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Abstract

Many studies on probiotics are aimed at restoring immune homeostasis in patients to prevent disease recurrence or reduce
immune-mediated pathology. Of equal interest is the use of probiotics in sub-clinical situations, which are characterized by
reduced immune function or low-grade inflammation, with an increased risk of infection or disease as a consequence. Most
mechanistic studies focus on the use of probiotics in experimental disease models, which may not be informative for these
sub-clinical conditions. To gain better understanding of the effects in the healthy situation, we investigated the
immunomodulatory effects of two Lactobacillus probiotic strains, i.e. L. plantarum WCFS1 and L. salivarius UCC118, and a
non-probiotic lactococcus strain, i.e. L. lactis MG1363, in healthy mice. We studied the effect of these bacteria on the
systemic adaptive immune system after 5 days of administration. Only L. plantarum induced an increase in regulatory
CD103+ DC and regulatory T cell frequencies in the spleen. However, all three bacterial strains, including L. lactis, reduced
specific splenic T helper cell cytokine responses after ex vivo restimulation. The effect on IFN-c, IL5, IL10, and IL17 production
by CD4+ and CD8+ T cells was dependent on the strain administered. A shared observation was that all three bacterial
strains reduced T helper 2 cell frequencies. We demonstrate that systemic immunomodulation is not only observed after
treatment with probiotic organisms, but also after treatment with non-probiotic bacteria. Our data demonstrate that in
healthy mice, lactobacilli can balance T cell immunity in favor of a more regulatory status, via both regulatory T cell
dependent and independent mechanisms in a strain dependent manner.
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Introduction

The intestinal microbiota is largely mutualistic in nature and

important for human health. Apart from its well-established role in

nutrition, it is important in the development of the immune system

and the maintenance of homeostasis of tolerance and immunity

[1]. For instance, aberrant microbial colonization results in

abnormal development of secondary lymphoid organs, reduced

peripheral CD4+ T cell frequencies, skewing towards a T helper-2

immune phenotype, absence of T and B cells in the gut-associated

lymphoid tissue, and reduced immunoglobulin levels [2–4].

Further, an aberrant intestinal microbiota is not only associated

with the risk of infection and the development of intestinal

immune disorders, but also with immune disorders beyond the

intestine, such as allergic skin- and respiratory disease [5–7], and

autoimmune diseases such as rheumatoid arthritis [8,9] and

diabetes type I [10].

Administration of indigenous, non-pathogenic probiotic bac-

teria is a promising strategy to improve immune homeostasis and

to maintain host health. Probiotics may improve host health by

normalizing existing undesired immune responses, as is the case in

allergy or autoimmune disease [11,12]. These beneficial effects

have been described in both diseased humans [13–15], as well as

in experimental disease models [16–19]. Besides the beneficial

effects in disease, probiotics may benefit persons who are not

receiving medical treatment, but have an increased risk of

infection or disease due to the deterioration or inflammatory

status of their immune system. This applies not only for age-

related changes in immune function [20], but also for individuals

with a genetic predisposition [21], obesity [22], or malnutrition-

[23], stress- or lifestyle-induced declining immune function [24].

Although the beneficial effects of probiotics in non-diseased

subjects have been described in experimental vaccination trails

[25–27] and infection studies [25,28–35], the immunomodulatory

mechanisms behind these effects remain poorly understood.

Knowledge of how different probiotic strains can affect the

immune system in the absence of disease, will gain mechanistic

insights and help clarify the magnitude of their effects on the

immune system, the strain dependency of these effects, their safety,

and potential applications in maintaining or improving immune
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homeostasis. Surprisingly, the number of studies investigating the

immunomodulatory effects of probiotics in non-diseased subjects is

limited [36–38]. Most studies have focused on disease models [39],

with a strong perturbation of immune homeostasis and often

skewing to a specific T helper cell response [39,40]. Moreover,

some disease models have a severely compromised intestinal

barrier, which could alter the accessibility of the probiotics to the

immune cells and the lymphoid tissues [41]. Therefore, studies in

the disease state may not reflect and predict the immunomodu-

latory effects of probiotics in healthy individuals or persons with

sub-optimal immune health. To address this gap in our under-

standing, we have investigated the immunomodulatory effects of

probiotic bacteria in healthy, non-diseased mice.

The effects of orally administered L. plantarum WCFS1,

L. salivarius UCC118, and L. lactis MG1363 on systemic T and

dendritic cell populations and responses were investigated. Both

L. plantarum WCFS1 and L. salivarius UCC118 are probiotic strains

[42,43], whereas L. lactis MG1363 is not associated with probiotic

effects [44,45]. The bacteria were administered over 5 days, which

is the period required for mice to develop an adaptive immune

response [44,45]. In this study, we demonstrated strain dependent

effects of the bacteria on dendritic cells in vitro and in vivo and

specific T cell responses in vivo and ex vivo.

