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Abstract Inhibitors that target the receptor tyrosine kinase (RTK)/Ras/mitogen-activated protein

kinase (MAPK) pathway have led to clinical responses in lung and other cancers, but some patients

fail to respond and in those that do resistance inevitably occurs (Balak et al., 2006; Kosaka et al.,

2006; Rudin et al., 2013; Wagle et al., 2011). To understand intrinsic and acquired resistance to

inhibition of MAPK signaling, we performed CRISPR-Cas9 gene deletion screens in the setting of

BRAF, MEK, EGFR, and ALK inhibition. Loss of KEAP1, a negative regulator of NFE2L2/NRF2,

modulated the response to BRAF, MEK, EGFR, and ALK inhibition in BRAF-, NRAS-, KRAS-, EGFR-,

and ALK-mutant lung cancer cells. Treatment with inhibitors targeting the RTK/MAPK pathway

increased reactive oxygen species (ROS) in cells with intact KEAP1, and loss of KEAP1 abrogated

this increase. In addition, loss of KEAP1 altered cell metabolism to allow cells to proliferate in the

absence of MAPK signaling. These observations suggest that alterations in the KEAP1/NRF2

pathway may promote survival in the presence of multiple inhibitors targeting the RTK/Ras/MAPK

pathway.

DOI: 10.7554/eLife.18970.001

Introduction
The receptor tyrosine kinase (RTK)/ mitogen-activated protein kinase (MAPK) pathway plays an

important role in the development of lung and other cancers, with the frequent occurrence of muta-

tions or copy number alterations in multiple nodes of this pathway (Ding et al., 2008;

Imielinski et al., 2012). However, single-agent therapy targeting this pathway has had limited clini-

cal success. While BRAF and EGFR inhibitors can produce dramatic responses temporarily, acquired

resistance inevitably occurs in lung and other cancers (Balak et al., 2006; Kosaka et al., 2006;

Rudin et al., 2013; Wagle et al., 2011). In addition to this acquired resistance, many tumors also

exhibit intrinsic resistance to these inhibitors (Corcoran et al., 2012; Prahallad et al., 2012), as well

as to MEK inhibitors (Sun et al., 2014).
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Several studies have now shown that a general theme of resistance to these targeted therapies is

activation of the RTK/MAPK pathway by alternative mechanisms. For example feedback activation of

EGFR has been shown to cause intrinsic resistance to BRAF inhibition in colon cancer

(Corcoran et al., 2012; Prahallad et al., 2012), and resistance to BRAF inhibition in melanoma can

be caused by reactivation of the MAPK pathway by RTKs, NRAS, or COT (Johannessen et al., 2010;

Nazarian et al., 2010). In lung cancer, transcriptional induction of ERBB3 causes intrinsic resistance

to MEK inhibition in KRAS-mutant cancers (Sun et al., 2014), and acquired resistance to EGFR inhibi-

tors was found to result from amplification of MET (Engelman et al., 2007). These findings highlight

the importance of maintaining RTK/MAPK signaling in lung and other cancers and also suggest

redundancy among different genetic alterations in this pathway. Due to the many ways that cancers

can acquire resistance to single therapies targeting the RTK/MAPK pathway, combination therapy

may hold more promise for treating tumors with alterations in this pathway.

While patients with EGFR- and ALK-mutant lung cancer do often respond to EGFR and ALK inhib-

itors, these responses are temporary, as acquired resistance inevitably develops (Tang et al., 2013;

Wilson et al., 2015). Likewise, in on-going clinical trials testing MEK and BRAF inhibitors in KRAS-

and BRAF-mutant lung cancer, responses have been reported in some patients

(Blumenschein et al., 2015; Hyman et al., 2015). However, it is clear that both intrinsic and

acquired resistance limits efficacy of these inhibitors. To prospectively identify mechanisms of resis-

tance to EGFR, ALK, BRAF, and MEK inhibition in lung cancer, we performed CRISPR-Cas9 drug

resistance screens in five cancer cell lines with different alterations in the RTK/Ras/MAPK pathway.

We identified a number of genes whose deletion confers cell survival in these contexts, and focused

on KEAP1, as loss of this gene modulated the response to targeted therapies in multiple contexts.

Results

CRISPR-Cas9 screens identify genes whose loss confers resistance to
MEK and BRAF inhibition
To identify genes that modulate the response to RTK/Ras/MAPK inhibition in lung cancer, we per-

formed two sets of CRISPR-Cas9 knockout screens. In the first set (Figure 1A), we performed three

genome scale screens with the MEK inhibitor trametinib, in the NRAS-mutant lung cancer cell line

H1299 (NRASQ61K), the BRAF-mutant lung cancer cell line HCC364 (BRAFV600E), and the KRAS-

mutant lung cancer cell line CALU1 (KRASG12C). One additional screen was performed in HCC364

cells treated with the BRAF inhibitor vemurafenib. To perform genome scale screens, we introduced

the GeCKO v2 library (Shalem et al., 2014) into Cas9-expressing cells, selected cells that incorpo-

rated the sgRNAs and allowed genome editing to occur over one week. Cells were then harvested

for the Day 0 time point or passaged in the presence of trametinib or vemurafenib (Figure 1A). We

used the lowest concentration of drug that inhibited ERK phosphorylation and resulted in prolifer-

ative arrest or death (Figure 1—figure supplement 1). Genomic DNA was isolated on Days 14 and

21, and sgRNAs were quantified by sequencing. sgRNAs that were enriched in the Day 14 and Day

21 samples compared to the Day 0 samples were then identified, using two methods: (1) a cutoff of

log2 fold change of at least 2, or (2) a STARS score (Doench et al., 2016) of at least 5

(Supplementary file 1). Several of the genes that scored in these screens also scored in a previous

vemurafenib resistance screen in BRAF-mutant melanoma (Shalem et al., 2014).

