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Conditionally unbiased estimation in
phase II/III clinical trials with early
stopping for futility
Peter K. Kimani,a*† Susan Toddb and Nigel Stallarda

Seamless phase II/III clinical trials combine traditional phases II and III into a single trial that is conducted in
two stages, with stage 1 used to answer phase II objectives such as treatment selection and stage 2 used for the
confirmatory analysis, which is a phase III objective. Although seamless phase II/III clinical trials are efficient
because the confirmatory analysis includes phase II data from stage 1, inference can pose statistical challenges.
In this paper, we consider point estimation following seamless phase II/III clinical trials in which stage 1 is used
to select the most effective experimental treatment and to decide if, compared with a control, the trial should
stop at stage 1 for futility. If the trial is not stopped, then the phase III confirmatory part of the trial involves
evaluation of the selected most effective experimental treatment and the control. We have developed two new
estimators for the treatment difference between these two treatments with the aim of reducing bias conditional
on the treatment selection made and on the fact that the trial continues to stage 2. We have demonstrated the
properties of these estimators using simulations. Copyright © 2013 John Wiley & Sons, Ltd.
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1. Introduction

Modern innovations in clinical trial design have led to the availability of new approaches referred to as
adaptive seamless designs (ASDs). Using an ASD, a clinical trial is conducted in 2 or more stages with
interim analyses performed before the final stage to make adaptations. In this paper, we will consider
two-stage ASDs where several doses or formulations of a drug, or several different treatments, are simul-
taneously compared with a standard/control with the poorly performing treatments dropped at stage 1
on the basis of interim analysis results. Such a trial is often termed a seamless phase II/III clinical trial.
Unlike the traditional approach in which promising treatments are selected in a phase II trial separate to
a confirmatory phase III trial, seamless phase II/III clinical trials combine aspects of both phases into a
single trial with two or more stages. At the end of stage 1 of a two-stage seamless phase II/III clinical
trial, an interim analysis is conducted to select the most promising treatment so that stage 1 resembles a
phase II trial. The selected treatment together with the control treatment continues to stage 2 after which
a confirmatory analysis is performed so that stage 2 resembles a fixed-sample-size phase III trial. The
confirmatory analysis includes data from stages 1 and 2.

An ASD such as that described earlier poses a number of statistical challenges in both hypothesis test-
ing and estimation of treatment effects because at the end of the trial, they use the data used in treatment
selection to make inferences. An appropriate hypothesis testing method must be used to ensure that the
overall type I error rate of the trial is not inflated. The evidence from the two stages can be combined
using sufficient statistics from the accumulated data after each of the two stages or using the p-values
from the two stages. Several authors [1–3] have proposed ASDs for which hypothesis testing is based on
the sufficient statistics for the selected treatment effect, where the selected treatment is that which is seen
to be most effective in the trial. If the selected treatment is not the most effective but testing is performed
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as if the most effective treatment has been selected using the preceding methods, the test is conservative
[4]. Hypothesis testing following an ASD can be carried out by combining the p-values from stages 1
and 2 [5, 6]. This method of testing is very flexible with regard to the choice of the selection rule. The
flexibility of this testing has been exploited to propose ASDs that use Bayesian techniques to make the
selection but use frequentist methods for hypothesis testing [7–9]. A third technique of testing hypothe-
ses after an adaptive trial is by using the conditional error principle [10] as in the adaptive Dunnett
test [11].

The focus in this paper is estimation following an ASD. Estimation in this context is challenging
because experimental treatments are retained in the trial precisely because they appear to be the most
promising. Data suggesting that one treatment is superior may arise by chance even if the treatment is
not truly superior to the other experimental treatments. Although the estimates may be biased, the bias
can be quantified only if the rule for selecting the most promising treatment is specified in advance [12].
This is because bias is defined as an expectation and expectations are taken over all possible outcomes,
requiring specification of the selection rule used. The most promising treatment may be chosen on the
basis of effectiveness and other factors such as safety. In this paper, we will focus on selection where
the most promising treatment is that which has the highest apparent effectiveness at the end of stage 1.
For such a selection, the effectiveness of treatments chosen to remain in the clinical trial is likely to
be overestimated.

Regulatory guidance [13,14] indicates that the bias of estimates obtained following an ASD should be
considered. Cohen and Sackrowitz [15] and Shen [16] have proposed methods for estimating the mean
of the selected treatment. The Cohen and Sackrowitz estimator is unbiased, whereas the Shen estima-
tor reduces the bias relative to the naive estimator that ignores selecting the most effective treatment to
continue to stage 2 based on the observed stage 1 data. Stallard and Todd [17] have proposed a method
for estimating the mean of the selected treatment and also the means of the treatments that are dropped
at stage 1. Cohen and Sackrowitz [15] and Shen [16] assume that the trial always continues to stage 2,
whereas Stallard and Todd [17] assume that the trial may stop either for futility (when none of the exper-
imental treatments are sufficiently effective on the basis of stage 1 data) or for efficacy. In this paper, we
extend these methods to the setting where the trial can stop at stage 1 for futility, but not efficacy. This
setting is common in practice. We will derive new estimators for the treatment difference for the selected
treatment when estimation is unbiased conditional on continuing to stage 2. This differs from the Stal-
lard and Todd estimator because the Stallard and Todd estimator is derived to be approximately unbiased
conditional on the selected treatment whereas the estimators we will derive in this paper are obtained
conditional on the selected treatment and the fact that the trial continues to stage 2. The two new condi-
tional estimators (the word conditional is used to emphasize that estimation is unbiased conditional on
continuing to stage 2) that we will derive extend the Cohen and Sackrowitz estimator and the Stallard and
Todd estimator.

Like Koopmeiners et al. [18], we believe estimation unbiased conditional on continuing to stage 2
is of practical importance because when the trial cannot stop for efficacy at stage 1, it is reasonable to
be interested in making a claim only when the trial continues to stage 2. Also, unconditionally unbiased
estimators, that is estimators that do not condition on the stage at which the trial stops, may be condition-
ally biased [19]. Because of this, in [19], the authors proposed to obtain estimators unbiased conditional
on the stage at which the trial stops.

We organized the remainder of the paper as follows. In Section 2.1, we describe the setting of interest
while giving the notation. In Section 2.2, we derive an estimator that extends the Cohen and Sackrowitz
estimator, and in Section 2.3, we derive expressions used to obtain an estimator that uses the Stallard and
Todd principle. In Section 3, we present a worked example. We compare the various estimators using a
simulation study in Section 4. The paper ends with a discussion in Section 5.

