xgbest.
Step 3: If the fitness of the global best position is the same value seven times, then imple-

ment the chaotic local search for the global best position, and update the global best position

using the result of Eq 10.

Step 4: Observe if the global best fitness(xgbest) meets the given stopping threshold or not, or

observe if the maximum generation numberMaxT reaches or not. If not, go back to Step 2.

Step 5: Otherwise, the operation can be terminated. Finally, output the global best position

xgbest, and its corresponding global best fitness as well as convergent generation number.

The pseudo-code for chaotic PID controlling PSO is presented below in Algorithm 1.

Algorithm 1 Chaotic PID controlling PSO
1: / �initializethe swarm.�/
2: for i = 1! PN do
3: createparticlepi with dimensionD, velocityvi and positionxi from 1 to

PN.
4: set xlbest(i) = xi
5: calculatefitness(xi).
6: end for
7: set xgbest = best(xlbest(i))
8: calculateinertiacoefficientwpso, cognitivecoefficientc1 and social

coefficientc2.
9: set maximumgenerationnumberMaxT and chaoticvariablesCr0 and Cx0.
10: / �updatevelocityand positionwith an evolutionaryPID style

strategy.�/
11: for t = 1! MaxT do
12: calculatePID controllerparameters:kp, ki and kd.
13: for i = 1! PN do
14: / �improvelocalbest positionat a givengeneration.�/
15: calculatevelocityvi and positionxi, accordingto Eqs (2) and (3).
16: if fitness(xi)<fitness(xlbest(i)) then
17: set xlbest(i) = xi
18: else
19: set repeat_num(i)= repeat_num(i)+ 1
20: end if
21: if fitness(xlbest(i)) < fitness(xgbest) then
22: set xgbest = xlbest(i)

Empirically characteristic analysis of chaotic PID controlling particle swarm optimization

PLOS ONE | https://doi.org/10.1371/journal.pone.0176359 May 4, 2017 6 / 24

https://doi.org/10.1371/journal.pone.0176359


23: set fitness(xgbest) = fitness(xlbest(i)
24: end if
25: end if
26: /�chaoticlocalsearchfor globalbest position.�/
27: If the fitnessof the globalbest positionis the same valueseventimes,

then implementthe chaoticlocal searchfor the globalbest position,
and updatethe globalbest position.

28: /�operationtermination.�/
29: if goal thresholdor maximumgenerationnumberMaxT reachesthen
30: break
31: end if
32: end for
33: outputresults.

2.2 Convergent analysis of chaotic PID controlling PSO

In this part, the convergence of chaotic PID controlling PSO is analytically studied.

Theorem 1. In chaotic PID controlling PSO where its recurrence equations are Eqs (2) and

(3), when parameters relation 0 < ð�1ðkp þ ki þ kdÞ þ �2ðkp þ ki þ kdÞÞ � ð1þ opso �

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðopso � �1 � kd � �2 � kdÞ

q
Þ or ð1þ opso þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðopso � �1 � kd � �2 � kdÞ

q
Þ � ð�1ðkp þ ki þ

kdÞ þ �2ðkp þ ki þ kdÞÞ < ð2opso þ 2Þ is satisfied, it is convergent.
Proof. From Eqs (2) and (3), we yield Eq (11).

xðt þ 1Þ � ð1þ opso � �1 � ðkp þ ki þ kdÞ � �2 � ðkp þ ki þ kdÞÞ � xðtÞ

þðopso � �1 � kd � �2 � kdÞ � xðt � 1Þ

¼ �1 � ðkp þ ki þ kdÞ � xlbest þ �2 � ðkp þ ki þ kdÞ � xgbest

ð11Þ

This recurrence equation is approximately constant coefficient nonhomogeneous linear,

and the secular equation of the corresponding homogeneous recurrence equation is as follows:

f ðxÞ ¼ x2 � ð1þ opso � �1 � ðkp þ ki þ kdÞ � �2 � ðkp þ ki þ kdÞÞ � x þ ðopso � �1 � kd � �2 � kdÞ ¼ 0: ð12Þ

Supposing K = (kp + ki + kd), the latent roots of the above secular equation are as follows:

x1 ¼
1þ opso � �1 � K � �2 � K þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ opso � �1 � K � �2 � KÞ
2
� 4 � ðopso � �1 � kd � �2 � kdÞ

q

2
;

x2 ¼
1þ opso � �1 � K � �2 � K �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ opso � �1 � K � �2 � KÞ
2
� 4 � ðopso � �1 � kd � �2 � kdÞ

q

2
:

ð13Þ

According to the relations of the recurrence Eq (11) and its special solution, we can solve

the special solution below.

x� ¼
�1 � ðkp þ ki þ kdÞ � xlbest þ �2 � ðkp þ ki þ kdÞ � xgbest

ðkp þ kiÞð�1 þ �2Þ
ð14Þ

According to the relations of the recurrence Eq (11), its general solution, special solution,

and latent roots, we can obtain the general solution of the recurrence Eq (11) as follows:

xðtÞ ¼ x� þ C1 � xt1 þ C2 � xt2: ð15Þ
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Evidently, if there exist f(1)> 0, f(−1)> 0, and (1 + ωpso − ϕ1 � K − ϕ2 � K)2 − 4 � (ωpso − ϕ1 �

kd − ϕ2 � kd)� 0, then there are −1< x1 < 1 and −1< x2 < 1. Namely, if 0 < ð�1ðkp þ ki þ

kdÞ þ �2ðkp þ ki þ kdÞÞ � ð1þ opso � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðopso � �1 � kd � �2 � kdÞ

q
Þ or ð1þ opso þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðopso � �1 � kd � �2 � kdÞ

q
Þ � ð�1ðkp þ ki þ kdÞ þ �2ðkp þ ki þ kdÞÞ < ð2opso þ 2Þ is satis-

fied, then we can obtain −1< x1 < 1 and −1< x2 < 1. Such indicates that if −1< x1 < 1 and

−1< x2 < 1 hold, then we can finalize the limit of x(t), namely

lim
t!þ1

xðtÞ ¼ lim
t!þ1
ðx� þ C1 � x

t
1
þ C2 � x

t
2
Þ

¼ lim
t!þ1
ðx�Þ

¼
�1 � xlbest þ �2 � xgbest
ð�1 þ �2Þ

:

ð16Þ

Therefore, the above Theorem 1. is existent.