Materials and Methods

Bacterial Strains and Growth Conditions
L. plantarum WCFS1 [46] and L. salivarius UCC118 [47] were

cultured at 37uC in Man Rogosa and Sharpe (MRS) broth. L. lactis

MG1363 [48] was cultured at 30uC in M17 broth containing

0.5% glucose. All bacterial cultures were grown overnight until the

stationary phase of growth. Subsequently, the cultures were diluted

1:1000 in fresh medium and cultured for a second night to allow

optimal growth. The optical density at 600 nm was measured and

the number of colony forming units (CFU) was calculated based on

standard growth curves. For all cultured bacterial strains, an

OD600-value of 1 corresponds to 1–26109 CFU/mL, which was

confirmed by plating serial dilutions on MRS or M17 agar plates

(data not shown). To avoid bacterial manipulation and cell death,

extensive washing and centrifuging was avoided. After overnight

culture, a small portion of bacteria was diluted in fresh, sterile

MRS broth and immediately administered to the animals. The

mice received either sterile MRS broth or 1–26108 CFU bacteria

in 200 mL MRS via intragastric gavage, daily.

In vitro Culture and Stimulation of Murine Dendritic Cells
Bone marrow cells were isolated and cultured as described by

Lutz et al [49], with minor modifications. Briefly, femora and tibiae

from female 6 weeks old Balb/c mice (Charles River Breeding

Laboratories, Protagem MI), were removed and stripped of

muscles and tendons. After soaking the bones in 70% ethanol

and rinsing in PBS, bones were carefully crushed with a mortar to

release the bone marrow cells. Cells were filtered using Steriflip

filtration and washed with RPMI medium. Bone marrow cells (2–

46107) were seeded into Petri dishes in 10 ml RPMI 1640

Glutamax (Sigma–Aldrich, St. Louis, MO, USA) containing 10%

(v/v) heat-inactivated fetal calf serum supplemented with penicillin

(100 U/ml), streptomycin (100 mg/ml), 50 mm b-mercaptoetha-

nol, and 20 ng/ml murine GM-CSF (R&D systems). The cells

were incubated for 8 days at 37uC in 5% CO2 humidified

atmosphere. On day 3, 10 ml was removed and replaced with

complete medium. On day 5, 5 ml fresh medium was added. On

day 7, immature dendritic cells were collected and seeded in a 24

wells plate at 56105 cells/well. On day 8, the cells were either left

unstimulated or stimulated with L. plantarum WCFS1, L. salivarius

UCC118, L. lactis MG1363 (1:10 cell to bacteria ratio), or LPS

(1 mg/mL). After 24 hours the concentration of IL10 and TNFa
was determined in the culture supernatants using cytometric bead

array (BD Biosciences). The cells were stained for the dendritic cell

marker CD11c and the activation markers CD40 and CD86, or

appropriate isotype controls (BD Biosciences).

Animals
Wild-type male Balb/c mice were purchased from Harlan

(Harlan, Horst, The Netherlands). The animals were fed standard

chow and water ad libitum. All animal experiments were performed

after receiving approval of the institutional Animal Care

Committee of the Groningen University. All animals received

animal care in compliance with the Dutch law on Experimental

Animal Care. The n-values were based on a mandatory power

analysis. The values were 6 mice per experimental group, based on

a type I error of 5% and a type II error of 10%.

To study the effect of lactobacilli on the systemic immune

system, three bacterial strains (L. lactis MG1363, L. salivarius

UCC118, and L. plantarum WCFS1), or MRS broth (carrier) only,

were administered by intragastric gavage of a 200 mL volume once

daily. The carrier and the bacterial strains were administered for

five consecutive days. At day six, the mice were sacrificed, after

which the spleen and mesenteric lymph nodes were removed for

further analysis.

Cell Isolation and Restimulation
After sacrificing the mice, spleens and mesenteric lymph nodes

(MLN) were removed for further analysis. Single cell suspensions

were made by mechanical disruption of the tissue between two

glass slides in 1 mL of ice-cold RPMI containing 10% (v/v) heat

inactivated fetal calf serum (FCS). Subsequently, a cell strainer was

used to remove remaining clumps. The cells were washed,

counted, and used for staining.