2. Estimating treatment difference after an adaptive seamless design

2.1. Setting and notation

As already mentioned, we will consider ASDs with two stages where stage 1 is used to select the most
effective treatment and stage 2 is used for confirmatory analysis. Let k .>2/ denote the number of exper-
imental treatments available at stage 1 for comparison with the control treatment, with the experimental
treatment showing the highest effectiveness based on stage 1 data selected to continue to stage 2 together
with the control. Let the number of subjects allocated to each treatment at stage 1 be denoted by n1.
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We assume outcomes from treatment i (i D 0; 1; :::; k), with i D 0 corresponding to the control treat-
ment, are normally distributed with mean �i and a known common variance �2, so that the stage 1
sample mean for treatment i follows a normal distribution N

�
�i ; �

2
1

�
, where �21 D �

2=n1. We denote
the stage 1 sample mean for treatment i by Xi and the observed sample mean by xi . Let the selected
treatment be denoted by S .S 2 f1; :::; kg/, noting that S is a random variable, and the sample mean
from the stage 2 data for treatment i (i D 0; S ), with i D 0 corresponding to the control treatment, be
denoted by Yi with observed sample mean denoted by yi so that Yi � N

�
�i ; �

2
2

�
, where �22 D �

2=n2,
with n2 the number of subjects allocated to each treatment at stage 2. We suppose that the trial continues
to stage 2 if xS � x0 > b. We will refer to b as the futility boundary.

We define the selection time as the proportion n1=.n1 C n2/. This is the proportion of stage 1 data
for the control and the selected treatment. We denote the selection time by t so that the sample mean
from the two stages for the control treatment is given by Z0;MLE D tX0 C .1 � t /Y0 and the sample
mean for the selected treatment is given by ZS;MLE D tXSC .1� t /YS . After completion of the trial, the
objective is to estimate the treatment difference �S D �S ��0. We can base the inference on the naive
maximum likelihood estimator (MLE) for the difference between the selected and control treatments
given by

DS;MLE DZS;MLE �Z0;MLE: (1)

We will refer to this as the naive estimator. When there is no opportunity to stop at stage 1, the
naive estimator is positively biased [12, 20, 21]. This is because the chosen experimental treatment
is selected on the basis of having the maximum observed treatment difference compared with the
control treatment.

In this paper, the objective is to seek estimators, which are unbiased conditional on continuing to
stage 2, for the setting where a trial can stop at stage 1 for futility. For this setting, the naive MLE is
also positively biased because of selecting the highest effective treatment and also requiring xS �x0, the
observed difference between the selected and control treatments at stage 1, to exceed the critical value
b. If estimation is conditional on continuing to stage 2, YS and Y0 are respectively unbiased estimators
for �S and �0 so that the stage 2 sample difference

DS;2 D YS � Y0 (2)

is an unbiased estimator for �S . However, this estimator, which we will henceforth refer to as the stage
2 estimator, is likely to be inefficient compared with estimators that use both stage 1 and 2 data. In
Sections 2.2 and 2.3, we will derive two new estimators that use both stages 1 and 2 data .

2.2. A new unbiased estimator for the treatment difference

Cohen and Sackrowitz [15], although not considering the control treatment, derived a uniformly mini-
mum variance unbiased estimator (UMVUE) for �S when the trial always continues to stage 2. When
the trial always continues to stage 2, the bias of the naive estimator of �S arises from using ZS;MLE

as an estimator for �S [12]. Thus, replacing ZS;MLE with the Cohen and Sackrowitz UMVUE for
�S in Equation (1) gives an unbiased estimator for �S in the case where the trial always continues
to stage 2. In this paper, we are interested in a setting where a trial can stop for futility and estima-
tion is conditional on continuing to stage 2. For this setting, Z0;MLE is biased for �0 and also the
estimator for �S derived by Cohen and Sackrowitz is no longer unbiased because it does not con-
dition on continuing to stage 2. In the rest of this section, we will derive the UMVUE for �S and the
UMVUE for�0 when estimation is conditional on continuing to stage 2, and hence an unbiased estimator
for �S .

The UMVUEs are based on the Rao–Blackwell theorem (for example [22]). If estimation is condi-
tional on continuing to stage 2, YS is an unbiased estimator of �S . In the Rao–Blackwell theorem, a new
estimator defined as the expected value of YS given a sufficient statistic for �S is the UMVUE for �S .
Similarly, Y0 is an unbiased estimator of �0 so that the expected value of Y0 given a sufficient statistic
for �0 is the UMVUE for �0. Let X.1/ > X.2/ > ::: > X.k/ be the order statistics of stage 1 sample
means so that XS D X.1/. For the selected treatment S , we show in Appendix A that the UMVUE for
�S , which we denote by ZS;CHN with the notation chosen such that it reflects the fact that the estimator
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extends the Cohen and Sackrowitz UMVUE for �S , is given by

ZS;CHN D
�22XS C �

2
1YS

�21 C �
2
2

�
�22q
�21 C �

2
2

�.WB/

ˆ.WB/
(3)

DZS;MLE �
�22q
�21 C �

2
2

�.WB/

ˆ.WB/
;

where �.�/ and ˆ.�/ respectively denote the density and distribution functions of a standard normal,

WB D

�q
�21 C �

2
2 = �

2
1

� �
ZS;MLE �maxfB;X.2/g

�
(4)

and B DX0C b. For the control treatment, we show in Appendix B that the UMVUE for �0, which we
denote by Z0;CHN, is given by

Z0;CHN D
�22X0C �

2
1Y0

�21 C �
2
2

C
�22q
�21 C �

2
2

�.WB1/

ˆ.WB1/
(5)

DZ0;MLEC
�22q
�21 C �

2
2

�.WB1/

ˆ.WB1/
;

where

WB1 D

�q
�21 C �

2
2 = �

2
1

�
.B1 �Z0;MLE/ and B1 DXS � b:

Because ZS;CHN and Z0;CHN are unbiased estimators for �S and �0, then

DS;CHN DZS;CHN �Z0;CHN (6)

is an unbiased estimator for �S . We will refer to this estimator as the (new) unbiased estimator. If we set
the futility boundary b D �1 so that B D �1, B1 D1 and maxfB;X.2/g D X.2/, then Equation (5)
simplifies to

Z0;CHN DZ0;MLE

and Equation (4) simplifies to

WB D

�q
�21 C �

2
2 = �

2
1

� �
ZS;MLE �X.2/

�
: (7)

The simplification of Z0;CHN to Z0;MLE supports the finding in [12] that when there is no opportunity to
stop at stage 1, the bias when the naive estimator is used as an estimator of the treatment difference is
only contributed to by using ZS;MLE as an estimator for the selected treatment in Equation (1). If further
we have �2 D 1 and n1 D n2 D 1 so that �21 D �22 D 1, formulae (3) and (7) reduce to the formulae
given by Cohen and Sackrowitz.

Koopmeiners et al. [18] considered the setting with k D 1. Note that for a trial with no control arm,
the UMVUE for this setting is given by Equation (3), but with WB expressed as

WB D

�q
�21 C �

2
2 = �

2
1

�
.ZS;MLE �B/ ; (8)

where B is the futility boundary and ZS;MLE is the sample mean for the experimental treatment. The
same formula applies for the case with a control, replacing ZS;MLE with DS;MLE, the sample difference
between the experimental treatment and the control, and appropriately defining �21 and �22 as the vari-
ances of stages 1 and 2 sample differences. Koopmeiners et al. also derived the UMVUE for the setting
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with k D 1. The formula given by Koopmeiners et al. has a typological error. Defining �2all D �2=n,
where nD n1C n1, using our notation, they give the formula for UMVUE as

ZS;MLE �
�2allq
�21 � �

2
all

�

�
.B �ZS;MLE/

�
1 =

q
�21 � �

2
all

��

ˆ

�
.B �ZS;MLE/

�
1 =

q
�21 � �

2
all

�� ;

where B is the futility boundary, instead of

ZS;MLE �
�2allq
�21 � �

2
all

�

�
.B �ZS;MLE/

�
1 =

q
�21 � �

2
all

��

1�ˆ

�
.B �ZS;MLE/

�
1 =

q
�21 � �

2
all

�� :

This formula can be shown to be equivalent to our formula. Thus, the Koopmeiners et al. estimator is a
special case of our estimator.