3 Experimental study

In this part, we conduct a detailed experimental study to evaluate the performance of chaotic

PID controlling PSO. The experiments include the description of the experimental setup, con-

vergence, robustness, computational cost of chaotic PID controlling PSO as well as experimen-

tal discussion.

3.1 Description of the experimental setup

3.1.1 Selected chaotic PSO algorithms and parameter setting. In order to illustrate,

compare and analyze the effectiveness and performance of chaotic PID controlling PSO, we

select four state-of-the-art chaotic PSO variants including the proposed chaotic PID control-

ling PSO to conduct the experiments on the ten analytic test problems with 5, 15 and 100

dimensions. These chaotic PSO variants are listed below and their settings of important

parameters are summarized in Table 1.

• Chaotic PSO with the logistic map (CPSO-1) [6];

• Chaotic PSO with the tent map (CPSO-2) [7];

• Chaotic catfish PSO with the logistic map (CPSO-3) [11];

• Chaotic PID controlling PSO (CPIDSO).

Table 1. Parameters settings for involved chaotic PSO algorithms.

Name Inertia Weight Acceleration Coefficients and Others

CPIDSO wpso is decided by Eq (7) where

wpsomin
= 0.4, wpsomax

= 0.9.
c1ðtÞ ¼ 2:0 � 2:0�t

MaxT c2ðtÞ ¼
2:0�t
MaxT kp ¼ e

ðwpso � 1Þ� t
MaxT ki ¼

eðwpso � 1Þ� t
MaxT

1þeðwpso � 1Þ� t
MaxT

kd ¼ eðwpso � 1Þ� t
MaxT

� �2

CPSO-1 wpso is decided by Eq (7) where

wpsomin
= 0.05, wpsomax

= 1.05.

c1(t) = c2(t) = 2.05

CPSO-2 wpso is decided by Eq (7) where

wpsomin
= 0.05, wpsomax

= 1.05.

c1(t) = c2(t) = 2.05

CPSO-3 wpsoðtÞ ¼ 0:9 � 0:5�t
MaxT c1(t) = c2(t) = 2.05

https://doi.org/10.1371/journal.pone.0176359.t001
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3.1.2 Benchmark functions. Ten representative benchmark functions are used to test the

selected chaotic PSO algorithms [29]. They are shown below in Table 2. Since chaos attempts

to help evolutionary algorithms avoid getting stuck in local optima, these benchmark functions

is mainly considered to be multimodal problems. It is apparent that most of these test func-

tions are the hybrid composites of the typical multimodal functions like Ackley, Rosenbrock,

Griewank, Rastrigin, Schwefel and Weierstrass functions so that their properties become more

complicated and much closer to the environments in the real world. Thus such are beneficial

to the reasonable verification of performance evaluation of chaotic PID controlling PSO.

Three dimensional maps for two dimensional test functions f3, f5 and f6 in Table 2 are shown

in Fig 1.

3.2 Convergence of chaotic PID controlling PSO

In order to validate the convergent performance of chaotic PID controlling PSO, chaotic PID

controlling PSO together with other three chaotic PSO algorithms are conducted on the

benchmark test functions in Table 2. When the 5-dimensional (5-D) problems are solved, the

population size is set at 15 and the maximum fitness evaluations (FEs) is set at 15000. When

the 15-dimensional (15-D) problems are solved, the population size is set at 25 and the maxi-

mum FEs is set at 50000. When the 100-dimensional (100-D) problems are solved, the popula-

tion size is set at 100 and the maximum FEs is set at 200000. All experiments are run 20 times.

The mean values, standard deviation of the results, and the best values are presented. And

in order to determine whether the results obtained by chaotic PID controlling PSO are

Table 2. Selected analytic benchmark functions for performance testing of diverse chaotic PSO algorithms.

Name Test Function Dimensionality Search

Range

Global

Minimum

Modality

Shifted

Rosenbrock’s

Function

f1ðxÞ ¼
PD� 1

i¼1
ð100ðzi � ziþ1Þ

2
þ ðzi � 1Þ

2
Þ þ 390; z ¼ x � oþ 1, o

is the shift global optimum.

[5, 100] [−100, 100]D 390 Multimodal

Shifted Rotated

Ackley’s Function

with Global

Optimum on

Bounds

f2ðxÞ ¼ � 20 exp ð� 0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=D
PD

i¼1
x2
i

q

Þ � exp ð1=D
PD

i¼1
cosð2pxiÞÞ þ 20þ e � 140; z ¼ ðx � oÞ �M, o

is the shift global optimum, M is the linear transformation matrix with condition number 100.

[5, 100] [−32, 32]D -140 Multimodal

Shifted Rastrigin’s

Function
f3ðxÞ ¼

PD
i¼1
ðz2
i þ 10 cos ð2pziÞ þ 10Þ � 330; z ¼ x � o, o is the shift global optimum. [5, 100] [−5, 5]D -330 Multimodal

Shifted Rotated

Rastrigin’s

Function

f4ðxÞ ¼
PD

i¼1
ðz2
i þ 10 cos ð2pziÞ þ 10Þ � 330; z ¼ ðx � oÞ �M, o is the shift global optimum,

M is the linear transformation matrix with condition number 2.