We annotated the functions of each of the genes that scored in these screens to determine if par-

ticular functional categories scored repeatedly (Figure 1B). As expected, several genes in the MAPK

pathway scored, including NF1, a negative regulator of Ras/MAPK signaling, and DUSP1, a dual-

specificity phosphatase that inhibits ERK. We also found several positive regulators of p38/JNK

MAPK signaling, suggesting that these other MAPK pathways may play a pro-apoptotic or anti-pro-

liferative role in these cells. PTEN, a negative regulator of PI3K/AKT signaling, and TSC1 and TSC2,

negative regulators of mTOR signaling, also scored, suggesting that increased signaling through the

PI3K/AKT/mTOR pathway compensates for loss of Ras/MAPK signaling. In addition to these

expected pathways, several of the genes that scored are components of histone acetyltransferase

(HAT) complexes or of the Mediator complex. There were also several genes whose products are

components of E3 ubiquitin ligase complexes. Multiple transcription factors scored, as well as gen-

eral transcription machinery genes. Other functional categories for which multiple genes scored
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Figure 1. CRISPR-Cas9 genome scale drug resistance screens and validation that KEAP1-KO confers resistance. (A,C) Pathway schematics and

screening timelines. (B) Heatmap showing the STARS score for each gene with a score of at least five in at least one screen. (D–E) Crystal violet colony

formation assays. (D) 5000 CALU1 cells were treated with 50 nM trametinib for 17 days. 2000 HCC364 cells were treated with 25 nM trametinib or 6.25

uM vemurafenib for 21 days. (E) 10,000 HCC827 cells were treated with 100 nM erlotinib for 10 days. 10,000 MGH065 cells were treated with 800 nM

LDK378 or 800 nM crizotinib for 10 days. Error bars represent the SD of the mean of triplicate wells. Experiments were performed two independent

times and one representative experiment is shown. ***p=0.0001, **p<0.005.

DOI: 10.7554/eLife.18970.002

Figure 1 continued on next page
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include Rho signaling and histidine post-translational modifications. We noted that KEAP1, a sub-

strate adaptor protein that targets NFE2L2/NRF2 for ubiquitination and proteasomal degradation,

was the only gene that scored highly in all four genome scale screens (Figure 1B and

Supplementary file 1).

The second set of screens (Figure 1C) were run independently using a more focused sgRNA

library comprised of druggable targets, including kinases, proteases, phosphatases, and ligases

(Munoz et al., 2016). This library was used to screen HCC827 cells (EGFRD746-750) treated with the

EGFR inhibitor erlotinib, and the patient-derived ALK-mutant line MGH-065 treated with the ALK

inhibitors crizotinib or LDK-378 (Figure 1—figure supplement 2). Similar to the genome scale

screens described above, Cas9-expressing cells were infected with the sgRNA library, selected for 4

days and cultured for an additional 10 days in the presence of DMSO or drug. SgRNAs that were

enriched in the Day 10 drug-treated samples compared to the DMSO-treated samples were then

identified. Notably, loss of KEAP1 also promoted survival in the presence of EGFR and ALK inhibi-

tors (Figure 1—figure supplement 3 and Supplementary file 2). Thus, loss of KEAP1 was found to

modulate the response to multiple targeted therapeutics in different genetic contexts using two

independent sgRNA libraries.

KEAP1KO confers resistance through increased NRF2 activity
To validate that KEAP1 loss modulates sensitivity to multiple inhibitors, we infected HCC364

(BRAFV600E), CALU1 (KRASG12C), HCC827 (EGFR D746-750), and MGH-065 (EML4-ALK) cells with

sgRNAs targeting KEAP1 or GFP (Figure 1—figure supplement 4). Cells were then seeded at low

density in 12- or 24-well plates and treated with drug. Cell viability was assessed by crystal violet

staining. Deletion of KEAP1 (KEAP1KO) decreased sensitivity to each of the inhibitors that were

tested (Figure 1D–E). In addition to the lines used in the CRISPR-Cas9 screens, we also tested the

ability of KEAP1 loss to modulate sensitivity to EGFR or ALK inhibition in two additional cell lines.

KEAP1KO decreased sensitivity to afatinib treatment in NCI-H1975 (EGFRL858R/T790M) cells and to cri-

zotinib treatment in NCI-H3122 (EML4-ALK) cells (Figure 1—figure supplement 5). In short-term

dose response experiments, loss of KEAP1 also caused a shift in the IC50 of erlotinib in HCC827

cells (Figure 1—figure supplement 6).

Unlike many other reported mechanisms of resistance to inhibitors of the RTK/Ras/MAPK pathway

(Rudin et al., 2013; Wagle et al., 2011; Corcoran et al., 2012; Prahallad et al., 2012; Sun et al.,

2014; Johannessen et al., 2010; Nazarian et al., 2010), we found that KEAP1KO did not restore

ERK activation (Figure 2A and Figure 2—figure supplement 1A), indicating that KEAP1KO does not

decrease sensitivity by reactivating the MAPK pathway. Loss of KEAP1 also did not affect expression

of the pro-apoptotic protein BIM (Figure 2—figure supplement 1B). We concluded that loss of

KEAP1 did not re-activate MAPK signaling or generally promote survival by inhibiting apoptosis.

KEAP1 serves as a substrate adaptor protein that recruits the CUL3 ubiquitin ligase to NRF2, tar-

geting it for proteasomal degradation (Kobayashi et al., 2004). As expected, we found that

KEAP1KO led to increased NRF2 protein levels (Figure 2B and Figure 2—figure supplement 1C).

Figure 1 continued

The following figure supplements are available for figure 1:

Figure supplement 1. Optimization of genome scale screening conditions.

DOI: 10.7554/eLife.18970.003

Figure supplement 2. Optimization of focused sgRNA library screening conditions.

DOI: 10.7554/eLife.18970.004

Figure supplement 3. EGFR and ALK inhibitor resistance screens.

DOI: 10.7554/eLife.18970.005

Figure supplement 4. Immunoblots showing deletion of KEAP1 by sgRNAs in HCC364, CALU1, MGH-065, and HCC827.

DOI: 10.7554/eLife.18970.006

Figure supplement 5. Crystal violet assays showing that KEAP1 loss confers resistance to afatinib and crizotinib.

DOI: 10.7554/eLife.18970.007

Figure supplement 6. Erlotinib dose-response curves in HCC827.