Part of the cells of the spleen and MLN were stimulated, the rest

was left unstimulated. 76106 cells from the spleen and MLN were

restimulated in RPMI 10% FCS containing 40 nM Phorbol 12-

myristate 13-acetate (PMA) (Sigma Aldrich) and 2 nM calcium

ionophore (Ca2+) (Sigma Aldrich). Monensin (3 mM) (Sigma

Aldrich) was added to allow cytokine accumulation in the cellular

cytoplasm. Cells were stimulated for four hours at 37uC, after

which they washed twice in ice-cold PBS containing 2% heat

inactivated FCS (FACS buffer), and used for staining.

DCs were enriched and dead cells were removed from the

splenic and MLN cell suspensions. For this, 1 mL of cell

suspension was loaded on 1 mL of 1-step Monocyte (Accurate

Chemical and Scientific Corporation, Westbury, NY) with a

density of 1.06860.001 g/ml, and centrifuged for 30 minutes at

3006g at 4uC. The interface was washed twice in ice-cold FACS

buffer and used for staining. After density gradient centrifugation,

more than 90% of the cells were vital, which was confirmed by

propidium iodide staining.

Cell Staining
T cell stainings were performed on non-stimulated, non-

enriched splenic and MLN cell suspensions. DC stainings were

performed on non-stimulated, DC-enriched splenic and MLN cell

suspensions. Stainings for intracellular cytokines were performed

on PMA/Ca2+ stimulated splenic and MLN cell suspensions. The

T cell cocktail contained monoclonal antibodies directed against

CD3, CD4, CD8, CD25, CD69, FoxP3, or appropriate isotype

controls (Table I). The DC cocktail contained monoclonal

antibodies directed against CD11c, MHC II, CD19, CD80,
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CD86, CD103, or appropriate isotype controls (Table I). The

effector T cell cocktail contained monoclonal antibodies directed

against CD3, CD4, CD8, IFNc, IL5, IL10, IL17, or appropriate

isotype controls (Table 1).

In short, 16106 cells were incubated in FACS buffer containing

10% normal mouse serum for 30 minutes to prevent non-specific

antibody staining. Subsequently, the cells were incubated with a

cocktail of primary antibodies for 30 minutes. The cells were fixed

in FACS Lysing solution (BD Biosciences) for 30 minutes, in the

dark. The tubes for intracellular cytokine staining were subse-

quently washed twice in 16 permeabilisation buffer (eBioscience)

and incubated with the intracellular antibodies cocktails contain-

ing 2% normal rat serum in permeabilisation buffer for 30 minutes

in the dark. The whole procedure was performed on ice.

Flow Cytometry
During flow cytometry, at least 56105 cells were analyzed. Flow

Cytometry was performed using the LSR II Flow Cytometer

system (BD Pharmingen), using FACS Diva software. Analysis was

performed using FlowJo 7.6.2 software. Lymphocytes were gated

based on the expression of CD3 and CD4 or CD8. The expression

of CD25, CD69, FoxP3, and cytokines was determined based on

samples stained with the isotype controls. Dendritic cells were

gated in the forward side scatter plot, based on size, granularity,

and the expression of MHC II+ and CD11c+. CD19+ B-cells were

excluded from analysis. The expression of CD80, CD86, and

CD103 was determined based on samples stained with the isotype

controls.

Statistics
All data are expressed as the mean 6 standard error of the

mean (SEM). Normal distribution of the data-sets was confirmed

by the Kolmogorov-Smirnov test. The one-way ANOVA,

followed by a two-sided Dunnett post-hoc test was used to

determine changes in immune cell populations after probiotic

treatment in vivo. The two-sided Mann Whitney U-test was used to

determine changes in cytokine release after probiotic co-incuba-

tion in vitro. P-values ,0.05 (*) were considered statistically

significant.

Results

Strain Specific Release of Pro- and Anti-inflammatory
Cytokines by Murine DCs

To confirm the immunomodulatory potential of our probiotic

strains, we first performed an in vitro assay. For this, bone-

marrow derived (BM) dendritic cell (DC) activation and

cytokine responses were determined in response to L. plantarum

WCFS1, L. salivarius UCC118, or L. lactis MG1363 (N = 4).

Incubation of all bacteria with BMDCs led to cellular

activation, as shown by an increased frequency of BMDCS

expressing high levels of the activation markers CD86 and

CD40 (gate) as compared to medium stimulated BMDCs

(Figure 1A). In addition to BMDC activation, the release of

pro-inflammatory TNFa and anti-inflammatory IL10 was

measured. All three bacterial strains induced similar levels of

TNFa (Figure 1B). Similarly, all bacteria induced IL10

(Figure 1B), but the IL10 response was highest for L.

salivarius-treated BMDCs, albeit not statistically significant

(Figure 1B).