2.3. A new bias-adjusted estimator for the treatment difference

Stallard and Todd [17] proposed a bias-adjusted estimator that involves estimating the bias of the naive
estimator. A bias-adjusted estimate is then obtained by subtracting the estimate of the bias from the
naive estimate. The bias-adjusted estimator is obtained as follows. Let O�i (i D 1; :::; k) denote the naive
maximum likelihood estimate for the treatment difference �i D �i � �0. For i ¤ S , O�i D xi � x0, and
for i D S , O�i D DS;MLE. If the true vector � D .�1; :::; �k/

0 was known, the biases for the treatment
differences of the naive maximum likelihood estimate O� D . O�1; :::; O�k/0 could be derived. Let the bias of
O�i be denoted by bi .�/ and the vector .b1.�/; :::; bk.�//0 be denoted by b.�/. Then, for example, the
bias-adjusted estimator for �S could be given by DS;MLE � bS .�/. However, the true mean vector � is
unknown. Following [23], Stallard and Todd proposed estimating the bias vector by iteratively solving
Q� D O� � b. Q�/, where O� is the naive maximum likelihood estimate of � . The initial value of Q� in the
iteration procedure could be set to be O� . If the solution is achieved at iteration r , then the bias-adjusted
estimator for �S is given by

DS;STL DDS;MLE � bS

�
Q�r

	
; (9)

where the notation is chosen to reflect the fact that this estimator is obtained using the principles
described by Stallard and Todd.

Stallard and Todd derived the bias vector conditional on the selected treatment. Let stage 1 treatment
differences Xi �X0 (i D 1; :::; k) be denoted by Di and the observed differences xi � x0 by di . One of
the densities Stallard and Todd need while deriving the bias vector, which we also need in this paper, is
the joint density of S D i and di given by

f .di ; S D i/D

Z 1
�1

1

�21
�

�
w � di

�1

�
�

�
w � �i

�1

�Y
j¤i

ˆ

�
w � �j

�1

�
dw: (10)

In the rest of this section, we will derive the bias vector when estimation is conditional on continuing to
stage 2, where the trial continues to stage 2 if dS > b. If the trial continues to stage 2, the expected value
of the treatment difference for the selected treatment i is given by

EŒDi jS D i;Di > b�D
R1
b
dif .di ; S D i/ddi

pr .S D i;Di > b/
; (11)

where f .di ; S D i/ is the density given by Equation (10). The numerator and the denominator in Equa-
tion (11) are simplified to expressions with single integrals in Appendix C.1. The expected value of the
naive estimator given by Equation (1) can be expressed as t .EŒXS � X0� � �S /C �S so that the bias
of the treatment difference for the selected treatment i , given that the trial continues to stage 2, may be
written as

bi .�/D t � .EŒDi jS D i;Di > b�� �i /: (12)

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2013, 32 2893–2910
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Conditional on the trial continuing to stage 2, the expected value of the treatment difference between
a dropped treatment i 0 and the control treatment is expressed by

EŒDi 0 jS D i;Di > b�D
EŒDi 0 ; S D i;Di > b�

pr .S D i;Di > b/
; i 0 ¤ i:

The expression for pr .S D i;Di > b/ is given earlier. The expression for EŒDi 0 ; S D i;Di > b� while
using Di 0 directly involves multidimensional integrals that cannot be simplified to fewer integrals. To
overcome this, we define a new variable W0 that has a normal distribution N

�
0; �21

�
and its covariance

withDi .i D 1; :::; k/, Cov.W0;Di /D��21 . ThenWi DDiCW0 is normally distributed withN
�
�i ; �

2
1

�
and Cov.Wi ; Wj /D 0 for i ¤ j D 0; 1; :::; k. Note that

EŒDi 0 ; S D i;Di > b�DEŒWi 0 ; S D i;Di > b��EŒW0; S D i;Di > b�:

The expressions for EŒWi 0 ; S D i;Di > b� and EŒW0; S D i;Di > b� are simplified to single integrals
in Appendix C.2. The bias of the treatment difference for a dropped treatment i 0 given that the trial
continues to stage 2 may be written as

bi 0.�/DEŒDi 0 jS D i;Di > b�� �i 0 : (13)

To obtain bS . Q�r/ to substitute in Equation (9) and obtain a bias-adjusted estimate when estimation is
conditional on continuing to stage 2, expressions (12) and (13) are used in the iteration procedure but
with �i and �i 0 replaced by Q�i and Q�i 0 , respectively. We will refer to this estimator for �S as the (new)
bias-adjusted estimator. Koopmeiners et al. [18] derived a similar bias-adjusted estimator for the setting
with k D 1 so that their bias-adjusted estimator is a special case of our bias-adjusted estimator.

3. Example

In this section, using the two new estimators described in Sections 2.2 and 2.3, we compute estimates for
an example constructed from the case study described in [21]. The case study is based on a comparison
of three doses of an experimental drug for generalized anxiety disorder with a placebo. The primary
endpoint is the change from baseline at 8 weeks of treatment in the total score on the Hamilton Rating
Scale for Anxiety. The primary endpoint is taken to be normally distributed with a common standard
deviation across the four treatment arms assumed to be 6 points. As in [21], we consider a two-stage
ASD for the case study with n1 D n2 D 71 so that t D 0:5.

Suppose that the true treatment means are the stage 1 estimates from [21], which we give in Table I
(column 1), and that the observed stage 1 means from an adaptive trial are as given in column 2. We
suppose the trial continues to stage 2 if the highest effective experimental dose is at least as effective
as the placebo, that is, the observed difference between the highest effective experimental dose and the
placebo is at least 0. On the basis of the observed stage 1 data, dose 2 and placebo would be tested further
in stage 2. We suppose the results from stage 2 are as given in column 3.

With the results in Table I, ´0;MLE D .0:5 � �0:082/ C .0:5 � 0:049/ D �0:017 and ´2;MLE D
.0:5� 1:766/C .0:5� 1:451/D 1:609 so that the naive maximum likelihood estimate for the difference
between dose 2 and placebo is 1.626. The stage 2 estimate is 1.402 (column 5). For the new unbiased
estimator, to compute ´2;CHN, we note that B D �0:082C 0 D �0:082 so that maxfB; x2g is given by

Table I. Data from a seamless phase II/III clinical trial.

Treatment means

Observed Treatment differences

Treatment True Stage 1 Stage 2 Stage 1 Stage 2

Placebo 0 �0.082 0.049 — —
Dose 1 0.8 0.413 — 0.495 —
Dose 2 1.5 1.766 1.451 1.848 1.402
Dose 3 2.6 1.567 — 1.649 —
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maxf�0:082; 1:567g D 1:567 and that �21 D �
2
2 D 6

2=71 D 0:507 so that
q
�21 C �

2
2=�

2
1 D 1:986 and

�22=

q
�21 C �

2
2 D 0:504. By substituting the appropriate values in Equations (3) and (4), ´2;CHN D 1:261.