DOI: 10.7554/eLife.18970.008
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Figure 2. KEAP1-KO alters NRF2 levels. (A) KEAP1-KO does not affect p-ERK. Whole cell lysates of HCC364-Cas9 cells with the indicated sgRNAs

treated with DMSO or trametinib for 48 hr. (B) KEAP1-KO increases NRF2 levels. Nuclear and cytoplasmic fractions of HCC364 cells. (C) Immunoblot

showing NRF2 expression in CALU1 and HCC364. (D) Crystal violet colony formation assays. 10,000 CALU1 cells expressing the indicated ORFs were

treated with DMSO for 8 days or trametinib for 10 Days. 10,000 HCC364 cells expressing the indicated ORFs were treated with DMSO for 10 days or

trametinib/vemurafenib for 21 days. Error bars represent the SD of the mean of triplicate wells. (E) Immunoblot showing expression of wildtype KEAP1

Figure 2 continued on next page
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To determine if increased NRF2 levels were necessary for KEAP1 loss to modulate drug sensitivity,

we knocked out both KEAP1 and NRF2 in HCC827 cells. KEAP1 loss no longer promoted survival

when NRF2 was also lost (Figure 2—figure supplement 2A). To determine if increased NRF2 levels

were sufficient to promote survival, we overexpressed wildtype NRF2 or two different NRF2 mutants

(G31R or D29H), which contain mutations in the KEAP1 binding domain. Overexpression of wildtype

NRF2 led to an increase in cell survival in the presence of multiple drugs. Overexpression of

NRF2G31R or NRF2D29H resulted in higher NRF2 protein levels and increased resistance to trametinib,

vemurafenib, and erlotinib (Figure 2D and Figure 2—figure supplement 2B), suggesting that ele-

vated NRF2 levels in KEAP1KO cells mediates resistance. Although CALU1 cells harbor a KEAP1P128L

mutation, this mutation has not been reported in the cBioPortal or COSMIC (Cerami et al., 2012;

Gao et al., 2013; Forbes et al., 2015), and NRF2 levels increased upon KEAP1 knockout (Figure 2—

figure supplement 1), suggesting that the regulation of NRF2 by KEAP1 is intact in these cells. We

also found that restoring wildtype KEAP1 expression in A549 cells, which are KRAS-mutant and

KEAP1-null, increased their sensitivity to trametinib. In contrast, expression of the KEAP1G333C

mutant, which does not regulate NRF2, failed to alter trametinib sensitivity (Figure 2E,F). Together

these observations suggest that increased NRF2 levels upon loss of KEAP1 modulates sensitivity to

therapies targeting the RTK/MAPK pathway.

Loss of KEAP1 has previously been reported to confer resistance to several chemotherapeutics

(Ohta et al., 2008; Shibata et al., 2008a; Wang et al., 2008; Zhang et al., 2010). However, it is

also clear that KEAP1/NRF2 and the MAPK pathway are mechanistically linked (DeNicola et al.,

2011; Sun et al., 2009). To further explore the mechanism by which KEAP1KO promotes survival in

the presence of RTK/MAPK inhibitors, we investigated whether drug treatment affected KEAP1/

NRF2 signaling. A prior report demonstrated that Ras/MAPK/Jun signaling increased expression of

NRF2 mRNA and NRF2 target genes (DeNicola et al., 2011), so we hypothesized that drug treat-

ment would decrease expression of NRF2 mRNA and NRF2-regulated target genes. Surprisingly, we

found that trametinib, erlotinib, and LDK-378 treatment increased rather than decreased expression

of NRF2 mRNA and NRF2 target genes (Figure 3A and Figure 3—figure supplement 1) in

HCC364, CALU1, MGH-065, and HCC827 cells. As expected, KEAP1KO also increased NRF2 target

gene expression. Trametinib treatment also increased NRF2 protein levels and induced a shift in the

migration of NRF2 protein on SDS-PAGE, whereas KEAP1KO maintained the expression of the higher

molecular weight form of NRF2 (Figure 3B and Figure 3—figure supplement 2). Although trameti-

nib treatment decreased KEAP1 expression and increased NRF2 expression, the combination of

KEAP1 knockout with trametinib treatment caused a greater effect on KEAP1 levels, NRF2 levels,

and NRF2 target gene expression. These observations suggest that treatment with these inhibitors

partially activates NRF2, and that loss of KEAP1 leads to further NRF2 activation, which decreases

drug sensitivity.

Loss of KEAP1 promotes survival by increasing glutathione synthesis
and decreasing drug-induced ROS
The KEAP1/NRF2 axis responds to oxidative and electrophilic stress by regulating expression of

drug efflux pumps, by scavenging reactive oxygen species (ROS), and by altering cell metabolism

(Hayes and Dinkova-Kostova, 2014). We investigated whether each of these functions was involved

in modulating sensitivity to RTK/MAPK inhibition. Since MAPK pathway inhibition is maintained in

KEAP1KO cells (Figure 2A), drug efflux likely does not explain resistance. To determine if loss of

Figure 2 continued

or KEAP1 G333C in A549 cells. (F) Expression of wildtype KEAP1 resensitized A549 cells to trametinib. 5000 cells were treated with 25 nM trametinib for

12 days. Error bars represent the SD of six wells. (A–F) Experiments were performed two independent times, and one representative experiment is

shown. ***p=0.0001, **p=0.0005, *p<0.002.

DOI: 10.7554/eLife.18970.009

The following figure supplements are available for figure 2:

Figure supplement 1. KEAP1-KO alters NRF2 levels and does not activate ERK.

DOI: 10.7554/eLife.18970.010

Figure supplement 2. NRF2 is necessary and sufficient for resistance.

DOI: 10.7554/eLife.18970.011
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KEAP1 promotes survival through modulation of ROS, we treated control or KEAP1KO cells with

DMSO or drug and measured ROS. We found that treatment with trametinib, erlotinib, or LDK-378

induced ROS in KEAP1-intact cells and that ROS was dramatically decreased in KEAP1KO cells or

NRF2 overexpressing cells (Figure 4A and Figure 4—figure supplement 1), suggesting that
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Figure 3. Trametinib treatment and KEAP1-KO increase NRF2 activity. (A) Expression of NFE2L2/NRF2 mRNA and NRF2 target genes in HCC364

treated with DMSO or trametinib for 72 hr. Error bars represent the SD of the mean of three biological replicates. (B) HCC364 cells treated with DMSO

or trametinib for 72 hr. TRAM, trametinib. (A,B) Experiments were performed two independent times, and one representative experiment is shown.

DOI: 10.7554/eLife.18970.012

The following figure supplements are available for figure 3:

Figure supplement 1. Expression of NFE2L2/NRF2 mRNA and NRF2 target genes in (A) CALU1 cells, (B) HCC827 cells, or (C) MGH-065 cells treated

with DMSO or the indicated drug for 72 hr.