[5, 100] [−5, 5]D -330 Multimodal

Shifted Rotated

Weierstrass

Function

f5ðxÞ ¼
PD

i¼1
f
Pkmax

k¼0
½ak cos ð2pbkðzi þ 0:5ÞÞ�g � D

Pkmax
k¼0
½ak cos ð2pbk � 0:5Þ� þ 90; a ¼ 0:5;b ¼ 3; kmax ¼ 20; z ¼ ðx � oÞ �M,

o is the shift global optimum, M is the linear transformation matrix with condition number 5.

[5, 100] [−0.5, 0.5]D 90 Multimodal

Schwefel’s

Problem 2.13
f6ðxÞ ¼

PD
i¼1
ðAi � BiðxÞÞ

2
� 460;Ai ¼

PD
j¼1
ðaij sin aj þ bij cos ajÞ;BiðxÞ ¼

PD
j¼1
ðaij sin xj þ bij cos xjÞ,

A, B are two D × D matrices, aij, bij are the integer random numbers in the range [−100, 100],

α = [α1, α2, � � �, αD], αj is the random number in the range [−π, π].

[5, 100] [−π, π]D -460 Multimodal

Expanded

Extended

Griewank’s plus

Rosenbrock’s

Function (G(R(x)))

Griewank’s Function : GðxÞ ¼ 1=4000
PD

i¼1
x2
i �

QD
i¼1

cos ðxi=
ffiffi
i
p
Þ þ 1, Rosenbrock’s Function

: RðxÞ ¼
PD� 1

i¼1
ð100ðx2

i � xiþ1Þ
2
þ ðxi � 1Þ

2
Þ, f7(x) = G(R(z1, z2))+G(R(z2, z3)) + � � �+G(R(zD−1, zD))+G(R(zD, z1))−130, z = x − o

+1, o is the shift global optimum.

[5, 100] [−5, 5]D -130 Multimodal

Shifted Rotated

Expanded

Scaffer’s SF(x)

Function

SFðxÞ ¼ 0:5þ
sin 2 ð

ffiffiffiffiffiffiffiffiffiffiffi
ðx2þy2 Þ

p
Þ� 0:5

1þ0:001ðx2þy2 ÞÞ2
; f8ðxÞ ¼ SFðz1 ; z2Þ þ SFðz2; z3Þ þ � � � þ SFðzD� 1; zDÞ þ SFðzD; z1Þ � 300; z ¼ ðx � oÞ �M, o is the

shift global optimum, M is the linear transformation matrix with condition number 3.

[5, 100] [−100, 100]D -300 Multimodal

Hybrid

Composition

Function 1

f1−2: Rastrigin’s Function, f3−4: Weierstrass Function, f5−6: Griewank’s Function, f7−8: Ackley’s Function, f9−10: Sphere

Function, f9ðxÞ ¼
P10

i¼1
fiðzÞ þ 120; z ¼ ððx � oiÞ=liÞ �MiÞ, σi = 1 (i = 1, 2, � � �, D), λ = [1; 1; 10; 10; 5/60; 5/60; 5/32; 5/32; 5/

100; 5/100], Mi is the identity matrix.

[5, 100] [−5, 5]D 120 Multimodal

Rotated Hybrid

Composition

Function 1

All other settings in f10 are the same as f9 except Mi is the different linear transformation matrix with condition number 2. [5, 100] [−5, 5]D 120 Multimodal

https://doi.org/10.1371/journal.pone.0176359.t002

Empirically characteristic analysis of chaotic PID controlling particle swarm optimization

PLOS ONE | https://doi.org/10.1371/journal.pone.0176359 May 4, 2017 9 / 24

https://doi.org/10.1371/journal.pone.0176359.t002
https://doi.org/10.1371/journal.pone.0176359


statistically different from the results generated by other chaotic PSO variants, the nonpara-

metric Wilcoxon rank sum tests are conducted between the chaotic PID controlling PSO’s

result and the result achieved by the other chaotic PSO algorithms for each test function.

Table 3 presents the global minimum means and variances of the 20 runs of the four chaotic

PSO algorithms on the ten test functions with their dimensions 5 in Table 2. Table 4 presents

the global minimum means and variances of the 20 runs of the four chaotic PSO algorithms

on the ten test functions with their dimensions 15 in Table 2. Table 5 presents the global mini-

mum means and variances of the 20 runs of the four chaotic PSO algorithms on the ten test

functions with their dimensions 100 in Table 2. The best results among the four chaotic PSO

algorithms are shown in bold in Tables 3–5. Fig 2 presents the convergence characteristics in

terms of the best fitness value of the median run of diverse chaotic PSO algorithms for each

test function with its dimension 5. Fig 3 presents the convergence characteristics in terms of

the best fitness value of the median run of diverse chaotic PSO algorithms for each test func-

tion with its dimension 15. Fig 4 presents the convergence characteristics in terms of the best

fitness value of the median run of diverse chaotic PSO algorithms for each test function with

its dimension 100. The results of the proposed chaotic PID controlling PSO are depicted by

bold solid lines in Figs 2, 3 and 4. Note that the function fitness here is defined as the absolute

value of given global minimum in Table 2 minus computed global minimum. And the approx-

imate results of Y axises in Figs 2, 3 and 4 are logarithmic.

From the results in Table 3, we clearly observe that for the multimodal problems in Table 2,

chaotic PID controlling PSO achieves best results on most of the test functions f1−f4 and f6−f7
while it does not exhibit the best performance on the test function f5. In addition, chaotic PID

controlling PSO performs better than CPSO-1 and CPSO-2 on the function f5, but CPSO-3

achieves the best result on the test function f5. It is worth noting that compared with CPSO-1

and CPSO-2, CPSO-3 yields comparatively better results on the test functions f1, f6, f8, f9 and
f10. Furthermore, CPSO-1 performs better than CPSO-2 and CPSO-3 on the test functions f3
and f7 whilst CPSO-2 does better than CPSO-1 and CPSO-3 on the test functions f2 and f4.