For ´0;CHN, the only component we have not calculated is B1, which is given by 1:766 � 0. By substi-
tuting the appropriate values in Equation (5), ´0;CHN D�0:017. Therefore, the unbiased estimate for the
difference between dose 2 and placebo is 1.278.

For the new bias-adjusted estimator, we note that the naive maximum likelihood estimate for
(�1; �2; �3) is (0:495; 1:626; 1:649). The bias function for doses 1 and 3 is given by expression (13), and
the bias function for dose 2 is given by expression (12). Using a program written in the R statistical pack-
age, we obtain the value of b. Q�/ and hence Q� D O��b. Q�/ at each iteration. The iteration procedure stops
at iteration r if the Euclidean distance between Q�r�1 and Q�r is less than or equal to 0.0005. The program
is available at https://files.warwick.ac.uk/nstallard/browse/adaptive. We set Q�1 D .0:495; 1:626; 1:649/.
The iteration procedure stopped at iteration 15, and the bias-adjusted estimate for the difference between
dose 2 and placebo is 1.135.

Thus, the naive, stage 2, unbiased, and bias-adjusted estimates for the difference between dose 2 and
the placebo are 1.626, 1.402, 1.278, and 1.135, respectively. The estimates are different with the naive
estimate, as expected, having the highest value. The unbiased and bias-adjusted estimates correct for
the bias, and their values are below both the stage 1 and 2 differences. The unbiased and bias-adjusted
estimates are closer to the stage 2 difference, which is an unbiased estimate of the treatment difference.
We explore the properties of the four estimators in the next section.

4. Simulation study

4.1. Simulation study settings

In this section, we describe a simulation study that was used to assess the bias and the mean squared
error (MSE) of the estimators described in Section 2. Following expressions (10), (11), and (12), the
bias of the naive estimator depends on the number of experimental treatments k, the selection time t ,
the value of the futility boundary, and the true parameter values. Therefore, we will consider several
scenarios in the simulation study. We will consider scenarios where k is between 2 and 5. We believe
this encompasses the majority of practical scenarios with k > 1. We will also consider different true
parameter values for the means. In all simulations, we will take the variance of the outcomes �2 to be 1.
Hence, we will only consider small differences in true treatment means corresponding to the small
standardized effect sizes that we might anticipate in clinical trials.

We will assess three different values for the futility boundary. In most simulations that we will
describe, we will take the treatment difference between the most effective treatment(s) and the control
treatment to be 0.05. The first futility boundary value is 0, so because it is below the highest treatment
difference(s), this boundary will be used to assess the bias when some of the experimental treatments
are more effective than minimally required. The second futility boundary value is 0.05, so it will be used
to assess the bias when the highest treatment difference is on the futility boundary. The third futility
boundary value is 0.10, so it will be used to assess the bias when none of the experimental treatments are
as effective as is minimally desired. We will also describe simulation results for some scenarios where
the treatment difference between the most effective treatments(s) is 0.1, 0.2, and 0.5 while using the
same futility boundary values (0, 0.05, and 0.1). These simulations will be used to assess the bias and
MSE when most bias is contributed by the selection of the most effective treatment and not because of
the futility boundary.

We perform simulations for 14 values of t , the selection time point, in the interval (0, 1). Because of
the computations required, at each time point, we run 10,000 simulations that would continue to stage 2,
that is, 10,000 simulations for which the simulated stage 1 treatment difference of the selected treatment
is equal to or greater than the futility boundary value. For the treatment difference of the selected treat-
ment S , in each simulation, we obtain the naive MLE dS;MLE using Equation (1), the stage 2 estimate
dS;2 using Equation (2), the unbiased estimate dS;CHN using Equation (6), and the bias-adjusted estimate
dS;STL using Equation (9). We then calculate the differences .dS;MLE��S /, .dS;2��S /, .dS;CHN��S /, and
.dS;STL��S / and the respective squares .dS;MLE��S /

2, .dS;2��S /2, .dS;CHN��S /
2, and .dS;STL��S /

2.
Then at each selection time point, for each estimator, the mean bias is obtained by taking the average
of its corresponding 10,000 differences and the MSE by taking the average of its corresponding 10,000
square differences.

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2013, 32 2893–2910
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We will present the bias and the
p

MSE of the various estimators in units of the standard error (SE),
the standard deviation for the estimator of the difference of a single experimental treatment–control
comparison given by

p
2=.n1C n2/. This makes the results invariant to changes in the sample sizes.

4.2. Simulation results for k D 2 with �1 D �2

Figure 1 shows the bias and
p

MSE when two experimental treatments and a control are included in
stage 1 with �1 D �2 D 0:05. Columns 1, 2, and 3 correspond to futility boundary values 0, 0.05,
and 0.1, respectively. The dashed, dotted, continuous, and dash-dotted lines correspond to the naive,
stage 2, unbiased, and bias-adjusted estimators, respectively. The naive estimator is biased, and the bias
increases with selection time but not linearly and also as the futility boundary value increases. The stage 2
estimator, as expected, is mean unbiased for all selection time points and all futility boundary values.
Because of the theoretical derivation of the unbiased estimator, this is also mean unbiased for all
scenarios. The bias-adjusted estimator overcorrects for bias, and the overcorrection increases with selec-
tion time but decreases as the value of the futility boundary increases. The naive estimator has the lowest
MSE at all selection times for all scenarios. The stage 2 estimator has the highest MSE. In all scenarios,
up to selection time 0.7, the unbiased estimator and the bias-adjusted estimator have approximately equal
MSE. Tables giving more details of the results in Figure 1 and of additional simulations mentioned in
the following are available from the authors.

We also assessed the characteristics of the four estimators when �1 D �2 D 0:1, �1 D �2 D 0:2, and
�1 D �2 D 0:5 for futility boundary values b D 0, b D 0:05, and b D 0:1. We are able to clearly describe
the findings from these scenarios without giving figures, and so we do not present figures for these sce-
narios. However, figures with these results and of additional simulations mentioned in the following, for
which we have not presented figures, are available from the authors. For all the futility boundary values,
the bias of the naive estimator decreases as the values of �1 and �2 increase. For �1 D �5 D 0:5, the
biases of the naive estimator for b D 0, b D 0:05, and b D 0:1 are identical. This is because for this
case, for the three futility boundary values, the stage 1 sample difference for experimental treatment 1
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Figure 1. Bias (top row) and
p

MSE (bottom row) for various estimators. In all figures, �1 D �2 D 0:05.
Dashed, dotted, continuous, and dash-dotted lines correspond to naive, stage 2, unbiased, and bias-adjusted
estimators, respectively. The futility boundaries are given on top of each column. MSE, mean squared error;

SE, standard error.
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and the stage 1 sample difference for experimental treatment 2 beat the futility boundary values in most
simulation runs so that the bias arises mostly because of the treatment selection and hence the similar
bias of the naive estimator. As expected, the unbiased estimator and the stage 2 estimator are mean unbi-
ased for all values of t , b, �1, and �2, whereas the bias-adjusted estimator is negatively biased, but the
bias decreases as the values of �1 and �2 increase. For the three futility boundary values, as in the case
where �1 D �2 D 0:05, for the cases where �1 D �2 D 0:1, �1 D �2 D 0:2, and �1 D �2 D 0:5, the
naive estimator has the lowest MSE at all selection times, the stage 2 estimator has the highest MSE at
all selection times, and up to selection time 0.7, the unbiased estimator and the bias-adjusted estimator
have approximately equal MSE.