DOI: 10.7554/eLife.18970.013

Figure supplement 2. CALU1 cells treated with DMSO or trametinib for 72 hr.

DOI: 10.7554/eLife.18970.014
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Figure 4. KEAP1-KO reduces trametinib-induced ROS through increased glutathione synthesis. (A) HCC364 or CALU1 cells were treated with DMSO or

trametinib for 72 hr. ROS was measured by DCFDA fluorescence. Error bars represent SD of the mean of two biological replicates. (B, D) CALU1 or

HCC364 cells were treated with DMSO or trametinib for 72 hr and metabolites were measured by liquid chromatography tandem mass spectrometry.

Figure 4 continued on next page
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KEAP1KO may promote survival by reducing ROS levels. The ability of RTK/MAPK inhibitors to

induce ROS in control cells may explain their ability to increase NRF2 levels, as increased ROS would

lead to release of NRF2 from KEAP1 regulation (Kobayashi et al., 2004). Further activation of NRF2

through deletion of KEAP1 may then reduce ROS levels, leading to increased survival in the pres-

ence of drug.

To better understand how KEAP1KO reduced ROS, we performed metabolite profiling in control

or KEAP1KO CALU1 and HCC364 cells treated with DMSO or trametinib for 72 hr. In both cell lines,

the most highly increased metabolite in KEAP1KO cells treated with trametinib compared to control

cells treated with trametinib was reduced glutathione (GSH), an antioxidant (Figure 4B and

Supplementary file 3). In addition to glutathione, we identified several other changes in the gluta-

thione synthesis pathway (Figure 4C). Both the reduced (GSH) and oxidized (GSSG) form of glutathi-

one were increased in KEAP1KO cells, although the ratio of reduced to oxidized glutathione (GSH/

GSSG) also increased (Figure 4—figure supplement 2), indicating a more reduced intracellular envi-

ronment. We also found that cystine, the oxidized form of cysteine, was among the most decreased

metabolites in KEAP1KO cells compared to control cells (Figure 4D), suggesting that KEAP1KO con-

tributes to a change in oxidative state in which cystine is converted to cysteine, which is then used to

make glutathione.

In addition to the changes in metabolite levels, we also observed several changes in gene expres-

sion that were consistent with increased glutathione synthesis in KEAP1KO cells. Glutamate cysteine

ligase (GCL) catalyzes the rate-limiting step in glutathione synthesis, and both subunits of this

enzyme (GCLC and GCLM) are NRF2 target genes. As described above, expression of both of these

genes was higher in drug-treated KEAP1KO cells compared to drug-treated control cells (Figure 3A

and Figure 3—figure supplement 1). Glycine is also a precursor to glutathione, and NRF2 has previ-

ously been shown to regulate expression of serine hydroxymethyltransferase (SHMT1,2)

(DeNicola et al., 2015), which catalyzes the conversion of serine to glycine. We found that expres-

sion of SHMT1 and SHMT2 decreased upon trametinib treatment in CALU1 and HCC364 control

cells but was partially maintained in KEAP1KO cells, although this was not observed in MGH-065 and

HCC827 cells (Figure 4—figure supplement 3). In addition, we found that expression of glutathione

peroxidase (GPX1), which converts GSH to GSSG, increased with drug treatment in control cells, but

this increase was abrogated in KEAP1KO cells (Figure 4E and Figure 4—figure supplement 4). Con-

versely, expression of glutathione reductase (GSR), which converts GSSG to GSH, was higher in

KEAP1KO cells than in control cells (Figure 4E and Figure 4—figure supplement 4). These observa-

tions suggest that the conversion of oxidized to reduced glutathione may be involved in the modula-

tion of drug sensitivity meditated by loss of KEAP1.

To determine whether the increased glutathione levels promoted survival in the presence of

drug, we treated KEAP1-intact cells with trametinib and N-acetyl cysteine (NAC), an antioxidant and

glutathione precursor. NAC reduced ROS and decreased sensitivity to trametinib (Figure 5A,B),

indicating that ROS reduction through increased glutathione synthesis is important for KEAP1KO-

mediated survival. To further investigate whether glutathione synthesis and ROS reduction was

important for survival, we treated cells with trametinib and buthionine sulfoximine (BSO), which

inhibits GCL. The combination of BSO and trametinib increased ROS and greatly decreased viability

Figure 4 continued

Error bars represent SD of eight replicates. (C) Glutathione synthesis pathway. (E) Expression of GPX1 and GSR in HCC364 and CALU1 cells treated with

DMSO or trametinib for 72 hr. Error bars represent the SD of the mean of three biological replicates. ***p<0.005, **p<0.01, *p<0.02.

DOI: 10.7554/eLife.18970.015

The following figure supplements are available for figure 4:

Figure supplement 1. KEAP1-KO reduces drug-induced ROS.

DOI: 10.7554/eLife.18970.016

Figure supplement 2. Glutathione levels in HCC364 and CALU1 cells.

DOI: 10.7554/eLife.18970.017

Figure supplement 3. KEAP1-KO alters expression of SHMT1/2 in some cell lines.

DOI: 10.7554/eLife.18970.018

Figure supplement 4. KEAP1-KO alters expression of GPX1 and GSR.

DOI: 10.7554/eLife.18970.019
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Figure 5. Altering ROS levels affects cell survival. (A, B) CALU1 cells were treated with DMSO or 50 nM trametinib and the indicated concentration of

N-acetyl cysteine (NAC) for 16 days. (A) ROS was measured by DCFDA assay. Error bars represent SD of two replicates. (B) Population doublings of

trametinib-treated cells compared to DMSO-treated cells. Error bars represent SD of two replicates. (C) KEAP1-KO reduces trametinib- and BSO-

induced ROS in CALU1 cells. Cells were treated for 72 hr, and ROS was measured by DCFDA assay. Error bars represent SD of two replicates. (D)

KEAP1-KO increases cell viability in CALU1 cells treated with trametinib and BSO. 20,000 CALU1 cells were treated with DMSO plus BSO for 7 days or

trametinib plus BSO for 12 days. Error bars represent SD of triplicate wells. (E) Model of how KEAP1-KO confers resistance to trametinib. MAPK

pathway inhibitors turn off MAPK signaling and also induce ROS, leading to low level activation of NRF2. Upon KEAP1 loss, NRF2 activity further

increases, altering expression of genes involved in the antioxidant response and metabolism, allowing for proliferation in the absence of MAPK

signaling.