Comparing the results in Table 3 with the graphs in Fig 2, we find out that CPSO-1 and CPSO-

2 perform rather worse on the test functions f6, f9 and f10 and CPSO-3 does worst on the test

functions f2, f3, f4 and f7. Such chaotic PID controlling PSO’s results demonstrate its better

effectiveness and efficiency on solving most multimodal problems.

When the dimensional size increases from 5 to 15, the experiments similar to those con-

ducted on the 5-D problems are repeated on the 15-D problems, and the results and graphs

Fig 1. The 3-D maps for 2-D test functions f3, f5 and f6. (a) Shifted Rastrigin’s Function. (b) Shifted Rotated

Weierstrass Function. (c) Schwefel’s Problem 2.13.

https://doi.org/10.1371/journal.pone.0176359.g001
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are presented in Table 4 and Fig 3. From the results in Table 4 and the graphs in Fig 3, we

observe that though the results of the diverse chaotic PSO algorithms for the 15-D problems in

Table 2 are not as comparatively good as those for the 10-D problems, the diverse chaotic PSO

algorithms for the 15-D problems have many similarities as those for the 5-D problems. cha-

otic PID controlling PSO still exhibits best results on most of the test functions f1−f4 and f6−f7
except f5 while CPSO-3 achieves the best result on the test function f5. Besides, CPSO-1 and

CPSO-2 perform worse on the test functions f1, f6, f9 and f10 and CPSO-3 still achieves the

worst results on the test functions f3 and f7. However, despite these results, CPSO-2 and

CPSO-3 become robust to conduct on the complex problems in Table 2 as the dimensional

size increases from 5 to 15. From the graphs in Fig 3, it is obvious that chaotic PID controlling

PSO shows much better results than do other CPSO algorithms on most complex multimodal

problems since the time varying PID controller, chaotic random parameters and chaotic local

search for the global best position have effectively improved the evolutionary dynamics of par-

ticles at the same time.

Table 3. Computed global minimum results of diverse chaotic PSO algorithms for the 5-D multimodal problems.

Function CPSO-1 CPSO-2 CPSO-3 CPIDSO h_t-tests

f1 Mean 401.1576 636.8849 392.3767 391.4706 1

Std. Dev 28.6014 428.4596 3.3729 2.0146

Best 390.4399 390.0826 390.0023 390.0014

f2 Mean -119.9107 -119.9121 -119.8939 -119.9444 1

Std. Dev 0.0457 0.0719 0.0593 0.0404

Best -119.9749 -119.9556 -119.9476 -119.9997

f3 Mean -328.0900 -327.6960 -324.0352 -329.5025 1

Std. Dev 1.0834 1.7562 2.48211 0.8456

Best -330.0000 -330.0000 -326.8923 -330.0000

f4 Mean -325.2766 -325.6341 -322.5742 -327.0151 1

Std. Dev 1.0430 1.6878 2.3625 1.4071

Best -326.4124 -328.6842 -326.7826 -329.0050

f5 Mean 95.0370 95.9475 90.2708 91.0640 1

Std. Dev 1.0389 0.9939 0.5996 0.8440

Best 92.8446 94.5356 90.0000 90.1649

f6 Mean 7.5301e+003 8.5595e+003 -349.4718 -440.8349 1

Std. Dev 8.2880e+003 8.2085e+003 200.0335 60.6052

Best -128.2554 1.0322e+003 -460.0000 -460.0000

f7 Mean -129.7549 -129.7339 -129.3167 -129.7623 1

Std. Dev 0.0978 0.1580 0.1876 0.1815

Best -129.8599 -129.9901 -129.6263 -129.8735

f8 Mean -298.8860 -298.8154 -298.9158 -298.9485 1

Std. Dev 0.3045 0.3322 0.3541 0.3539

Best -299.4441 -299.4241 -299.5137 -299.8145

f9 Mean 831.5733 958.5152 375.6961 183.7124 1

Std. Dev 115.3580 173.4461 293.9829 64.7185

Best 667.8437 669.4214 120.0000 120.0000

f10 Mean 541.9082 745.8038 252.7339 187.3590 1

Std. Dev 182.3725 179.8922 31.0163 38.2756

Best 318.2975 523.5829 220.0000 120.0000

https://doi.org/10.1371/journal.pone.0176359.t003
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From the graphs in Fig 4 and the results in Table 5, it can be observed that when the high

100-D problems are solved, diverse chaotic PSO algorithms sharply degenerate. Although cha-

otic PID controlling PSO still achieves the best results on most of the test functions, its search

capability obviously get weaker than before so that it suffers from local optimal and degeneracy

problem, especially on the test function f6. There are several important causes to merit atten-

tion. Besides the usual search space expansion, the lacks of more effective social learning, hier-

archical inertia weight, chaotic local search strategies are non-negligible ones. Such causes

directly result in the deterioration of the diversity of swarm.

3.3 Robustness of chaotic PID controlling PSO

Table 6 presents the fixed accuracy level of the selected analytic test functions in Table 2 for

performance testing of diverse chaotic PSO algorithms. A successful run denotes the run dur-

ing which the algorithm achieves the fixed accuracy level within the Maximum FEs for a par-

ticular dimension. Based on successful runs, success rate (Suc. Rate) and success performance

Table 4. Computed global minimum results of diverse chaotic PSO algorithms for the 15-D multimodal problems.