Probiotic Treatment Increases the Frequency of
Regulatory T Cells in a Strain Dependent Manner

Next, we evaluated the immunomodulatory properties of these

strains in vivo. For this, we analyzed changes in the balance

between different pro-inflammatory and regulatory T cell popula-

tions in the mesenteric lymph node (MLN) and spleen after

consumption of the bacteria. In addition, dendritic cell (DC)

frequencies and activation was determined, as DCs are important

in both bacterial recognition as well as shaping local and systemic

T cell responses [50]. The mice (N = 6 per group) received

L. plantarum WCFS1, L. salivarius UCC118, L. lactis MG1363, or

culture medium alone, for 5 consecutive days. First, we focused on

the frequency of regulatory T cells following probiotic treatment.

Regulatory CD4+ T cells were defined on the basis of FoxP3

expression (Figure 2A) and consistently showed high CD25

expression as compared to the total CD4+ T cell population

(Figure 2A).

Systemic regulatory T cell frequencies were increased after

probiotic treatment, in a strain-dependent manner. Only L. plan-

tarum-treated mice demonstrated increased frequencies of regula-

tory T cells in the spleen as compared to medium treated mice

(Figure 2B). This increase was not observed after treatment with L.

salivarius or L. lactis (Figure 2B). In the MLN, a trend towards

decreased regulatory T cell frequencies was observed after all

bacterial treatments, but this never reached statistical significance

[One-way ANOVA P = 0.07 (Figure 2C)].

Table 1. Antibodies.

Specificity Clone Name Fluorochrome Dilution Supplier

CD3 17A2 Pacific Blue 2006 BioLegend

CD4 RM4-5 PerCP 2006 BioLegend

CD8 53-6.7 Alexa700 506 BioLegend

CD25 3C7 APC 1006 BioLegend

CD69 H1.2F3 PE 2006 BioLegend

FoxP3 FJK-16S FITC 1006 eBioscience

IFNc XMG1.2 APC 1006 BioLegend

IL5 TRFK5 PE 256 BioLegend

IL10 JES5-16E3 PE 256 BioLegend

IL17a TC11-18H10.1 APC 256 BioLegend

Rat IgG2b N/A APC 1006 BioLegend

Hamster IgG N/A PE 2006 BioLegend

Rat IgG2a N/A FITC 1006 eBioscience

Rat IgG1 N/A APC 256or 1006 BioLegend

Rat IgG1 N/A PE 256 BioLegend

Rat IgG2b N/A PE 256 BioLegend

CD11c N418 APC 256 BD Biosciences

MHC II 2G9 Biotin +
streptavidin PerCP

1506 BD Biosciences

CD19 6D5 PE-Cy7 1006 BioLegend

CD80 16-10A1 PE 506 BioLegend

CD86 PO3 Alexa700 506 BioLegend

CD103 2E7 Pacific Blue 256 BioLegend

Hamster IgG N/A PE 506 BioLegend

Rat IgG2b N/A Alexa700 506 BioLegend

Hamster IgG N/A Pacific Blue 256 BioLegend

doi:10.1371/journal.pone.0047244.t001
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Figure 1. Probiotic-induced dendritic cell activation in vitro. In vitro activation of murine bone-marrow-derived dendritic cells (BM DCs) to
medium, L. lactis MG1363, L. plantarum WCFS1 or L. salivarius UCC118 (N = 4). DCs were gated based on the FSC-SSC pattern and the expression of
CD11c. Cell activation is demonstrated as the expression of CD86 and CD40 within the DC population (black line) as compared to DCs stained with
the isotype control (grey line). Both CD86 or CD40intermediate and CD86 or CD40high cells (gates) were observed. A representative FACS plot is
demonstrated (A). The frequency of cells in the gate is indicated. Following incubation of murine BM DCs with medium (white bars), L. lactis MG1363
(dashed bars), L. plantarum WCFS1 (grey bars), or L. salivarius UCC118 (black bars) the release of IL10 and TNFa was determined (N = 4) (B). Results are
depicted as the mean 6 standard error of the mean (SEM). Statistical significance was calculated using the Mann Whitney U test. * represents P-values
,0.05.
doi:10.1371/journal.pone.0047244.g001