DOI: 10.7554/eLife.18970.020

The following figure supplements are available for figure 5:

Figure supplement 1. KEAP1-KO reduces ROS and increases viability in the presence of BSO.

DOI: 10.7554/eLife.18970.021

Figure supplement 2. Expression of WT KEAP1 but not G333C in KEAP1-null A549 cells increases trametinib- and BSO-induced ROS.

DOI: 10.7554/eLife.18970.022

Figure supplement 3. KEAP1-KO alters cell metabolism.

DOI: 10.7554/eLife.18970.023
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in control cells expressing sgGFP, while KEAP1KO prevented the BSO-induced decrease in viability

(Figure 5C,D and Figure 5—figure supplement 1). Furthermore, combined treatment with BSO

and trametinib dramatically increased ROS levels in A549 cells in which wildtype KEAP1 expression

had been restored, but not in the parental cells or cells expressing KEAP1G333C (Figure 5—figure

supplement 2). These observations indicate that KEAP1KO can decrease ROS even when GCL is

inhibited, suggesting that the conversion of oxidized to reduced glutathione may be more important

for promoting survival in the presence of drug. Together, these observations suggest that trametinib

treatment induces ROS, which activates NRF2 to low levels. Loss of KEAP1 leads to further activation

of NRF2, which decreases drug sensitivity in part by increasing glutathione and decreasing ROS.

In addition to regulating ROS, NRF2 has been reported to regulate the expression of metabolic

genes (DeNicola et al., 2015; Mitsuishi et al., 2012). We found that glycolytic and pentose phos-

phate pathway intermediates were higher in trametinib-treated KEAP1KO cells compared to trameti-

nib-treated control cells (Supplementary file 3), indicating that KEAP1 knockout partially restores

anabolic metabolism. We also found that expression of several NRF2 target genes involved in the

pentose phosphate pathway, de novo nucleotide synthesis, and NADPH synthesis was higher in

drug-treated KEAP1KO cells than in drug-treated control cells (Figure 5—figure supplement 3).

Together these observations support a model in which RTK/MAPK pathway inhibitors block MAPK

signaling and induce ROS, which activates NRF2 to low levels. KEAP1 loss increases NRF2 activity,

which reduces ROS through increased glutathione synthesis and alters cell metabolism, allowing cells

to proliferate in the absence of MAPK signaling (Figure 5E).

To determine whether KEAP1 loss also conferred resistance in vivo, we performed a xenograft

study, in which HCC827 KEAP1KO or control cells were implanted subcutaneously. When the average

tumor volume reached 100–200 mm3, mice were randomized to three groups: vehicle, 5 mg/kg erlo-

tinib, or 12 mg/kg erlotinib. KEAP1KO cells showed a proliferative advantage over control cells in

both the presence and absence of erlotinib (Figure 6).

Discussion
Previous genome scale screens to identify mechanisms of resistance to targeted therapeutics have

focused on a single genetic alteration (Shalem et al., 2014; Berns et al., 2007; Johannessen et al.,
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Figure 6. Alterations in the KEAP1/NRF2 pathway alter tumor growth in vivo. Growth of HCC827 sgGFP and

sgKEAP1 cells in vivo. HCC827 sgGFP or sgKEAP1 cells were implanted bilaterally and treatment was initiated

when average tumor volume reached 100–200 mm3. Data represent mean ± SD (n = 12).

DOI: 10.7554/eLife.18970.024
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2013; Whittaker et al., 2013). Here we have expanded this approach to identify mechanisms of

resistance that are shared across multiple targeted therapeutics in several genetic contexts. We

have found that KEAP1 loss modulates sensitivity to inhibition of EGFR, ALK, BRAF, or MEK in lung

cancer cell lines with EGFR, ALK, BRAF, KRAS, or NRAS mutations. In multiple independent CRISPR-

Cas9 screens, we found that sgRNAs targeting KEAP1 were more highly enriched than sgRNAs tar-

geting NF1, DUSP1, PTEN, or TSC1/2, known negative regulators of the MAPK and PI3K pathways.

Previous studies using shRNA screens to identify potential combination therapies for Ras-mutant

cancers found that RTK/MAPK pathway reactivation (Manchado et al., 2016) or induction of anti-

apoptotic proteins (Corcoran et al., 2013) limits therapeutic efficacy. Importantly, loss of KEAP1

does not lead to reactivation of the MAPK pathway or decreased levels of the pro-apoptotic protein

BIM, and instead reduces drug-induced ROS and alters cell metabolism.

KEAP1 loss or NRF2 overexpression is sufficient to restore cell proliferation in the absence of

MAPK signaling. It has previously been shown that ROS detoxification and modulation of redox state

by NRF2 contributes to tumorigenesis (DeNicola et al., 2011), and NRF2 has recently been found to

be an oncogene (Kim et al., 2016). In addition to its role in regulating redox state, NRF2 has also

previously been shown to regulate expression of many metabolic enzymes, redirecting glucose and

glutamine into anabolic pathways that support proliferation (Mitsuishi et al., 2012) and controlling

serine and glycine biosynthesis to support glutathione and nucleotide production (DeNicola et al.,

2015). Thus, increased expression of NRF2 upon KEAP1 loss can confer resistance to RTK/MAPK

pathway inhibition by reducing ROS and regulating metabolic pathways. Chio et al. recently

reported that NRF2 supports pancreatic tumor maintenance, and that combined targeting of AKT

and glutathione synthesis inhibits pancreatic cancer (Chio et al., 2016). While their study focused on

the role of NRF2 in regulating mRNA translation in pancreatic cancer, their findings regarding gluta-

thione synthesis being a key function of NRF2 are in concordance with our observations.

We recently found that the number of CRISPR/Cas9-induced DNA breaks dictates a gene-inde-

pendent anti-proliferative response in cells, such that targeting amplified regions decreases viability

(Munoz et al., 2016; Aguirre et al., 2016). This effect confounds the use of CRISPR/Cas9 negative

selection screening to identify essential genes in amplified regions. We do not believe that this effect

is relevant to this study, in which we have performed positive selection screens to identify genes

whose loss promotes proliferation under drug treatment. Moreover, we directly compare the same

cells under two conditions; thus, any genes that are affected by the gene-independent effect will

score in both conditions.