Function CPSO-1 CPSO-2 CPSO-3 CPIDSO h_t-tests

f1 Mean 1.9032e+009 3.4992e+009 416.1978 396.3656 1

Std. Dev 2.7771e+009 6.2945e+009 38.8779 10.5258

Best 4.1432e+006 3.4563e+006 395.0309 390.0036

f2 Mean -119.3287 -119.3950 -119.3705 -119.4288 1

Std. Dev 0.1530 0.0997 0.0772 0.0879

Best -119.5707 -119.5000 -119.4989 -119.5528

f3 Mean -299.6025 -313.7158 -264.7374 -321.8413 1

Std. Dev 15.7024 8.3512 8.9379 3.9423

Best -315.0451 -325.0252 -277.4704 -326.0202

f4 Mean -178.2664 -250.5255 -252.6327 -307.6782 1

Std. Dev 118.3594 31.2863 7.7686 6.5647

Best -279.2571 -274.5268 -263.4672 -315.0756

f5 Mean 108.2593 112.7917 96.5544 101.1674 1

Std. Dev 2.0914 1.8639 1.4592 1.2259

Best 103.8539 109.6547 94.4507 99.0730

f6 Mean 3.4319e+005 6.4646e+005 1.3867e+003 -67.9555 1

Std. Dev 1.3521e+005 8.8279e+004 2.3977e+003 579.7256

Best 1.6848e+005 5.3627e+005 -377.6398 -459.8871

f7 Mean -127.6425 -127.7221 -121.2105 -128.6958 1

Std. Dev 1.0311 0.5360 1.5602 0.2173

Best -128.6055 -128.3805 -122.9334 -128.9892

f8 Mean -294.4624 -294.5116 -294.3698 -294.9037 1

Std. Dev 0.2168 0.3421 0.1356 0.5616

Best -294.7204 -294.9652 -294.5878 -295.8638

f9 Mean 1.1498e+003 1.2466e+003 387.4979 306.5345 1

Std. Dev 145.3173 107.4211 146.8314 164.0320

Best 956.7701 1.0109e+003 194.6305 166.1034

f10 Mean 979.8030 1.1016e+003 311.6831 236.0910 1

Std. Dev 208.5678 94.0947 109.2600 33.8973

Best 657.0202 965.9093 256.1366 189.9781

https://doi.org/10.1371/journal.pone.0176359.t004
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(Suc. Perf.) are defined below [30].

Suc: Rate ¼
Successful runs
Total runs

ð17Þ

Suc: Perf : ¼ meanðFEs for successful runsÞ �
Total runs

Successful runs
ð18Þ

Table 7 presents the success rates and success performances of diverse chaotic PSO algo-

rithms for the 5-D test functions in Table 2. The best results among the chaotic PSO algorithms

are shown in bold in Table 6. From the results in Table 7, it can be seen that chaotic PID con-

trolling PSO achieves the best success rates and success performances when solving the test

functions f1 − f4 and f6 while CPSO-3 does best on the test function f5 and CPSO-1 does best

on the test functions f7 and f8. All the Chaotic PSO algorithms do not show good results on the

test functions f9 and f10. However, from the results in Tables 3, 6 and 7, one may conclude that

Table 5. Computed global minimum results of diverse chaotic PSO algorithms for the 100-D multimodal problems.

Function CPSO-1 CPSO-2 CPSO-3 CPIDSO h_t-tests

f1 Mean 716.9861 6.4991e+009 4.2684e+009 3.3448e+004 0

Std. Dev 73.3234 2.4254e+009 3.8121e+008 5.5519e+004

Best 651.8337 3.8443e+009 4.0386e+009 1.1057e+003

f2 Mean -118.6506 -118.6768 -118.6678 -118.9304 1

Std. Dev 0.0134 0.0091 0.0207 0.0450

Best -118.6622 -118.6870 -118.6915 -118.9761

f3 Mean -178.6908 103.8945 11.4895 -200.1354 1

Std. Dev 15.5659 27.6276 134.5585 19.5557

Best -195.5331 72.0069 -136.9559 -214.0199

f4 Mean 93.0259 645.0898 641.0177 -26.1216 1

Std. Dev 168.1029 53.8996 37.1054 54.7147

Best -84.2456 600.7580 598.4596 -69.3212

f5 Mean 221.1097 252.5685 254.1262 210.8574 1

Std. Dev 7.8295 1.8075 1.6344 16.8435

Best 212.2674 250.5724 252.4688 191.5652

f6 Mean 1.1092e+007 3.4811e+006 3.5245e+006 3.1488e+005 1

Std. Dev 1.1215e+007 5.5381e+005 3.0153e+005 8.3980e+004

Best 2.6803e+006 2.8916e+006 3.1929e+006 2.4195e+005

f7 Mean -29.1531 194.47921 1.0417e+003 -91.0219 1

Std. Dev 26.6782 299.0761 835.9888 8.3322

Best -48.0170 -84.8112 385.9904 -100.6265

f8 Mean -254.0078 -252.9893 -253.8350 -254.4749 1

Std. Dev 1.1289 0.5403 0.1247 0.5932

Best -255.1097 -253.5232 -253.9397 -255.1205

f9 Mean 253.5445 612.4794 611.2137 381.7007 0

Std. Dev 22.1042 76.1553 92.1949 13.8517

Best 228.0567 565.8306 507.0778 366.1607

f10 Mean 253.0357 445.4767 444.8349 221.7206 1

Std. Dev 19.3403 4.7021 3.0445 10.7733

Best 234.9268 440.0476 441.8650 212.2127

https://doi.org/10.1371/journal.pone.0176359.t005

Empirically characteristic analysis of chaotic PID controlling particle swarm optimization

PLOS ONE | https://doi.org/10.1371/journal.pone.0176359 May 4, 2017 13 / 24

https://doi.org/10.1371/journal.pone.0176359.t005
https://doi.org/10.1371/journal.pone.0176359


