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ABSTRACT
Motivation: Although the outbreak of the severe acute respiratory
syndrome (SARS) is currently over, it is expected that it will return to
attack human beings. A critical challenge to scientists from various
disciplines worldwide is to study the specificity of cleavage activity
of SARS-related coronavirus (SARS-CoV) and use the knowledge
obtained from the study for effective inhibitor design to fight the dis-
ease. The most commonly used inductive programming methods for
knowledge discovery from data assume that the elements of input
patterns are orthogonal to each other. Suppose a sub-sequence is
denoted as P2-P1-P1′ -P2′ , the conventional inductive programming
method may result in a rule like ‘if P1 = Q, then the sub-sequence is
cleaved, otherwise non-cleaved’. If the site P1 is not orthogonal to the
others (for instance, P2, P1′ and P2′ ), the prediction power of these
kind of rules may be limited. Therefore this study is aimed at develop-
ing a novel method for constructing non-orthogonal decision trees for
mining protease data.
Result: Eighteen sequences of coronavirus polyprotein were
downloaded from NCBI (http://www.ncbi.nlm.nih.gov). Among these
sequences, 252 cleavage sites were experimentally determined.
These sequences were scanned using a sliding window with size k to
generate about 50 000 k -mer sub-sequences (for short, k -mers). The
value of k varies from 4 to 12 with a gap of two. The bio-basis func-
tion proposed by Thomson et al. is used to transform the k -mers to
a high-dimensional numerical space on which an inductive program-
ming method is applied for the purpose of deriving a decision tree
for decision-making. The process of this transform is referred to as a
bio-mapping. The constructed decision trees select about 10 out of
50 000 k -mers. This small set of selected k -mers is regarded as a set
of decisive templates. By doing so, non-orthogonal decision trees are
constructed using the selected templates and the prediction accuracy
is significantly improved.
Availability: The program for bio-mapping can be obtained by request
to the author.
Contact: z.r.yang@exeter.ac.uk

INTRODUCTION
Severe acute respiratory syndrome (SARS) has hit the world since
late 2002 and caused more than 8000 infected patients and more
than 800 deaths in 25 countries around the world (Yang et al., 2003).
SARS has dramatically demonstrated the wide-ranging impact on a
highly mobile world. In response to the SARS outbreak, delegates
of the 56th World Health Assembly, organized by WHO in May
2003, unanimously adopted a resolution authorizing WHO to act

on information arising from sources other than official government
notifications. In addition, WHO was asked to conduct on-the-spot
investigations to ensure that an affected country has sufficient control
to prevent international spread.

A novel coronavirus has been discovered to be associated with the
cases of SARS; hence it was named as SARS-CoV (Rota et al., 2002).
SARS-CoV as a novel coronavirus (Ksiazek et al., 2003; Marra et al.,
2003; Yount et al., 2003) is an infectious respiratory disease. It starts
with a fever, chills, headache and body aches, followed by a dry
cough within 2–7 days. The most distinguishing feature is breath-
ing difficulty. In severe cases, radiography can provide corroborative
evidence of SARS by diagnosing pneumonia. The virus has a spher-
ical enveloped virion. The size is between 80 and 160 nm diameters
with a single stranded RNA of about 30 kb, which is the largest gen-
ome of all single stranded RNA viruses (Marra et al., 2003; Rota
et al., 2002). In the electron micrograph image, glycoproteins on the
virus’ surface give the virions a halo or crown-like appearance, and
hence the name coronavirus.