A recent vemurafenib BRAFV600E basket trial showed that 42% of lung cancers with the BRAF

V600E mutation responded to vemurafenib (Hyman et al., 2015). As seen with vemurafenib treat-

ment in melanoma or with EGFR inhibitors in lung cancer, acquired resistance will likely arise. Fur-

thermore, while MEK inhibitors only elicit responses in a small number of lung cancer patients

(Blumenschein et al., 2015), these responders are also likely to develop resistance. Predicting how

resistance may arise in these patients will be important for developing more effective combination

therapies. In addition, for those patients that do not initially respond, intrinsic resistance in a subset

of these patients may be explained by the mechanisms we describe here. The KEAP1/NRF2 pathway

is genetically altered in approximately 30% of lung squamous cell carcinomas and approximately

20% of lung adenocarcinomas. Alterations in this pathway can co-occur with alterations in the RTK/

Ras pathway (Cerami et al., 2012; Gao et al., 2013; Cancer Genome Atlas Research Network,

2014), although KEAP1/NRF2 alterations are enriched in the ‘oncogene negative’ subset of lung

cancers (Cancer Genome Atlas Research Network, 2014). BRAF and MEK inhibitors are currently

being tested in clinical trials for RAS- and BRAF-mutant lung cancer. However, for most of these tri-

als matched pre-treatment and post-relapse biopsy specimens are not available for molecular analy-

sis of resistance mechanisms. Gainor et al. recently identified a NRF2 mutation in a patient with

acquired resistance to an ALK inhibitor (Gainor et al., 2016). This mutation (E79Q) is in a mutational

hotspot and has previously been shown to impair recognition of NRF2 by KEAP1, thus activating the

pathway (Shibata et al., 2008b). This tumor also harbored a secondary ALK mutation of unknown

function and became resistant to a second generation ALK inhibitor. Thus it is possible that the

NRF2 mutation contributed to survival in the presence of crizotinib treatment and allowed the cells

to acquire additional resistance mutations over time.

Although KEAP1/NRF2 alterations are known to confer resistance to chemotherapy, KEAP1/NRF2

mutation status is not used to make treatment decisions in lung cancer. As more patients are treated
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with RTK/MAPK inhibitors, analyzing KEAP1 and NRF2 status in pre-treatment and post-resistance

tumor samples will determine if loss of KEAP1 or gain of NRF2 are clinically relevant mechanisms of

acquired and intrinsic resistance to these therapies in lung cancer. Stratifying patients based on

these findings will be important for evaluating the efficacy of these inhibitors in clinical trials and for

choosing the appropriate treatment for patients.

Materials and methods

Cell lines and reagents
Cells were obtained from ATCC and fingerprinted as in Barretina et al (Barretina et al., 2012). Cells

were maintained in RPMI-1640 (NCI-H1299, HCC364, NCI-H1975, and HCC827;

Corning, Corning, NY), McCoy’s 5A (CALU1; Gibco, Waltham, MA) or DMEM (MGH-065;

Invitrogen, Carlsbad, CA) supplemented with 2 mM glutamine, 50 U/mL penicillin, 50 U/mL of strep-

tomycin (Gibco), and 10% fetal bovine serum (Sigma, St. Louis, MO), and incubated at 37˚C in 5%

CO2. MGH-065 cells were derived as previously described (Crystal et al., 2014). Cell lines were

tested for mycoplasma prior to screening. Trametinib, vemurafenib, erlotinib, and afatinib, were pur-

chased from Selleck Chemicals (Houston, TX). LDK-378 and Crizotinib were synthesized by the

Novartis Global Discovery Chemistry Department.

Screen optimization for genome scale screens
Blasticidin and puromycin concentrations were optimized for each cell line by treating with different

concentrations of drug for 3 days (puromycin) or 7 days (blasticidin). The lowest concentration of

drug that killed all cells was used in the screens.

To produce Cas9-expressing cell lines, 200,000–400,000 cells were seeded in one well of a 6-well

plate. The following day, cells were infected with 3 mL of pLX311-Cas9 virus with a final concentra-

tion of 4 ug/mL polybrene. Cells were spun for 2 hr at 2000 rpm at 30˚C. 24 hr after infection, cells

were selected with blasticidin for 7 days.

To determine Cas9 activity, parental cell lines and Cas9-expressing cell lines were infected with

pXPR_011, a Cas9 activity reporter which expresses eGFP as well as a guide RNA targeting eGFP

(Doench et al., 2014). 200,000–400,000 cells were seeded in six wells of a 6-well plate and were

infected with 25–100 mL virus with a final concentration of 4 mg/mL polybrene. Cells were spun 2 hr

at 2000 rpm at 30˚C. 24 hr after infection, each well was split into two wells, one of which was

selected with puromycin. After 2–3 days of puromycin selection, cells were counted and those with

30–40% infection efficiency were kept for the Cas9 activity assay. After 7 days of puromycin selec-

tion, cells were analyzed on an LSRII flow cytometer to determine the amount of GFP-positive cells.

Parental cells not expressing Cas9 or pXPR_011 were used as a negative control. Cells expressing

pXPR_011 but not Cas9 were used as a positive control.

To optimize inhibitor concentrations, Cas9-expressing cells were infected with different amounts

of emptyT virus (to mimic sgRNA infection) and were selected with puromycin. After 3 days of puro-

mycin selection, cells were counted and those with 30–40% infection efficiency were used to opti-

mize inhibitor concentration. Cells were kept in puromycin selection for one week prior to

optimizing inhibitor concentration.

To determine the optimal drug concentration for the screens, cells expressing Cas9 and emptyT

were treated with different concentrations of drug for three weeks. Cells were passaged or fresh

drug-containing media was added every 3–4 days. Cells were counted at each passage. The lowest

concentration of drug that resulted in death or proliferative arrest was used in the screen (Extended

Data Figure 1) In parallel, cells were treated with different concentrations of inhibitor for 24 hr and

then lysed in RIPA buffer. Immunoblots were performed with total and phospho-ERK antibodies to

determine the concentration of inhibitor that blocked ERK phosphorylation.

To titer the GeCKO v2 library in Cas9-expressing cells, 3 � 10^6 cells were seeded per well in a

12-well plate and were infected with different amounts of virus (0, 50, 100, 150, 200, 400 uL), with a

final concentration of 4–8 ug/mL polybrene. Cells were spun for 2 hr at 2000 rpm at 30˚C. Approxi-
mately 6 hr after infection, cells were split into 6-well plates. For each amount of virus, 100,000 cells

per well were plated in two wells. 24 hr after infection, one well was treated with puromycin and one
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with media alone. After 2–3 days of selection, cells were counted to determine the amount of virus

that resulted in 30–40% infection efficiency, and this amount of virus was used in the screen.