Fig 2. The median convergence characteristics of diverse chaotic PSO algorithms for the 5-D test

functions. (a) Shifted Rosenbrock’s function. (b) Shifted rotated Ackley’s function with global optimum on

bounds. (c) Shifted Rastrigin’s function. (d) Shifted rotated Rastrigin’s function. (e) Shifted rotated Weierstrass

function. (f) Schwefel’s problem 2.13. (g) Expanded extended Griewank’s plus Rosenbrock’s function (G(R

(x))). (h) Shifted rotated expanded Scaffer’s SF(x) function. (i) Hybrid composition function 1. (j) Rotated

hybrid composition function 1.

https://doi.org/10.1371/journal.pone.0176359.g002
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Fig 3. The median convergence characteristics of diverse CPSO algorithms for the 15-D test

functions. (a) Shifted Rosenbrock’s function. (b) Shifted rotated Ackley’s function with global optimum on

bounds. (c) Shifted Rastrigin’s function. (d) Shifted rotated Rastrigin’s function. (e) Shifted rotated Weierstrass

function. (f) Schwefel’s problem 2.13. (g) Expanded extended Griewank’s plus Rosenbrock’s function (G(R

(x))). (h) Shifted rotated expanded Scaffer’s SF(x) function. (i) Hybrid composition function 1. (j) Rotated

hybrid composition function 1.

https://doi.org/10.1371/journal.pone.0176359.g003
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Fig 4. The median convergence characteristics of diverse CPSO algorithms for the 100-D test

functions. (a) Shifted Rosenbrock’s function. (b) Shifted rotated Ackley’s function with global optimum on

bounds. (c) Shifted Rastrigin’s function. (d) Shifted rotated Rastrigin’s function. (e) Shifted rotated Weierstrass

function. (f) Schwefel’s problem 2.13. (g) Expanded extended Griewank’s plus Rosenbrock’s function (G(R

(x))). (h) Shifted rotated expanded Scaffer’s SF(x) function. (i) Hybrid composition function 1. (j) Rotated

hybrid composition function 1.

https://doi.org/10.1371/journal.pone.0176359.g004
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compared with other chaotic PSO algorithms, chaotic PID controlling PSO search the global

optima with high successful probability and is comparably more effective and reliable for solv-

ing most complex problems in Table 2.

3.4 Computational cost of chaotic PID controlling PSO

To investigate the computational cost of chaotic PID controlling PSO, the four chaotic PSO

algorithms are required to conduct the experiments on the test functions with 100-D size in

Table 2. The population size is set at 100 and the maximum FEs is set at 200000. Besides, all

experiments are run 20 times, when using MATLAB 7.80, Windows 7.0, 4 GByte RAM, Intel

Core i7-2820QM 2.30 GHz processor. Table 8 gives the average computational cost time (sec-

onds) of diverse chaotic PSO algorithms for the test functions f1 − f10 with 100-D size. The best

results among the four chaotic PSO algorithms are shown in bold in Table 8.

From the computational cost results in Table 8, CPSO-3 consumes least on the test func-

tions f3, f4, f5, f10 whilst CPSO-2 does least on the test functions f1, f2, f8, f9, and CPSO-1 does

least on the test functions f6, f7. The computational cost of chaotic PID controlling PSO is

Table 6. Fixed accuracy level of the selected analytic test functions in Table 2.

Function Accuracy Function Accuracy

f1 390+390 × 0.5% f6 −460+460 × 3.5%

f2 −140+140 × 14.6% f7 −130+130 × 0.5%

f3 −330+330 × 1.5% f8 −300+300 × 0.5%

f4 −330+330 × 1.5% f9 120+120 × 2.5%

f5 90+90 × 3.5% f10 120+120 × 2.5%

https://doi.org/10.1371/journal.pone.0176359.t006

Table 7. Success rates and success performances of diverse chaotic PSO algorithms for the 5-D test functions in Table 2.

Function CPSO-1 CPSO-2 CPSO-3 CPIDSO

f 1 Suc. Rate 10% 10% 40% 90%

Suc. Perf. 9.5644e+002 8.7950e+003 1.4216e+004 1.2654e+004

f 2 Suc. Rate N/A N/A N/A 40%

Suc. Perf. N/A N/A N/A 1.4352e+004

f 3 Suc. Rate 10% 10% 40% 100%

Suc. Perf. 1.1316e+004 1.3197e+004 1.4456e+004 2.3650e+003

f 4 Suc. Rate 70% 50% 20% 90%

Suc. Perf. 1.3939e+004 1.0522e+004 1.4573e+004 3.3850e+003

f 5 Suc. Rate 10% N/A 100% 100%

Suc. Perf. 1.2675e+004 N/A 1.5140e+003 3.4832e+003

f 6 Suc. Rate N/A N/A 50% 70%

Suc. Perf. N/A N/A 3.3590e+003 4.8230+003

f 7 Suc. Rate 100% 100% 50% 100%

Suc. Perf. 1.4890e+003 2.8700e+003 1.1631e+004 2.5876e+003

f 8 Suc. Rate 100% 70% 80% 90%

Suc. Perf. 2.9980e+003 2.2610e+003 6.0350e+003 2.4195e+003

f 9 Suc. Rate N/A N/A N/A N/A

Suc. Perf. N/A N/A N/A N/A

f10 Suc. Rate N/A N/A N/A N/A

Suc. Perf. N/A N/A N/A N/A

https://doi.org/10.1371/journal.pone.0176359.t007
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more than other chaotic PSO algorithms on most of the test functions. Such illustrates that

chaotic PID controlling PSO is required to learn from CPSO-3 and CPSO-2 and further refine

the complex computational process so as to improve its efficiency.