Figure 2. Regulatory T cells following probiotic treatment. Regulatory T cells were gated based on the expression of FoxP3 within the
CD3+CD4+ T cell population. The gate was set based on staining with an isotype control. As a control, the expression of CD25 was determined within
the total CD3+CD4+ T cell population (blue line) and the regulatory T cell population (red line) and compared to an isotype control (grey line).
Representative FACS plots are depicted (A). Regulatory T cell frequencies in the spleen (N = 6) (B) and mesenteric lymph node (N = 6) (MLN) (C)
following oral treatment with medium (white bars), L. lactis MG1363 (dashed bars), L. plantarum WCFS1 (grey bars), or L. salivarius UCC118 (black
bars). Results are depicted as the mean 6 standard error of the mean (SEM). Statistical significance was calculated using the One-way ANOVA
followed by a two-sided Dunnet post-hoc test. * represents P-values ,0.05.
doi:10.1371/journal.pone.0047244.g002
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Figure 3. Activated CD4+ and CD8+ T cells following probiotic treatment. Activated CD4+ and CD8+ T cell frequencies in the mesenteric
lymph node (N = 6) (MLN) and spleen (N = 6) following oral treatment with medium (white bars), L. lactis MG1363 (dashed bars), L. plantarum WCFS1
(grey bars), or L. salivarius UCC118 (black bars). Activated T cell frequencies are depicted as the frequency of CD25+FoxP32 cells within CD4+ T cells
(A&B), CD69+ cells within CD4+ T cells (C&D), and CD69+ cells within CD8+ T cells (E&F). Results are depicted as the mean 6 standard error of the mean
(SEM). Statistical significance was calculated using the One-way ANOVA followed by a two-sided Dunnet post-hoc test. * represents P-values ,0.05,
** represents P-values ,0.01.
doi:10.1371/journal.pone.0047244.g003
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Probiotic Treatment Reduces the Frequency of Activated
T Cells in a Strain Dependent Manner

Second, we determined the frequency of pro-inflammatory T

cell populations. For this, we determined the frequency of

activated T cells. Activated T cells were defined as the frequency

of CD25+FoxP32 or CD69+ cells within CD4+ T cells or CD69+

cells within CD8+ T cells.

Both probiotic strains decreased CD4+ and CD8+ T cell

activation in the MLN, as demonstrated by decreased

CD25+CD4+ (Figure 3A) and CD69+CD8+ (Figure 3E) frequen-

cies following L. plantarum and L. salivarius treatment. CD69+CD4+

frequencies were not affected (Figure 3C). Treatment with L. lactis

induced a slight reduction in the frequency of CD25+CD4+ T cells

[P = 0.06 (Figure 3A)] together with a marked reduction in the

frequency of CD69+CD8+ T cells in the MLN (Figure 3E). In the

spleen, T cell activation was not affected by any of the treatments

(Figure 3B, 3D, 3F). These results demonstrate that probiotic

treatment can modify the balance between systemic pro-inflam-

matory and regulatory T cell populations in a strain dependent

manner.

Probiotic Treatment Affects the Frequency of Polarized
CD4+ T Cell Populations in a Strain Dependent Manner

In order to gain functional insight in the consequences of L.

plantarum WCFS1, L. salivarius UCC118, and L. lactis MG1363

administration on T cell responses, we performed another series of

experiments. Cells from the spleen and MLN were restimulated

with PMA/Ca2+ ex vivo, after which cellular cytokine responses

were determined. IFN-c was measured as a marker for Th1 cells

[51]. Th1 cells stimulate the cellular immune response, but are

also involved in severe autoimmune processes [52]. IL5 is an

accepted marker for the Th2 subset [51], which stimulates

humoral responses, but is also involved in allergy and asthma

[52]. IL10 was measured as a marker for regulatory T cells [52],

which are involved in anti-inflammatory responses [52]. Finally,

IL17 was measured as a marker for Th17 cells [46,47], which are

involved in responses against fungi, but also in severe autoimmune

responses [52,53]. The frequency of cytokine producing CD4+ T

cells was determined based on appropriate isotype controls

(Figure 4A).

The bacterial treatments decreased Th2 responses, which was

most pronounced in the MLN, but was also observed in the spleen.

Further, the effects were dependent on the probiotic strain

administered. All three bacterial strains decreased the frequency of

Th2 cells in the MLN and spleen 2 to 3-fold as compared to

medium-treated mice (Figure 4D and 4E respectively). In addition,

a trend towards increased frequencies of IL10-producing CD4+ T

cells was observed in the spleen following L. plantarum treatment

(Figure 4G), although it didn’t reach statistical significance. In

addition to decreased Th2 frequencies, L. salivarius treatment also

induced almost a 2-fold decrease in the frequency of Th17 cells in

the MLN as compared to medium treatment (Figure 4H). Further,

a trend towards a 2-fold decrease in Th1 frequencies was observed

in the MLN following L. lactis treatment [P = 0.06) (Figure 4B)].

Other polarized CD4+ T cell frequencies were not affected by the

treatments (Figure 4).