4.3. Simulation results for k D 2 with �1 ¤ �2

To assess the bias and the MSE when �1 ¤ �2, we performed simulations with �1 D 0:025 and �2 D 0:05
for futility boundary values b D 0, b D 0:05, and b D 0:1. Most findings from these scenarios are similar
to findings in Figure 1, and so we describe the findings of these scenarios without presenting a figure
summarizing the results. As in the case when �1 D �2 D 0:05, the bias of the naive estimator increases
with futility boundary value and the selection time when �1 D 0:025 and �2 D 0:05. As expected, the
stage 2 and unbiased estimators are mean unbiased at all selection times and futility boundary values.
In terms of bias, up to selection time 0.5, the bias-adjusted estimator performs almost as well as the
stage 2 and unbiased estimators. The naive estimator has the lowest MSE whereas the stage 2 estima-
tor has the highest MSE. The unbiased and bias-adjusted estimators have approximately equal MSE for
all selection times and futility boundary values. For all the three boundaries considered, the bias of the
naive estimator is slightly higher when �1 D 0:025 and �2 D 0:05 than when �1 D �2 D 0:05. The
mean biases of the naive estimator for three values of t for the case where �1 D �2 D 0:05 and for
the case where �1 D 0:025 and �2 D 0:05 are given in Table II. This is unlike the setting in which the
trial always continue to stage 2, where bias decreases as one of the experimental treatments becomes
distinctly superior to the competing treatment [12]. To assess what may be causing this difference, in
Table II, for both scenarios (�1 D �2 D 0:05 and �1 D 0:025 and �2 D 0:05), we present the proba-
bilities of continuing to stage 2 .PrŒdS > b�/ and, conditional on continuing to stage 2, the simulated
probabilities of selecting treatment 1 .PrŒS D 1jdS > b�/, of selecting treatment 1 while treatment 2 also
beats the futility boundary .PrŒS1; d2 > b�/, and of selecting treatment 2 while treatment 1 also beats
the futility boundary .PrŒS2; d1 > b�/. As expected, for the case where �1 D �2 D 0:05, the simulated
probabilities Pr.S D 1jdS > b/ and Pr.S D 1; d2 > b/ are respectively approximately equal to the
simulated probabilities Pr.S D 2jdS > b/ and Pr.S D 2; d1 > b/. For both scenarios, from Pr.dS > b/,
we observe that as the selection is made later in the trial, it is more likely that a right decision of whether
to continue to stage 2 or not will be made. However, we note that for the case where �1 D 0:025 and
�2 D 0:005, treatment 1 is still selected with relatively high probability (the minimum probability is 0.34

Table II. Bias of the naive estimator and probabilities of various outcomes when two experimental
treatments are tested in stage 2 for the case where �1 D �2 D 0:05 and the case where �1 D 0:025
and �2 D 0:05.

t D 0:2 t D 0:5 t D 0:8

Characteristic b D 0 b D 0:05 b D 0:1 b D 0 b D 0:05 b D 0:1 b D 0 b D 0:05 b D 0:1

�1 D 0:05, �2 D 0:05
Mean bias 0.0239 0.0291 0.0336 0.0326 0.0453 0.0608 0.0386 0.0568 0.0807
Pr.dS > b/ 0.78 0.67 0.53 0.84 0.67 0.45 0.87 0.67 0.40
Pr.S D 1jdS > b/ 0.49 0.50 0.50 0.50 0.49 0.50 0.50 0.50 0.51
Pr.S D 1; d2 > b/ 0.29 0.25 0.21 0.33 0.25 0.19 0.34 0.25 0.16
Pr.S D 2; d1 > b/ 0.30 0.24 0.21 0.32 0.26 0.18 0.34 0.25 0.16

�1 D 0:05, �2 D 0:05

Mean bias 0.0244 0.0293 0.0354 0.0360 0.0467 0.0631 0.0411 0.0615 0.0856
Pr.dS > b/ 0.76 0.64 0.50 0.80 0.62 0.41 0.83 0.61 0.34
Pr.S D 1jdS > b/ 0.44 0.43 0.41 0.40 0.39 0.38 0.37 0.36 0.34
Pr.S D 1; d2 > b/ 0.26 0.22 0.17 0.26 0.19 0.14 0.26 0.17 0.11
Pr.S D 2; d1 > b/ 0.30 0.26 0.21 0.36 0.26 0.18 0.39 0.26 0.16

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2013, 32 2893–2910
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Figure 2. Panel (a) shows bias of the naive estimator when k D 2, and the trial always continues to stage 2 when
�1 D �2 D 0:05 (dashed line) and when �1 D 0:025 and �2 D 0:05 (continuous line). Panel (b) shows bias of
the naive estimator when k D 1 and futility boundary b D 0:05. The continuous and dashed lines correspond to

�1 D 0:025 and �1 D 0:05, respectively.

when t D 0:8 and boundary value b D 0:1). Also, when treatment 1 is selected to continue to stage 2,
the treatment difference for treatment 2 is usually below the boundary (Pr.S D 1; d2 > b/ is small). We
use Figure 2 to assess whether the instances where treatment 1 is selected are the ones that make bias
higher when �1 D 0:025 and �2 D 0:05 than when �1 D �2 D 0:05. Figure 2(a) shows the bias of the
naive estimator when �1 D �2 D 0:05 (dashed line) and when �1 D 0:025 and �2 D 0:05 (continuous
line) in the case where the trial always continues to stage 2, and as expected, following [12], bias is
higher when �1 D �2 D 0:05. The proof that for the case where the trial always continues to stage 2,
the naive estimator is maximally biased when all experimental treatments are equally effective is given
in [24]. Figure 2(b) shows the bias of the naive estimator when k D 1 and the futility boundary value
b D 0:05. The continuous and dashed lines correspond to �1 D 0:025 and �1 D 0:05, respectively. The
bias is higher when �1 D 0:025 than when �1 D 0:05. Comparing Figure 2(a and b), we see that the
futility boundary seems to contribute more to the bias. This may explain why in the case where there is
a futility boundary and k D 2, the bias of the naive estimator is higher when �1 D 0:025 and �2 D 0:05
than when �1 D �2 D 0:05. Although the selected treatment may be the most promising because the
treatment effects are distinct and hence reduce the selection bias, whenever the least effective treatment
is selected, the bias is higher because we have a futility boundary.