GeCKO v2 library construction
See Sanjana et al (Sanjana et al., 2014).

Genome-scale CRISPR knockout drug resistance screens with GeCKO
v2 library
For each screen, two infection replicates were performed. 150 � 10^6 cells were infected per repli-

cate with 40% infection efficiency, in order to obtain 500 cells per sgRNA after selection (60 � 10^6

surviving cells containing 120,000 sgRNAs). 3 � 10^6 cells per well were seeded in 12-well plates

and were infected with the amount of virus determined during optimization, with a final polybrene

concentration of 4 mg/mL. Plates were spun for 2 hr at 2000 rpm at 30˚C. Approximately 6 hr after

infection, all wells within a replicate were pooled and were split into T225 flasks. 24 hr after infection,

cells were selected in puromycin for one week and were passaged as necessary. After one week of

puromycin selection, 60 � 10^6 cells were harvested for the Day 0 time point, and 60 � 10^6 cells

were treated with drug. HCC364 cells were treated with 24 nM trametinib or 6.25 mM vemurafenib;

H1299 cells were treated with 1.5 mM trametinib; and CALU1 cells were treated with 50 nM trameti-

nib. Cells were passaged or fresh drug-containing media was added every 3–4 days. Drug-treated

cells were harvested on Day 14 and Day 21 of drug treatment. To harvest cells, cells were trypsi-

nized, spun down, washed with PBS, and the cell pellets were frozen at �80˚C.
Genomic DNA was extracted using the Qiagen Blood and Cell Culture DNA Maxi Kit according

to the manufacturer’s protocol.

Sequencing and analysis of genome-scale screens
See Doench et al (Doench et al., 2016).

Screen optimization for focused sgRNA library screen
Live cell time-lapse imaging was used to determine optimal drug concentrations in HCC827 and

MGH065 cells. Photomicrographs were taken every 6 hr using an Incucyte live cell imager (Essen Bio-

sciences) and confluence was measured over 130 hr in culture.

Focused sgRNA library construction
The sgRNA libraries were designed as previously described (Wang et al., 2014). A modified

tracrRNA scaffold (Chen et al., 2013) for Cas9 loading was cloned into the sgRNA vectors before

cloning of the guide RNAs. This sgRNA library targets ~2700 genes and is comprised of 20 sgRNAs

per gene.

Focused sgRNA library screens
For the screens in HCC827 and MGH065, cells were infected with a lentiviral sgRNA pool at a repre-

sentation of 1000 cells per sgRNA at an MOI of 0.5. Cells were selected for four days in the presence

of puromycin, and a reference sample was collected 72 hr after selection to ensure adequate selec-

tion/representation. Cells were split into a DMSO control arm and a treatment arm. HCC827 cells

were treated with 0.01 uM erlotinib and MGH-065 was treated with 0.5 uM Crizotinib or LDK378.

Cells were propagated for a total of 14 days with an average sgRNA representation of �1000 main-

tained at each passage. 100 million cells were harvested for DNA extraction by QIAmp Blood Maxi

kit (Qiagen), sgRNAs were PCR amplified from 100 ug of genomic DNA, and PCR fragments of 260–

280 bp were purified using Agencourt AMpure XP beads (Beckman). The resulting fragments were

sequenced on a Hiseq 2500 (Illumina) with a single end 50 bp run. Sequencing reads were aligned to

the sgRNA library and the enrichment or loss of individual bar codes or sgRNA were quantified.

Vectors
Cas9 in the pLX311 backbone (pXPR_BRD111) and sgRNAs in the pXPR_BRD003 backbone were

obtained from the Genetic Perturbation Platform at the Broad Institute.
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sgKEAP1 arrayed infection
500,000 cells per well were seeded in 48-well plates in 250 mL media with 4 mg/mL polybrene. 25 mL

virus (sgKEAP1 or sgEGFP) was added per well and plates were spun 2 hr at 2000 rpm at 30˚C. 6 hr

later, each well was split into a 6 cm dish. 24 hr after infection, cells were selected with puromycin

for one week.

TIDE-PCR
We performed TIDE-PCR (Brinkman et al., 2014) on CALU1 and HCC364 sgKEAP1 cells (forward

primer CTGGTACATGACAGCACCGT and reverse primer TGCTTCACCTACTTTGCAGGA for

sgKEAP1–1 cells; forward primer CTCCAGTTTCCTGCCTTGACAT and reverse primer GAACCCCA

TGCAGCCAGAT for sgKEAP1–2 cells) and found the editing efficiency to be approximately 93%, of

which approximately 70% is a one base pair insertion, which would lead to a frame shift.

qRT-PCR
RNA was harvested using a Qiagen RNeasy Kit and was reverse transcribed into cDNA using Super-

ScriptIII according to the manufacturer’s recommendations. KEAP1 mRNA expression was measured

using primers downstream of the sgRNA targeting sites. KEAP1 mRNA levels in KEAP1KO cells

were ~35–40% of those in control cells.

Cytoplasmic/nuclear fractionation
5 � 10^5 cells were seeded in 10 cm dishes. The following day, cells were treated with trametinib

(25 nM for HCC364 or 50 nM for CALU1) or DMSO. After 72 hr of drug treatment, cells were lysed

and fractionated using NE-PER Nuclear and Cytoplasmic Extraction Reagents (Pierce Biotechnology)

according to the manufacturer’s recommendations.

Immunoblotting
Cells were lysed in RIPA buffer containing protease and phosphatase inhibitors and were cleared by

centrifugation. Protein was quantified using the Pierce BCA assay, and lysate concentrations were

normalized. Lysates were run on SDS-PAGE gels and were transferred to nitrocellulose membranes

using the Invitrogen iBlot system. Membranes were blocked for one hour in 5% milk in Tris-buffered

saline with 0.1% Tween (TBS-T). Membranes were incubated overnight at 4˚C with primary antibod-

ies in 5% BSA in TBS-T. Membranes were washed three times in TBST-T then incubated 1 hr at room

temperature with secondary antibodies in 5% BSA in TBS-T. Membranes were washed in TBS-T and

imaged on a Li-Cor Odyssey Infrared Imaging System. Primary antibodies were total ERK (Cell Sig-

naling #9102), phospho-ERK (Cell Signaling #4370), total AKT (Cell Signaling #9272), phospho-AKT

(Cell Signaling #4060), GAPDH (Cell Signaling #5174), LAMIN A/C (Cell Signaling #4777), KEAP1

(Proteintech 10503–2-AP), and NRF2 (Santa Cruz Biotechnology sc-13032).