Coronaviruses are positive-strand RNA viruses with exception-
ally large genome sizes (Hegyi and Ziebuhr, 2002). The rep-
lication and transcription of coronaviruses are encoded by the
replicase genes (Thiel et al., 2001a,b). In many studies, 15-mers
(P8-P7-P6-P5-P4-P3-P2-P1-P1′ -P2′ -P3′ -P4′ -P5′ -P6′ -P7′) were used to
represent corresponding 3CLpro cleavage sites in the replicase
polyproteins (Merrifield, 1965). It was indicated in Hegyi and
Ziebuhr (2002) and Pallai et al. (1989) that the conserved proto-
typic viruses suggest that the order of cleavage events may occur
in all coronaviruses. The structure and dynamics of SARS-CoV
protease have been analysed using a molecular dynamics simula-
tion technique (Lee et al., 2003), where molecular docking has
been carried out in order to search for potential SARS-CoV pro-
tease inhibitors. Previously characterized coronaviruses encode two
papain-like cysteine proteases (PL1pro and PL2pro), which cleave the
N-proximal polyprotein regions at three sites (Bonilla et al., 1997;
Gorbalenya et al., 1991; Herold et al., 1998; Thiel et al., 2001b;
Ziebuhr et al., 2001). The recent studies show that 3C-like cysteine
protease (3CLpro) cleaves the central and C-proximal regions at 11
conserved sites (Hardy et al., 2002; Hegyi and Ziebuhr, 2002; Tibbles
et al., 1999; Ziebuhr et al., 2000).

It is found that the SARS-CoV is unrelated to any well-
characterized human coronaviruses although the genome organiza-
tion is similar to them (Ksiazek et al., 2003; Marra et al., 2003; Rota
et al., 2002). Besides, all the SARS-CoV genomes sequenced to date
demonstrate surprisingly little variation with mutations at only ∼30
nucleotides. Based on this, Scientists suggest that the virus entered
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the human population recently from a single point source through
mutation. The study has also shown that the SARS-CoV is similar to
a civet CoV. It is then hypothesized that the virus could have jumped
the species barrier from civets to humans and the SARS-CoV was
mutated from non-human coronavirus (Hu et al., 2003).

SARS-CoV gene expression is expected to involve complex tran-
scriptional, translational and post-translational regulatory mechan-
isms whose molecular details are still unknown (Thiel et al., 2001b).
It has been indicated that although vaccines are available for some
animal coronaviruses, some of them can promote the disease when
vaccinated animals are exposed to the wild-type virus. Moreover,
antibody enhancement of disease is a potential risk of SARS vac-
cines in humans (Holmes, 2003; Lee et al., 2003). This means that
it will take many years to develop a good preventive vaccine against
SARS-CoV. It was suggested by Lee et al. (2003) to optimize the
use of available drugs as inhibitors through studying the enzyme
conformation. A recent study used a frequency estimation method
to detect the cleavage sites within a specified region based on the
knowledge of average length of cleavage products. (Gao et al., 2003).
In that study, 12-mers P6-P5-P4-P3-P2-P1-P1′ -P2′ -P3′ -P4′ -P5′ -P6′ and
8-mers P4-P3-P2-P1-P1′ -P2′ -P3′ -P4′ were used for PLpro and 3CLpro

cleavage sites, respectively.
According to our previous experience in analysing protein

sequences, the prediction capability of the functional sites (cleavage
sites in this study) depends on the inherent patterns in sub-sequences.
If the patterns are not complicated (i.e., the sites in the sub-sequences
are orthogonal to each other), simple rules can be explored by using
inductive programming methods; the prediction of phosphorylation
sites in proteins is such a case (Berry et al., 2004). However, most
cases are not simple. The success of prediction of the functional sites
needs more advanced investigation (Thomson et al., 2003; Yang and
Chou, 2004a,b). A novel method is therefore proposed in this study
for mining sub-sequence data. Instead of using the sites in k-mers
as the inputs to an inductive programming model, it is proposed to
transform k-mers to a high-dimensional numerical space through a
mapping. An inductive programming method is then used in this
high-dimensional space. The transform of k-mers needs a proper
function to ensure the biological content in the k-mers can be main-
tained for data mining. In this study, the bio-basis function proposed
in Thomson et al. (2003) is used for this mapping, referred to as
a bio-mapping. With the bio-mapping, each k-mer is represented
using a vector denoting its position in this high-dimensional space.
After the mapping, an inductive programming is employed regarding
the mapping vectors as the inputs. The modelling process itself will
select the most informative and decisive k-mers to construct a non-
orthogonal decision tree. These selected k-mers are then regarded as
the templates for decision-making. Importantly, these templates are
the representatives for the training k-mers, and hence the knowledge
hidden in the training k-mers. Instead of resulting in rules like ‘if
P1 = Q, then the k-mer cleaved’, non-orthogonal decision trees will
have rules like ‘if a query k-mer is similar to a cleaved template, then
the k-mer is cleaved’.