We also performed simulations when .�1; �2/ D .0:075; 0:1/, .�1; �2/ D .0:175; 0:2/, and .�1; �2/ D
.0:475; 0:5/ using the futility boundary values b D 0, b D 0:05, and b D 0:1. Note that for these param-
eter vectors, as for the case considered earlier where �1 D 0:025 and �2 D 0:05, �2 � �1 D 0:025.
We describe the findings from these scenarios without giving the figures. For the three futility boundary
values, the bias of the naive estimator decreases as the values of �1 and �2 increase. For .�1; �2/ D
.0:475; 0:5/, the biases of the naive estimator for b D 0, b D 0:05, and b D 0:1 are identical. This is
because for this case, for the three futility boundary values, the stage 1 sample difference for experimen-
tal treatment 1 and the stage 1 sample difference for experimental treatment 2 beat the futility boundary
values in most simulation runs so that the bias arises mostly because of the treatment selection and hence
the similar bias of the naive estimator. For the three futility boundary values, compared with the case
where .�1; �2/ D .0:5; 0:5/, the biases of the naive estimator when .�1; �2/ D .0:475; 0:5/ are lower.
This is because, for futility boundary values 0, 0.05 and 0.1, stage 1 sample differences for treatments 1
and 2 beat the futility boundary values in most simulations for the cases where .�1; �2/D .0:5; 0:5/ and
.�1; �2/ D .0:475; 0:5/ so that most bias arises from treatment selection and selection bias is maximal
when experimental treatments are equally effective [12, 24].

4.4. Simulation results for k > 3
When three or more experimental treatments are tested in stage 1, there are several possible configura-
tions of the treatment differences, and this leads to several scenarios. Therefore, we will first describe
general findings for such scenarios without presenting figures and then describe results of a few specific
scenarios using a figure. On the basis of results that are not presented here, as in the case when two treat-
ments are tested in stage 1, when three or more experimental treatments are tested in stage 1, the bias
of the naive estimator increases with the futility boundary value, and estimation using the bias-adjusted
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Figure 3. Bias (top row) and
p

MSE (bottom row) for various estimators when futility boundary b D 0:05.
Dashed, dotted, continuous, and dash-dotted lines correspond to naive, stage 2, unbiased, and bias-adjusted
estimators, respectively. The number of treatments is given on top of each column, and the treatment differences

are all equal to 0.05.

estimator improves with higher futility boundary value whereas the stage 2 and unbiased estimators,
as expected, provide unbiased estimators for all futility boundary values. Figure 3 shows results when
treatment differences are all equal to 0.05 and the futility boundary is 0.05. Columns 1 to 3 give results
when three, four, and five experimental treatments, respectively, are tested in stage 1. For the naive esti-
mator, we observe that the bias increases slightly as the number of treatments increases. The stage 2 and
unbiased estimators, as expected, are mean unbiased at all selection times and when three, four, or five
experimental treatments are tested in stage 1. The bias-adjusted estimator again overcorrects for bias,
and the overcorrection increases with selection time. Also, as the number of treatments increases, the
overcorrection of the bias-adjusted estimator increases slightly. The naive estimator has the least MSE
whereas the unbiased and bias-adjusted estimators have similar MSE for selection times up to 0.6. The
stage 2 estimator has the highest MSE, and the difference between the MSE for the stage 2 estimator and
the other estimators increases with selection time.

4.5. Summary of findings from the simulation study

From the simulation study, we have observed that the bias of the naive estimator increases with the
selection time, the number of experimental treatments, and the futility boundary value. The treatment
differences affect the bias of the naive estimator, but this also depends on the futility boundary value so
that it is not possible to generalize the bias on the basis of treatment differences only. The stage 2 and
unbiased estimators, as expected, provide mean unbiased estimates. The bias-adjusted estimator over-
corrects for bias, but under some configurations of treatment differences, if selection is carried out up to
selection time 0.4, it performs fairly well. For MSE, the unbiased and bias-adjusted estimators perform
similarly up to time 0.6, whereas unsurprisingly, the stage 2 estimator performs worst. Regulation guide-
lines [13] suggest that methods for estimating treatment effect and confidence intervals with appropriate
coverage should be provided as well as for controlling the prespecified type I error, whereas in [14], the
importance of controlling the bias of the point estimate is emphasized. Hence, from the simulation find-
ings and the importance of not overestimating treatment effect as described in [13, 14], we recommend
the unbiased estimator.

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2013, 32 2893–2910
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5. Discussion

In drug development, the need to reduce the cost and time taken to test new treatments has led to the use
of ASDs. ASDs combine several phases of a clinical development program into a single trial. However,
compared with traditional testing strategies, ASDs pose additional challenges in statistical analysis. In
this paper, we have considered point estimation following an ASD where, on the basis of observed data
at stage 1, the experimental treatment that is superior to the competing experimental treatments at stage 1
continues to stage 2 together with the control. Cohen and Sackrowitz [15] and Shen [16] have consid-
ered this setting in the case where the trial always continues to stage 2 and proposed estimators for
the treatment difference. Stallard and Todd [17] have also proposed an estimator that can be applied in
this setting.

In this paper, we have considered the setting where the trial can stop for futility and estimation is
unbiased conditional on continuing to stage 2. We have extended the Cohen and Sackrowitz method to
construct an unbiased estimator for this setting. We have referred to this estimator as the (new) unbiased
estimator. Carreras and Brannath [24] compared the Cohen and Sackrowitz estimator and the Stallard
and Todd estimator when the trial always continues to stage 2. Their findings show that although the
Cohen and Sackrowitz estimator is unbiased, it is not the best in terms of MSE. Thus, although the esti-
mator we derive by extending the Cohen and Sackrowitz estimator to the setting where the trial can stop
at stage 1 for futility is unbiased by construction, it is of interest to compare it with other estimators in
terms of bias and MSE. Therefore, we have also developed a new bias-adjusted estimator that extends
the Stallard and Todd estimator to our setting.

We also considered extending the Shen [16] estimator. The Shen estimator was proposed when the
trial always continues to stage 2 and adjusts for bias by proposing a step function. When the trial always
continues to stage 2, the step function depends on the absolute differences between the experimen-
tal treatment means and a tuning parameter. The best value for the tuning parameter depends on the
unknown true values of the treatment means. With the possibility of early stopping, the bias depends
not only on the absolute differences between the means of the experimental treatments but also on the
values of observed differences between these and the mean of the control because of the futility bound-
ary. This makes it challenging to propose a step function, and because we also know it will depend on
a tuning parameter whose best value depends on the unknown true treatment means, we did not pursue
this estimator further.

In terms of MSE, if treatment selection and the decision whether to continue to stage 2 are made
at a selection time t < 0:6, the unbiased and bias-adjusted estimators perform similarly. The stage 2
estimator performs worst in terms of MSE, and the naive estimator (unadjusted for the possibility of
stopping and for selection) performs the best. In terms of bias, the unbiased and stage 2 estimators are
unbiased, and the naive estimator is positively biased whereas the bias-adjusted estimator is negatively
biased. From this finding, we propose using the new unbiased estimator we have derived in this paper
by extending the Cohen and Sackrowitz estimator [15] when a trial can stop for futility and estimation
is performed conditional on continuing to stage 2. We emphasize that, although in the simulation study,
we averaged over all simulations and the selected treatments, by derivation, the new unbiased estimator
fulfills a stronger condition of unbiasedness in that it is unbiased with respect to each treatment whenever
it is selected.