3.5 Experimental discussion

In [6], CPSO-1 is considered to outperform other meta-heuristics such as PRS, MS, SA, TS,

CSA and GA when solving complex optimization problems. Furthermore, in [11], CPSO-3 has

better search ability than catfish PSO, SPSO and CenterPSO when searching for the global

optima. Therefore, chaotic PID controlling PSO shows better search efficiency and quality,

compared with these algorithms. The experimental results have proved the fact. The reason

why chaotic PID controlling PSO yields better results for solving complex optimization prob-

lems is that the time varying PID controller, chaotic random parameters and chaotic local

search for the global best position have effectively improved the evolutionary dynamics of par-

ticles and enhanced the particles’ local and global search exploration and exploitation abilities.

However, these hybrid evolutionary strategies have to be further updated for high dimensional

complex multimodal problems since the diversity of swarm becomes promptly deteriorated.

4 Application in parameter estimation of a nonlinear dynamic

system

In this part, we conduct a detailed application to identifying the parameters of a nonlinear

dynamic system. The application includes the description of the nonlinear dynamic system

and experimental setup, parameter estimation and experimental results as well as model

validation.

4.1 Description of the nonlinear dynamic system and experimental setup

In order to clarify the effectiveness and efficiency of chaotic PID controlling PSO, we apply

chaotic PID controlling PSO, CPSO-3, GA and PSO to identifying the parameters of a nonlin-

ear dynamic system. The nonlinear dynamic system is described as follow:

GðsÞ ¼
K � e� T3s

ðT1sþ 1ÞðT2sþ 1Þ
:

In the nonlinear dynamic model, the identified parameters K, T1, T2 and T3 are limited

around the ranges [0, 30], [0, 10], [0, 30] and [0, 1], respectively. For the sake of the

Table 8. The average computational cost time (seconds) of diverse chaotic PSO algorithms for the test functions f1 − f10 with 100-D size.

Function CPSO-1 CPSO-2 CPSO-3 CPIDSO

f1 823.9988 388.0771 490.7063 677.3888

f2 425.6647 199.8957 312.4547 542.5901

f3 733.5355 631.2889 606.2011 830.3098

f4 474.3410 454.0797 232.5310 562.6557

f5 872.5215 658.6773 342.9804 1.0224e+003

f6 64.6663 772.7345 258.1963 427.3578

f7 908.2889 995.0521 964.4901 1.1524e+003

f8 560.8061 318.7199 544.9402 662.9074

f9 3.2899e+003 1.4951e+003 1.8800e+003 3.0372e+003

f10 2.8123e+003 1.8717e+003 1.2642e+003 5.7762e+003

https://doi.org/10.1371/journal.pone.0176359.t008
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comparison to the experimental results, these real parameters are presented, namely K = 2, T1

= 1, T2 = 20 and T3 = 0.8. During the course of the parameter estimation, the identification cri-

terion function is generally defined below

E ¼
XN

i¼1

1

2
ðyi � ŷ iÞ

T
ðyi � ŷ iÞ ð19Þ

, where N is the number of testing samples, yi is the output value of the ith testing sample, and

ŷ i is the estimated prediction value of the ith testing sample. These testing samples are acquired

when a pseudo-random binary sequence is regarded as the input signal. The pseudo-random

binary sequence and the testing samples are shown in Fig 5 below.

For CPSO-3, GA, PSO and chaotic PID controlling PSO, the population size PN is set at 80,

and the maximum generation numberMaxT is set at 50. The settings of important parameters

for GA and PSO are summarized in Table 9.

4.2 Parameter estimation and experimental results

We wish to test CPSO-3, GA, PSO and chaotic PID controlling PSO on the above specific cri-

terion fitness function with the 4-D parameters K, T1, T2 and T3 so as to estimate these

Fig 5. The input signal and its output are shown in the course of the estimation procedure. (a) The pseudo-random binary

sequence. (b) The testing samples.

https://doi.org/10.1371/journal.pone.0176359.g005

Table 9. Parameters settings for the involved optimization algorithms.

Name Inertia Weight Acceleration Coefficients and Others

GA CP ¼ 0:80 MP ¼ 0:10 � 0:01�t
MaxT

PSO wpsoðtÞ ¼ 0:9 � 0:5�t
MaxT c1(t) = c2(t) = 1.49445

https://doi.org/10.1371/journal.pone.0176359.t009
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parameters. To ensure the validation and accuracy of the experimental measurements, all evo-

lutionary optimization algorithms are run 10 times on the fitness function and their final

results are counted in the mean best fitness. The mean values, standard deviation of the results,

and the best values are presented in Table 10 below. And in order to determine whether the

results obtained by chaotic PID controlling PSO are statistically different from the results gen-

erated by other evolutionary optimization algorithms, the nonparametric Wilcoxon rank sum

tests are conducted between the chaotic PID controlling PSO’s result and the result achieved

by other evolutionary optimization algorithms for the fitness function.

Table 10 presents the means and variances of the 10 runs of the four evolutionary optimiza-

tion algorithms on the above specific criterion fitness function with its dimension 4. The best

results among the evolutionary optimization algorithms are shown in bold in Table 10. Fig 6

presents the convergence and identification characteristics in terms of the best fitness value

and parameters of the median run of diverse evolutionary optimization algorithms for the

above specific criterion fitness function with its dimension 4. The results of the proposed cha-

otic PID controlling PSO are depicted by solid lines in Fig 6. Table 11 presents the average

computational cost time (seconds) of diverse chaotic PSO algorithms for the 4-D identification

problem.