In this study, 18 coronavirus polyproteins were downloaded from
GeneBank (NCBI, http://www.ncbi.nlm.nih.gov) for the investiga-
tion. After applying the proposed method to this data, it is found
that the sensitivity is greatly increased by 30% while the specificity
is maintained. Besides, the proposed method even outperformed the
early work in the same area using neural networks (Kiemer et al.,
2004) by 7% in the sensitivity with a slightly improved specificity.

SYSTEMS AND METHODS

Data
Eighteen coronavirus polyproteins whose sequences are available were down-
loaded from the GeneBank (NCBI, http://www.ncbi.nlm.nih.gov). They
are NC_004718 (TOR2), NC_002645 (HCoV 229E), NC_001846 (MHV),
NC_003045 (BCoV), NC_001451 (IBV), NC_002306 (TGEV), NC_003436
(PEDV), U_00735 (BCoVM), AF391542 (BCoVL), AF220295 (BCoVQ),
AF208067 (MHVM), AF201929 (MHV2), AF208066 (MHVP), AY278741
(Urbani), AY278488 (BJ01), AY278554 (CUHK-W1), AY282752 (CUHK-
su10) and AY291451 (TW1). Each has 14 cleavage sites. In total, there are
252 cleavage sites.

Decision trees
Decision trees are a kind of inductive programming algorithms (Breiman
et al., 1984; Quinlan, 1988). They select a hyper-plane orthogonal to an axis
of a variable through maximizing its ‘purity’. If a hyper-plane can make
100% separation between patterns from two classes with respect to a certain
threshold value, its purity is 1. Otherwise, the purity value will be <1. Each
hyper-plane divides a given region into two disjoint sub-regions. If each sub-
region only comprises one class of patterns, the hyper-plane has a purity value
as 1. The process of selecting hyper-planes continues till each resulting sub-
region is pure for one class. The node which is pure for one class is referred to
as a leaf. In terms of this, each leaf has an associated class label. From this, an
inductive model is constructed and the training stage is completed. Various
tree-pruning methods can be used to prevent over-fitting. In the testing stage,
the hyper-planes will progressively lead a novel pattern into a leaf. Up to this
end the classification of this novel pattern is completed through assigning
the class label associated with the leaf to the novel pattern. Figure 1 shows
a decision tree model, where there are two variables and the whole region is
divided into six sub-regions. The first hyper-plane makes a separation using
the threshold value a for the variable x. Both resulting sub-regions on the left
and right of the hyper-plane are not pure. The second hyper-plane divides the
left sub-region generated by the first hyper-plane into two smaller sub-regions
using the threshold value b for the variable y. The upper sub-region has been
pure for one class while the lower sub-region is still not pure and needs more
separation.

Decision tree algorithms have been used for bioinformatics research cov-
ering many areas, for instance the prediction of Hepatitis C virus protease
cleavage sites (Narayanan et al., 2002) and the prediction of phosphoryla-
tion sites (Berry et al., 2004). In Kretschmann et al. (2001), C4.5 was used
for protein annotation through aligning novel proteins with SWISS-PROT
databank. C4.5 was also used for the prediction of phenotypes associated
with Saccharomyces cerevisiae genes on the basis of gene ontology functional
annotations from the relevant databanks (King et al., 2003). Decision trees
were compared with support vector machines for the prediction of the impact
of the single nucleotide polymorphisms on protein function (Krishnan and
Westhead, 2003). The study shows that the decision trees have the advantage
of generating interpreting rules although they have a lower prediction accur-
acy than support vector machines. In Li et al. (2003), decision trees were used
for identifying genes related with cancer, and hence they provided knowledge
for cancer diagnosis. King and his colleague studied the use of C4.5 for dis-
covering rules for the prediction of the ORFs whose function is unknown
(Clare and King, 2003). The alternative decision tree (Freund and Mason,
1999) was used for predicting the genetic regulatory response (Middendorf
et al., 2004). In Selbig et al. (1999), decision trees were used for the predic-
tion of secondary structures. Decision trees were also used in searching short
and statistically significant emerging patterns for cancer diagnosis using gene
expression profiles (Boulesteix et al., 2003).