In this paper, we have considered point estimation following a two-stage adaptive seamless trial
in which at stage 1, there is treatment selection and the possibility of early stopping for futility and
estimation is conditional on the trial continuing to stage 2. As mentioned in Section 4.5, methods
for interval estimation (confidence intervals) that adjust for the adaptation so that the right coverage
is achieved are also important. There exist methods for constructing confidence intervals that can be
used for the setting considered in this paper [17, 20, 25]. However, the confidence intervals follow-
ing these methods are not based on the principle used to develop the estimators in this paper. For
further research, we are considering confidence intervals based on the principle used to derive the
unbiased estimator.

Appendix A. Deriving the uniformly minimum variance unbiased estimator for �S

For ease of notation in the derivation of UMVUEs for �S and �0, without loss of generality, we let
X1 > ::: > Xk so that X.i/ D Xi (i D 1; :::; k) and XS D X1 and YS D Y1. For the mean of the selected
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treatment, we are seeking the UMVUE for �1. We will skip details of steps that are similar to steps given
in [15] and [26]. Denote by QB.X/ the event fX0; X1 > ::: > Xk; X1 > Bg, where B D X0 C b.
We will first write and re-express the density of .Y0; Y1; X/, where X D .X0; X1; :::; Xk/ given QB in
order to deduce the sufficient statistics for estimating �1 that combine stage 1 and 2 means for treatment
1 into a single quantity. The density of .Y0; Y1; X/ given QB , denoted by f .y1; y0; xjQB/, is given by

K�1.�/
1

�2
�

�
y1 ��1

�2

�
1

�1
�

�
x1 ��1

�1

�
1ŒQB .x/� .y0; x0; x

0/;

where �1 and �2 are as defined in Section 2.1, 1ŒQB � is the indicator for QB.x/, K.�/ D
Prob�

�
1ŒQB .x/� D 1

�
, and

 .y0; x0; x
0/D

1

�2
�

�
y0 ��0

�2

� kY
iD0

i¤1

1

�1
�

�
xi ��i

�1

�
:

The preceding density can be re-expressed as
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1
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0
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�1
�2
y1
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�2
1

�2
2
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1
CA 1ŒQB .x/� .y0; x0; x

0/;

where

˛1 D
�1

�2
C
�2

�1
and ˛2 D

�22q
�21 C �

2
2

:

Let ´1 D .�2=�1/x1 C .�1=�2/y1; then from the preceding density, .X0; X2; :::; Xk; Y0; Z1/ is suffi-
cient and complete for the problem of seeking an estimate for �1 given QB . Therefore, conditional on
QB , the UMVUE for �1 is given by EŒY1jX0; X2; :::; Xk; Y0; Z1;QB �. We obtain the expression for
this by deriving the density f .y1jx0; x2; :::; xk; y0; ´1;QB/ and using it to get the expected value we
are seeking.

Transforming the density f .y1; y0; xjQB/ into the density f .x; y0; ´1jQB/ gives

K�1.�/�

0
B@´1 ��1˛1q

�21 C �
2
2

1
CA 1

�21
�

0
B@x1 � ´1
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�2
1

�2
2

˛2

1
CA 1ŒQB .x/� .y0; x0; x

0/;

and transforming the density f .y1; y0; xjQB/ into the density f .y1; x0; x2; :::; xk; y0; ´1jQB/ gives

K�1.�/�

0
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�21 C �
2
2

1
CA 1

�22
�
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´1
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!
1ŒQB .x/� .y0; x0; x

0/:

The density f .x0; x2; :::; xk; y0; ´1jQB/ is obtained from f .x; y0; ´1jQB/ by integrating out x1 as
follows

K�1.�/
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�21
�

0
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�21 C �
2
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where

WB.1; 2/D
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We are seeking the density of .Y1jX0; X2; :::; Xk; Y0; Z1;QB/, which is expressed as

f .y1jx0; x2; :::; xk; y0; ´1IQB/D
f .y1; x0; x2; :::; xk; y0; ´1jQB/

f .x0; x2; :::; xk; y0; ´1jQB/

D

1
˛2
�

�
y1�

´1
˛1

˛2

�
1�ˆ.�WB.1; 2//

� I



y1 <

�2

�1

�
´1 �

�2

�1
maxfB; x2g

��
:

Therefore, EŒY1jX0; X2; :::; Xk; Y0; Z1;QB � is equal to

1
˛2

R �2
�1

�
´1�

�2
�1

maxfB;x2g
	

�1 y1�

�
y1�

´1
˛1

˛2

�
dy1

1�ˆ.�WB.1; 2//
D

R �2
�1

�
´1�

�2
�1

maxfB;x2g
	

�1
y1
˛2
�

�
y1�

´1
˛1

˛2

�
dy1

ˆ.WB.1; 2//
:

Following [26], the numerator of the preceding expectation simplifies to

�˛2�.WB.1; 2//C
´1

˛1
ˆ.WB.1; 2//

so that EŒY1jX0; X2; :::; Xk; Y0; Z1;QB � reduces to

´1

˛1
� ˛2

�.WB.1; 2//

ˆ.WB.1; 2//
D
�22x1C �

2
1y1

�21 C �
2
2

�
�22q
�21 C �

2
2

�.WB.1; 2//

ˆ.WB.1; 2//

and formula (3) gives the estimator when there is the possibility of stopping for futility and estimation is
unbiased conditional on continuing to stage 2.

Appendix B. Deriving the uniformly minimum variance unbiased estimator for �0

Let Z0 D .�2=�1/X0C .�1=�2/Y0. If we write and re-express the density f .x0; x1; :::; xk; y0; y1/ as in
Appendix A, we can deduce that .Z0; Y1; X1; :::; Xk/ is sufficient and complete for estimating �0. Thus,
we are seeking EŒY0jZ0; Y1; X1; :::; Xk� so that if we denote by X the vector .X1; :::; Xk/0, we need
the density

f .y0j´0; y1; x/D
f .y0; ´0; y1; x/

f .´0; y1; x/
:

Similar to derivation in Appendix A, it can be shown that the density f .´0; y1; x0; x/ is given by

K�1.�/�

0
B@´0 ��0˛1q

�21 C �
2
2

1
CA 1

�21
�

0
B@x0 � ´0=˛1

�2
1

�2
2

˛2

1
CA 1ŒQB .x/� .y1; x/;

where

 .y1; x/D
1

�2
�

�
y1 ��1

�2

� kY
iD1

1

�1
�

�
xi ��i

�1

�2906
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and 1ŒQB .x/� and K.�/ are as defined in Appendix A whereas the density f .y0; ´0; y1; x/ is given by

K�1.�/�

0
B@´0 ��0˛1q

�21 C �
2
2

1
CA 1

�22
�

�
y0 � ´0=˛1

˛2

�
1ŒQB .x/� .y1; x/: (14)

The density f .´0; y1; x/ is obtained by integrating out x0 in the density f .´0; y1; x0; x/. The range
of x0 is �1 to B1 D .x1 � b/ because the trial continues to stage 2 if .x1 � x0/ > b. The density
f .´0; y1; x/ becomes

K�1.�/�

0
B@´0 ��0˛1q

�21 C �
2
2

1
CA ˛2

�22
�ˆ.WB1/1ŒQB .x/� .y1; x/; (15)

where

WB1 D
1

�21

0
B@B1 �q�21 C �22 � �22x0C �21y0q

�21 C �
2
2

1
CA

D

�q
�21 C �

2
2 = �

2
1

�
.B1 � ´0;MLE/ :