From the results in Table 10, we clearly notice that CPSO-3, PSO and chaotic PID control-

ling PSO outperform GA in the course of identifying the parameters K, T1, T2 and T3. In addi-

tion, chaotic PID controlling PSO performs best for all the parameter estimation whilst CPSO-

3 achieves better estimated results than PSO. From the graphs in Fig 6, one may observe that

the fact that the mean fitness of GA is the worst one of all is evident, which reveals GA’s inferi-

ority to other three evolutionary algorithms for the whole parameter identification. On the

other hand, it is worth noting that compared to PSO, chaotic PID controlling PSO has

improved a lot in spite of more computational time consumption.

4.3 Model validation

To verify the estimation results of the four evolutionary algorithms, their estimated parameters

were used to the dynamic computation of the above nonlinear system. The concrete output

Table 10. Results of diverse evolutionary optimization algorithms for the 4-D identification problem.

Results CPSO-3 GA PSO CPIDSO h_t-tests

fitness Mean 9.6144e-007 0.0934 7.76500e-005 1.3474e-011 1

Std. Dev 7.2614e-007 0.1015 1.000832e-004 1.6508e-011

Best 1.6929e-007 3.6800e-004 2.9727e-006 3.1987e-014

K Mean 1.9999 1.9817 1.9997 2.0000

Std. Dev 0.0002 0.1012 0.0010 0

Best 2.0000 1.9949 1.9999 2.0000

T1 Mean 1.0002 1.0489 1.0021 1.0000

Std. Dev 0.0011 0.1311 0.0043 0

Best 0.9997 1.0043 0.9983 1.0000

T2 Mean 19.9986 19.7638 19.9842 20.0000

Std. Dev 0.0079 3.3626 0.0244 0

Best 19.9991 19.8607 19.9960 20.0000

T3 Mean 0.7998 0.7858 0.7975 0.8000

Std. Dev 0.0004 0.0079 0.0036 0

Best 0.8002 0.7941 0.7997 0.8000

https://doi.org/10.1371/journal.pone.0176359.t010
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results of the verification experiments are presented in Fig 7 and Table 12. Fig 7 presents the

output results and their errors of diverse evolutionary optimization algorithms for the 4-D

identification problem. Table 12 presents absolute accumulated errors by diverse evolutionary

optimization algorithms for the 4-D identification problem.

As seen in Fig 7, there exist different absolute errors among these estimated output results.

One may find that the absolute errors by chaotic PID controlling PSO and CPSO-3 are smaller

while the ones by GA are biggest. In addition, PSO produces more accurate estimation results

than GA. As given in Table 12, it is obvious that chaotic PID controlling PSO yields the best

Fig 6. The median convergence and identification characteristics of diverse evolutionary optimization algorithms for 4-D

identification problem above. (a) The median convergence characteristics of diverse evolutionary optimization algorithms. (b) The

median identification characteristics of diverse evolutionary optimization algorithms for K. (c) The median identification characteristics of

diverse evolutionary optimization algorithms for T1. (d) The median identification characteristics of diverse evolutionary optimization

algorithms for T2. (e) The median identification characteristics of diverse evolutionary optimization algorithms for T3.

https://doi.org/10.1371/journal.pone.0176359.g006

Table 11. The average computational cost time (seconds) of diverse chaotic PSO algorithms for the 4-D identification problem.

Dimensionality CPSO-3 GA SPSO CPIDSO

4 62.3166 23.7082 18.9603 73.9166

https://doi.org/10.1371/journal.pone.0176359.t011
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estimation results while GA performs comparatively worse. The estimation results by PSO are

worse than those by CPSO-3, but are better than those by GA. Despite of these, all the evolu-

tionary algorithms can be utilized to estimate the parameters of nonlinear dynamic systems.

5 Conclusions and future work

We present a chaotic PID controlling PSO variant, where we attempt to use the combination

of a PID controller, chaotic logistic dynamics and hierarchical inertia weight to improve the

performance of SPSO. Chaotic PID controlling PSO together with with other several chaotic

PSO algorithms, is conducted on some multimodal functions. Successively, it is also used in

the parameter identification of a given nonlinear dynamic system. The experimental results

indicate chaotic PID controlling PSO enhances the diversity of swarm, and has better conver-

gence efficiency, compared with other several chaotic PSO algorithms and meta-heuristics.

Fig 7. The output results and their errors of diverse evolutionary optimization algorithms for the 4-D identification problem are

shown. (a) The output of diverse evolutionary optimization algorithms. (b) The output errors of the nonlinear dynamic system of diverse

evolutionary optimization algorithms.

https://doi.org/10.1371/journal.pone.0176359.g007

Table 12. The absolute accumulated errors and parameter values of diverse evolutionary optimization algorithms for the 4-D identification

problem.

Result CPSO-3 GA PSO CPIDSO

error 2.6306e-007 0.0063 1.9272e-005 0

K 1.9999 1.9817 1.9997 2.0000

T1 1.0002 1.0489 1.0021 1.0000

T2 19.9986 19.7638 19.9842 20.0000

T3 0.7998 0.7858 0.7975 0.8000

https://doi.org/10.1371/journal.pone.0176359.t012

Empirically characteristic analysis of chaotic PID controlling particle swarm optimization

PLOS ONE | https://doi.org/10.1371/journal.pone.0176359 May 4, 2017 22 / 24

https://doi.org/10.1371/journal.pone.0176359.g007
https://doi.org/10.1371/journal.pone.0176359.t012
https://doi.org/10.1371/journal.pone.0176359


Furthermore, chaotic PID controlling PSO also outperforms chaotic catfish PSO, GA and PSO

for the parameter identification of the nonlinear dynamic system.

Future work will further the performances of hybrid evolutionary strategies of PID control-

lers, hierarchical inertia weight and chaotic dynamics for high dimensional complex multi-

modal problems. Besides, the refining of the multifarious computation is needed. Moreover,

we will apply the proposed approach to other practical engineering applications.
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