Crystal violet assays
1000–10,000 cells were seeded in 12-well or 24-well plates in the indicated drug conditions. Media

containing fresh drug was replaced every 3–4 days. After the indicated number of days, cells were

washed in PBS, fixed in 10% formalin for 15 min, and stained with 0.1% crystal violet in 10% ethanol

for 20 min. After acquiring images, crystal violet was extracted in 10% acetic acid for 20 min. The

absorbance at 565 nm was determined using a Spectramax plate reader.

ORF expression
293 T cells were seeded in DMEM + 10% FBS + 0.1% Pen/Strep in 6 cm dishes. 24 hr later, cells

were transfected with 100 ng VSVG, 900 ng delta8.9, and 1 mg pLX317-ORF plasmid using OptiMEM

and Mirus TransIT. 16 hr after transfection, media was changed to DMEM +30% FBS + 1% Pen/

Strep. Virus was harvested 24 hr later. Cell lines were seeded in 6-well plates and were infected the

following day with 1:5 dilution of virus containing 4 mg/mL polybrene. 24 hr after infection, cells

were selected with puromycin.
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DCFDA assays to measure ROS
Unless otherwise indicated, cells were treated with drug for 3 days. Cells were trypsinized and resus-

pended in media with 10 mM DCFDA (Sigma D6883) and incubated at 37˚C for 90 min in the dark.

For a positive control, parental cells were treated with 20 mM tert-butyl hydroperoxide (Sigma

Aldrich 458139) during incubation. For a negative control, parental cells were incubated in media

without DCFDA. DCFDA fluorescence was detected by flow cytometry, using the FITC channel on

an LSRII flow cytometer (BD Biosciences).

Metabolite profiling
Metabolite extraction was performed as described previously (Yuan et al., 2012). In brief, cells were

plated in 10 cm dishes and treated for 72 hr with either DMSO or trametinib (25 nM for HCC364

and 50 nM for CALU1) in quadruplicate. Four hours before metabolite extraction, cells were re-fed

with fresh media containing drug or DMSO. Cells were then washed with PBS at 37˚C, followed by

metabolite extraction by scraping in 80% methanol (on dry ice), insoluble materials collected, two

sequential extractions combined and stored at �80˚C. Prior to mass spectrometry, the metabolite

extracts were lyophilized, resolubilized in 20 mL of LC/MS grade water, and then analyzed by liquid

chromatography tandem mass spectrometry (LC-MS/MS) using positive ion/negative ion polarity

switching via selected reaction monitoring (SRM) on a 5500 QTRAP hybrid triple quadrupole mass

spectrometer (AB/SCIEX), as previously described (Yuan et al., 2012). Peaks were integrated using

MultiQuant 2.1 data analysis software (AB/SCIEX). Metabolite differences were analyzed by normal-

izing samples by total levels and comparing replicate samples in groups that satisfy significance of

p<0.05 using an unpaired two-tailed t-test.

Xenotransplantation and in vivo drug treatments
Mice were maintained and handled in accordance with the Novartis Institutes for Biomedical

Research (NIBR) Animal Care and Use Committee protocols and regulations. Nude mice were inocu-

lated subcutaneously with 10 � 106 HCC827 KEAP1KO or control cells implanted bilaterally in 50%

PBS + 50% matrigel. Once the average tumor volume reached 100–200 mm3 in size, mice were ran-

domized to three groups: vehicle, 5 mg/kg erlotinib, or 12 mg/kg erlotinib. Erlotinib was adminis-

tered by oral gavage once daily for 40 days and tumor volume was measured twice weekly.

qPCR primer sequences

Gene Forward primer Reverse primer

KEAP1 GATTGGCTGTGTGGAGTTGC GCAGTGGGACAGGTTGAAGA

KEAP1 TCGATGGCCACATCTATGCC CCGATCCTTCGTGTCAGCAT

NFE2L2 TCCAGTCAGAAACCAGTGGAT GAATGTCTGCGCCAAAAGCTG

GCLC GTGTTTCCTGGACTGATCCCA TCCCTCATCCATCTGGCAAC

GCLM CATTTACAGCCTTACTGGGAGG ATGCAGTCAAATCTGGTGGCA

HO1 CTTTCAGAAGGGCCAGGTGA GTAGACAGGGGCGAAGACTG

NQO1 CTCACCGAGAGCCTAGTTCC CGTCCTCTCTGAGTGAGCCA

MRP1 CTCTATCTCTCCCGACATGACC AGCAGACGATCCACAGCAAAA

TKT GCTGAACCTGAGGAAGATCA TGTCGAAGTATTTGCCGGTG

TALDO1 GTCATCAACCTGGGAAGGAA CAACAAATGGGGAGATGAGG

PGD ATATAGGGACACCACAAGACGG GCATGAGCGATGGGCCATA

MTHFD2 TGTCCTCAACAAAACCAGGG TTCCTCTGAAATTGAAGCTGG

ME1 CTGCCTGTCATTCTGGATGT ACCTCTTACTCTTCTCTGCC

G6PD TGACCTGGCCAAGAAGAAGA CAAAGAAGTCCTCCAGCTTG

SHMT1 TGAACACTGCCATGTGGTGACC TCTTTGCCAGTCTTGGGATCC

SHMT2 GCCTCATTGACTACAACCAGCTG ATGTCTGCCAGCAGGTGTGCTT

ACTIN CAACCGCGAGAAGATGACC ATCACGATGCCAGTGGTACG
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sgRNA sequences

Name Target sequence

sgGFP GGCGAGGGCGATGCCACCTA

sgKEAP1–1 CTTGTGGGCCATGAACTGGG

sgKEAP1–2 TGTGTCCTCCACGTCATGAA

sgKEAP1–3 GAGGACACACTTCTCGCCCA

sgKEAP1–4 ACTGGGCGGCCGGTGCATCC

sgLACZ-1 AACGGCGGATTGACCGTAAT

sgLACZ-2 CTAACGCCTGGGTCGAACGC
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