Using (14) and (15), we obtain

f .y0 ´0; y1; x1; :::; xk/D

1
˛2
�
�
y0�´0=˛1

˛2

	
ˆ.WB1/

� I



y0 >

�2

�1

�
´0 �

�2

�1
B1

��

so that the expression for EŒY0jZ0; Y1; X1; :::; Xk� is

1
˛2

R1
�2
�1

�
´0�

�2
�1
B1

	 y0�
�
y0�´0=˛1

˛2

	
dy0

ˆ.WB1/
: (16)

The numerator can be re-expressed as

Z 1
�2
�1

�
´0�

�2
�1
B1

	 y0
˛2
�

�
y0 � ´0=˛1

˛2

�
dy0 D

Z0

˛1
�

Z �2
�1

�
´0�

�2
�1
B1

	

1

y0

˛2
�

�
y0 � ´0=˛1

˛2

�
dy0:

Similar to derivation in Appendix A, it can be shown that

Z �2
�1

�
´0�

�2
�1
B1

	

1

y0

˛2
�

�
y0 � ´0=˛1

˛2

�
dy0 D�˛2�.�WB1/C

Z0

˛1
ˆ.�WB1/

so that the numerator in Equation (16) becomes

Z0

˛1
C ˛2�.�WB1/�

Z0

˛1
ˆ.�WB1/D

Z0

˛1
.1�ˆ.�WB1//C ˛2�.�WB1/

D
Z0

˛1
ˆ.WB1/C ˛2�.WB1/: (17)

By substituting (17) in (16), EŒY0jZ0; Y1; X1; :::; Xk� simplifies to

Z0
˛1
ˆ.WB1/C ˛2�.WB1/

ˆ.WB1/
D
Z0

˛1
C ˛2

�.WB1/

ˆ.WB1/
;

so that the UMVUE for �0 is given by expression (5).
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Appendix C. Expressions for the expected values

C.1. Probability of selecting a treatment and its expected value

The expression for the numerator in Equation (11) is given byZ 1
b

di

Z 1
�1

1

�21
�

�
w � di

�1

�
�

�
w � �i

�1

�Y
j¤i

ˆ

�
w � �j

�1

�
dwddi ;

which by changing the order of integration becomesZ 1
�1

1

�1
�

�
w � �i

�1

�Y
j¤i

ˆ

�
w � �j

�1

�Z 1
b

di

�1
�

�
di �w

�1

�
ddidw:

As described in Appendices A and B, integration with respect to di is given by

w �

Z b

�1

di

�1
�

�
di �w

�1

�
ddi D w �



wˆ

�
b �w

�1

�
� �1�

�
b �w

�1

��

so that the numerator in Equation (11) is given byZ 1
�1

1

�1
�

�
w � �i

�1

�Y
j¤i

ˆ

�
w � �j

�1

�

�1�

�
b �w

�1

�
Cwˆ

�
w � b

�1

��
dw:

The pr.S D i;Di > b/, the denominator in Equation (11), is obtained by solving the integralR1
b f .di ; S D i/ddi , which can be simplified as followsZ 1

b

Z 1
�1

1

�21
�

�
w � di

�1

�
�

�
w � �i

�1

�Y
j¤i

ˆ

�
w � �j

�1

�
dwddi

D

Z 1
�1

1

�1
�

�
w � �i

�1

�Y
j¤i

ˆ

�
w � �j

�1

�Z 1
b

1

�1
�

�
di �w

�1

�
ddidw

D

Z 1
�1

1

�1
�

�
w � �i

�1

�Y
j¤i

ˆ

�
w � �j

�1

�

1�ˆ

�
b �w

�1

��
dw:

C.2. Expected value for the dropped treatments

Without loss of generality, suppose treatment 1 is selected to continue to stage 2. Then for a dropped
treatment i 0, the density of Wi 0 when d1 > b is given byZ

wi0<w1

Z
w1�w0>b

1

�31
�

�
w0

�1

�
�

�
w1 � �1

�1

�
�

�
wi 0 � �i 0

�1

� Y
j¤1

j¤i 0

ˆ

�
w1 � �j

�1

�
dw0dw1;

which simplifies toZ 1
wi0

1

�21
�

�
wi 0 � �i 0

�1

�
�

�
w1 � �1

�1

�
ˆ

�
w1 � b

�1

� Y
j¤1

j¤i 0

ˆ

�
w1 � �j

�1

�
dw1

so that EŒWi 0 ; S D 1;D1 > b� isZ 1
�1

Z 1
wi0

wi 0

�21
�

�
wi 0 � �i 0

�1

�
�

�
w1 � �1

�1

�
ˆ

�
w1 � b

�1

� Y
j¤1

j¤i 0

ˆ

�
w1 � �j

�1

�
dw1dwi 0 :

Changing the order of integration givesZ 1
�1

Z w1

�1

wi 0

�1
�

�
wi 0 � �i 0

�1

�
1

�1
�

�
w1 � �1

�1

�
ˆ

�
w1 � b

�1

� Y
j¤1

j¤i 0

ˆ

�
w1 � �j

�1

�
dwi 0dw1:2908
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From Appendices A and B, we can write the closed-form solution of the integration with respect to wi 0
so that the expression for EŒWi 0 ; S D i;Di > b� isZ 1

�1

 .wi ; �i 0 ; �1/
1

�1
�

�
wi � �i

�1

�
ˆ

�
wi � b

�1

� Y
j¤i

j¤i 0

ˆ

�
wi � �j

�1

�
dwi ;

where

 .wi ; �i 0 ; �1/D �i 0ˆ

�
wi � �i 0

�1

�
� �1�

�
wi � �i 0

�1

�
:

The density for W0 when treatment 1 is selected and d1 > b is given by

f .w0; d1 > b/D
Z
w1�w0>b

Z w1

�1

:::

Z w1

�1

f .w0/f .w1/f .w2/:::f .wk/dw2:::dwkdw1

D

Z 1
w0Cb

1

�1
�

�
w0

�1

�
1

�1

�
w1 � �1

�1

�Y
j¤1

ˆ

�
w1 � �j

�1

�
dw1

so that EŒW0; S D 1;D1 > b� is given byZ 1
�1

Z 1
w0Cb

w0

�1
�

�
w0

�1

�
1

�1
�

�
w1 � �1

�

�Y
j¤1

ˆ

�
w1 � �j

�1

�
dw1dw0;

which by changing the order of integration becomesZ 1
�1

Z w1�b

�1

w0

�1
�

�
w0

�1

�
1

�1
�

�
w1 � �1

�

�Y
j¤1

ˆ

�
w1 � �j

�1

�
dw0dw1:

When we use the results in earlier parts of the appendices, the solution for the integral with respect to
w0 is ��1�f.w1 � b/=�1g so that EŒW0; S D 1;D1 > b� is given by

EŒW0; S D i;Di > b�D�
Z 1
�1

�

�
wi � b

�1

�
�

�
wi � �i

�

�Y
j¤i

ˆ

�
wi � �j

�1

�
dwi :
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