Probiotic Treatment Affects the Frequency of Cytokine
Producing CD8+ T Cell Populations in a Strain Dependent
Manner

Similar to the CD4+ T cell population, CD8+ effector T cells

can be defined on the basis of pro- and anti-inflammatory cytokine

responses after ex vivo restimulation [54]. The frequency of

cytokine producing CD8+ T cells was determined based on

appropriate isotype controls (Figure 4B). L. plantarum especially,

increased the responsiveness of mesenteric and splenic CD8+ T

cells, as judged by a 3- to 4-fold increase in frequencies of IFN-c-

producing CD8+ T cells in the MLN (Figure 5B) and spleen

(Figure 5C). Further a 4-fold increase in IL17-producing CD8+ T

cells was observed in the spleen after L. plantarum treatment

(Figure 5I). As found for CD4+ T cells, L. plantarum treatment

decreased the frequency of IL5-producing CD8+ T cells in the

MLN (Figure 5D), and increased the frequency of IL10-producing

CD8+ T cells in the spleen as compared to medium treated mice

(Figure 5G). L. salivarius-treated animals demonstrated a trend

towards increased frequencies of IFN-c-producing CD8+ T cells in

the MLN [P = 0.06 (Figure 5B)], albeit not statistically significant.

L. lactis treatment did not affect the CD8+ T cell responsiveness

(Figure 5).

Probiotic Treatment Affects the Distribution and
Activation of (Intestinal) DCs

DCs are important in both bacterial recognition as well as

shaping local and systemic T cell responses [50]. Therefore, we

investigated the distribution of intestinal DCs and their activation

status in the spleen and MLN. DCs were defined as CD11c+ MHC

II+ cells (Figure 6A). Regulatory, intestinal DCs are depicted as the

frequency of CD103+ cells within the DC population. Also the

frequency of activated DCs was determined and depicted as the

frequency of CD80+ or CD86+ cells within the DC population

(Figure 6A).

Probiotic treatment only modestly affected intestinal DC

trafficking to the MLN and spleen. Only L. plantarum-treated

animals demonstrated a trend towards increased CD103+ DC

frequencies in the spleen [P = 0.07 (Figure 6B)]. This influx of

CD103+ DCs in the spleen was however not observed in the MLN

(Figure 6B). Only L. salivarius-treated animals demonstrated a

trend towards decreased DC activation in the spleen, as

demonstrated by decreased frequencies of CD80+ DCs [P = 0.06

(Figure 6D)]. The activation status of splenic and mesenteric

CD103+ DCs was not affected by any of the treatments (not

demonstrated).

Discussion

In the present study we demonstrate that oral treatment with

probiotic lactobacilli modifies the distribution of systemic (effector)

T cell populations and DCs in both the MLN and the spleen. To

Figure 4. Polarized CD4+ T cell frequencies following probiotic treatment. Polarized CD4+ T cells were gated based on the expression of
IFNc, IL5, IL10, or IL17 within the CD3+CD4+ T cell population (top plots). The gate was set based on staining with an isotype control (bottom plots).
Representative FACS plots are depicted (A). Polarized CD4+ T cell frequencies in the mesenteric lymph node (N = 6) (MLN) and spleen (N = 6) following
oral treatment with medium (white bars), L. lactis MG1363 (dashed bars), L. plantarum WCFS1 (grey bars), or L. salivarius UCC118 (black bars).
Polarized CD4+ T cell frequencies are depicted as the frequency of IFNc+ cells within CD4+ T cells (B&C), IL5+ cells within CD4+ T cells (D&E), IL10+ cells
within CD4+ T cells (F&G), and IL17+ cells within CD4+ T cells (H&I). Results are depicted as the mean 6 standard error of the mean (SEM). Statistical
significance was calculated using the One-way ANOVA followed by a two-sided Dunnet post-hoc test. * represents P-values ,0.05, ** represents P-
values ,0.01.
doi:10.1371/journal.pone.0047244.g004
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our knowledge, this is the first report of systemic immune changes

following short-term treatment with probiotic bacterial strains in

healthy mice. We explored the basal immunomodulatory proper-

ties of probiotic strains in non-diseased animals and demonstrate

that even a short-term period of probiotic consumption induces

profound changes in cellular adaptive immune responses.

Although probiotics are generally marketed as a means to

prevent disease in healthy individuals, most studies have focused

on specific (intestinal) disease models [39] to demonstrate their

efficacy. In such models, the immune homeostasis is often strongly

perturbed and playing a role in the pathology [39,40]. Addition-

ally, the intestinal barrier may be compromised, altering the

contact between the immune cells and the probiotic bacteria [41].

Therefore, studies in the disease state may not reflect and predict

the immunomodulatory effects of probiotics in other diseases, or

healthy individuals. Knowledge of how different probiotic strains

can affect the immune system in the absence of disease, will gain

mechanistic insights and help clarify the magnitude of their effects

on the immune system, the strain dependency of these effects, their

safety, and potential applications in maintaining or improving

immune homeostasis. This will ultimately open up possibilities to

select specific probiotics for specific immunological diseases, and as

a means to prevent the development of disease [19,55] or infection

[25,30,31,33] in healthy or subclinical individuals. For these

reasons, we chose to study the systemic immunomodulatory

properties of probiotic bacteria in healthy, non-diseased mice.

During recent years, much attention has been focused on the

direct anti-inflammatory capacities of lactobacilli on tolerogenic

dendritic cells (DCs) [17], the generation of regulatory T cells

in vivo and in vitro, or the induction of IL10 in in vitro assays

[17,45,56–59]. However, there are also reports that demonstrate

Lactobacillus-induced suppression of pro-inflammatory immune

responses, independent of IL10 or regulatory T cells [58,60–62].

To date, it remains largely unknown in what manner lactobacilli

affect the balance between of pro- and anti-inflammatory immune

cell populations in vivo. Our data suggest that, depending on the

bacterial strain administered, both processes, i.e. regulatory DC

and T cell dependent and independent immunomodulation, can

occur in healthy mice.

Our study clearly demonstrates that probiotic-induced immu-

nomodulation is strain-dependent. Further, we demonstrate that

strain-dependent immunomodulation is also a systemic phenom-

enon. L. plantarum WCFS1 consumption directly increased the

frequency of regulatory T cells, while decreasing the responsive-

ness of Th2 cells and increasing the responsiveness of CD8+ T

cells. Treatment with L. salivarius UCC118 did not affect the

frequency of regulatory T cells; however, it decreased the

responsiveness of Th2 cells. Further, L. salivarius treatment only

modestly increased the CD8+ T cell responsiveness. These results

have important implications for the expected health benefits

exerted by the different probiotic strains.

Our results suggests that the immunomodulatory effects induced

by L. plantarum may prove useful in the prevention or treatment of

common Th2-skewed allergic diseases, such as atopic dermatitis,

food allergy, and allergic asthma, and also as an adjuvant to boost

the immune response to common viral infections that require the

activation of CD8+ T cells, as for instance influenza. However, the

drawback of this strain may be that it has effects on more than one

immune cell subset. It may positively affect Th2-skewed allergic

diseases, while at the same time it may increase the susceptibility

for Th1-skewed diseases. This drawback is not seen for L. salivarius,

which showed a clear reduction of Th2 responsiveness combined

with only a modest increase in CD8+ T cell responsiveness. The

modest effect on CD8+ T cell responsiveness suggests that this

probiotic may be less effective in boosting responses that

specifically require CD8+ T cell participation. Taken together,

our data demonstrate that these differential probiotic immuno-

modulatory properties may be used to develop tailored health

promoting probiotic-based strategies.

Treatment with L. plantarum WCFS1 was associated with

profound skewing towards an immune regulatory phenotype

within systemic T helper cells. These results are in line with studies

that demonstrate L. plantarum-induced immune regulation in vitro

[63,64] as well as in the duodenum [38,65]. The observed changes

were accompanied by the infiltration of intestinal CD103+ DCs in

the spleen. Since it has been demonstrated that intestinal DCs are

indispensable for probiotic-induced immunomodulation in vivo

[66] and that these cells are highly important in generating

regulatory responses [67], our data suggest that systemic immune

regulation is induced through L. plantarum-stimulated migration of

regulatory CD103+ intestinal DCs to immunological induction

sites as far as the spleen. With this study, we demonstrate that

L. plantarum WCFS1 not only attenuates local intestinal immune

responses at the site of interaction [65], but also profoundly affects

the systemic immune system by skewing it to a more regulatory T

helper phenotype.

L. plantarum WCFS1 not only skewed T helper cells towards an

immune regulatory phenotype, but simultaneously increased the

responsiveness of CD8+ T cells. This dual effect was never

demonstrated for this strain before and appears to be in conflict

with the observed Th hyporesponsiveness. Our observation may,

however, be explained by the increased Th1/Th2 ratio caused by

the reduction in Th2 frequencies. This demonstrates that

L. plantarum not only stimulates skewing towards immune regula-

tion, but can also directly improve the responsiveness of CD8+ T

cells by leaving the Th1 subset unaltered. Our results corroborate

previous in vitro findings [68,69]. Also, several reports have

indirectly demonstrated improved CD8+ T cell responsiveness

following probiotic treatment, by demonstrating improved im-

mune responses towards viral infections in vivo [28–32].

During recent years, many in vitro screening tools have been

developed to predict the beneficial effect of probiotic bacteria in

vivo [45,62,70,71]. The majority of these systems focus on the

secretion of only one or a few pro- and anti-inflammatory

cytokines from PBMCs or DCs as a model for immunomodulation

in vivo. In this study, we demonstrate that using this strategy

potential efficacious probiotic strains may be missed. For instance

L. plantarum has been demonstrated as a modest cytokine inducer in

vitro [62,70,71], which is also apparent from the results of our in

vitro murine dendritic cell assay. However, this strain possesses

Figure 5. Polarized CD8+ T cell frequencies following probiotic treatment. Polarized CD8+ T cells were gated based on the expression of
IFNc, IL5, IL10, or IL17 within the CD3+CD8+ T cell population (top plots). The gate was set based on staining with an isotype control (bottom plots).
Representative FACS plots are depicted (A). Polarized CD8+ T cell frequencies in mesenteric lymph node (N = 6) (MLN) and spleen (N = 6) following
oral treatment with medium (white bars), L. lactis MG1363 (dashed bars), L. plantarum WCFS1 (grey bars), or L. salivarius UCC118 (black bars).
Polarized CD8+ T cell frequencies are depicted as the frequency of IFNc+ cells within CD8+ T cells (B&C), IL5+ cells within CD8+ T cells (D&E), IL10+ cells
within CD8+ T cells (F&G), and IL17+ cells within CD8+ T cells (H&I). Results are depicted as the mean 6 standard error of the mean (SEM). Statistical
significance was calculated using the One-way ANOVA followed by a two-sided Dunnet post-hoc test. * represents P-values ,0.05, ** represents P-
values ,0.01.
doi:10.1371/journal.pone.0047244.g005
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Figure 6. Dendritic cell frequencies and activation following probiotic treatment. Dendritic cells were gated based on the expression of
CD11c and MHC II. Within the dendritic cell population the frequency of CD103+, CD80+, or CD86+ cells was determined (black lines). The gate were
set based on staining with an isotype control (grey lines). Representative FACS plots are depicted (A). Frequency of CD103+ dendritic cell subsets in
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profound immunomodulatory properties in vivo. Further, the

results from our in vitro assay, as well as previously published

reports [57,72] suggest that L. salivarius is a potent immunomo-

dulator in vivo. Although L. salivarius had some systemic

immunomodulatory effects, these were only modest and not as

pronounced as the effects observed after L. plantarum treatment.

These modest immunomodulatory effects in vivo may also explain

the variable performance of this strain in disease models [73–75].

These in vivo disease models highly depend on Th1 reactivity [76],

which, according to our data, is only marginally affected by L.

salivarius. We therefore feel that the use of in vitro screening models

may be valuable as a high through-put screening tool for potential

probiotic strains, but the immunomodulatory properties of the

bacterial strains should always be confirmed in vivo, or in more

complex in vitro models.

L. lactis is not considered to be a strain with probiotic capacities

[44,45]. We did, however, observe immunomodulation following

L. lactis treatment, both in our in vitro assay, as well as in vivo.

Previous studies have demonstrated the importance of bacterial

wall proteins for the interaction with immune cells and probiotic

effects [64]. It may well be that also L. lactis has specific bacterial

wall components that are recognized by dendritic cells in the

intestine and influence DC function [77]. Much more research

efforts should be employed to understand the exact interactions

between bacterial wall components, specific immune cell recep-

tors, and the consequences for the immune system, to fully

understand and predict the probiotic and non-probiotic immune-

modulatory effects of bacteria in vitro and in vivo. This unexpected

immunomodulating potency of L. lactis suggests that caution

should be taken in categorizing bacteria in probiotic versus non-

probiotic.

Our study was not only undertaken to unravel the immediate

effects of short-term administration of probiotics on cellular

adaptive immune responses, but also to investigate if systemic

biomarkers could be identified that would reflect the efficacy of

probiotics in vivo. In humans, we can only access the systemic

circulation to study immunomodulation and the efficacy of

probiotics. As demonstrated in this study, the efficacy can

effectively be assessed by measuring pro- and anti-inflammatory

cytokine responses after restimulation of T cells ex vivo. We found

clear differences, which were pronounced enough to distinguish

strain dependent effects. Clear documentation of these parameters

may help to understand the large differences in reported effects of

different probiotic strains.

In summary, in the current study we demonstrated systemic

immunomodulation following short-term oral administration of

three bacterial strains in healthy mice. Although further research is

necessary to investigate the implications of these immune changes

for a beneficial effect in human health, our results suggest that the

selection of specific probiotic strains for enforcing specific desired

immune responses may be a promising strategy to improve host

health.
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