Bio-mapping
The bio-mapping proposed in this study is based on the use of the bio-basis
function (Thomson et al., 2003). The basic principle of the bio-basis function
is the normalization of pairwise homology alignment scores. Figure 2 shows
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Fig. 1. Decision tree demonstration. The first hyper-plane is orthogonal to x with a threshold a and its purity is <1. The second hyper-plane is orthogonal to y
with a threshold b and its purity is still <1. The third hyper-plane is orthogonal to y with a threshold c. The fourth and fifth hyper-planes are orthogonal to x
with thresholds d and e. Their purity values are 1.

Fig. 2. An illustration of the bio-mapping. The query 4-mer LQSE with unknown status (cleaved or non-cleaved) is mapped to a two-dimensional numerical
space with two templates. These two templates are supposed to have the known status, cleaved or non-cleaved. As LQSE is more similar to LQSK than YKAE,
its mapping magnitude on the axis of the template LQSK is larger than that on the axis of the template YKAE; see the right side in the figure.

a query 4-mer (LQSE) aligned with two templates (LQSK and YKAE) to
produce two homology alignment scores a (56 + 48 + 40 + 32 = 176) and
b (28 + 36 + 36 + 48 = 148), respectively. It will be illustrated later in this
paper that LQSK and LQSE are cleaved 4-mers. The values 56, 48, 40, 32,
28 and 36 are obtained from the Dayhoff matrix (Johnson and Overington,
1993). For instance, the similarity between the amino acids L and L is 56
whilst the similarity between the amino acids L and Y is 28. Because a > b,
it is believed that the query 4-mer shares more functional similarity with the
first (cleaved) template.

The method of bio-mapping has been successfully used for the prediction of
Trypsin cleavage sites (Thomson et al., 2003), HIV cleavage sites (Yang and
Chou, 2004b; Yang and Thomson, 2005), hepatitis C virus protease cleavage
sites (Yang and Berry, 2004), disordered protein prediction (Thomson and
Esnouf, 2004; Yang et al., 2005), phosphorylation site prediction (Berry et al.,
2004), the prediction of the O-linkage sites in glycoproteins (Yang and Chou,
2004a) and the prediction of caspase cleavage sites (Yang, 2005). A thorough
review can be seen in Yang (2004).

In this study, the bio-basis function is employed for bio-mapping; i.e.
for transforming the given k-mers to a high-dimensional numerical space

on which an inductive programming method is employed for constructing
a non-orthogonal decision tree. In a constructed decision tree, it is expec-
ted that the number of nodes will be much less than the number of given
k-mers. As each node employs one k-mer, the selection of the most informat-
ive and decisive template is automatically completed in running an inductive
programming method. In other words, the less informative k-mers are auto-
matically removed in learning. It is also expected that the prediction accuracy
of the non-orthogonal decision trees will not be lower than that of orthogonal
trees constructed using the sites in k-mers as inputs.

Methods
Step 1. Sequences of 18 polyproteins are scanned using a sliding window
with the size of k (k is always an even number). Each scan results in one
k-mer denoted as Pk/2- · · · -P2-P1-P1′ -P2′ - · · · -Pk/2′ . A k-mer is classified as
a cleaved or positive one if there is a cleavage site between P1 and P1′ , and
otherwise as non-cleaved or negative. The previous reports have used different
window sizes (Gao et al., 2003; Hegyi and Ziebuhr, 2002; Herold et al., 1998;
Merrifield, 1965; Pallai et al., 1989; Thiel et al., 2001a,b, 2003; Ziebuhr
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et al., 2000, 2001). The window size is varied in this study from 4 to 12
(the largest in recent literature) to investigate the impact of window size
on the prediction performance. After this process, about 50 000 k-mers are
generated.

Step 2. All the k-mers are divided into 10 folds for 10-fold cross-validation.
In each run, nine folds of k-mers are used for constructing orthogonal and
non-orthogonal decision trees. The constructed tree is tested on the remaining
fold of k-mers.

Step 3. Map nine folds of k-mers into a high-dimensional numerical space
using the bio-mapping for constructing non-orthogonal decision trees. There
are two bio-mapping strategies:

Strategy 1: Both positive and negative k-mers are candidates for template
selection.

Strategy 2: Only positive k-mers are candidates for template selection. The
use of this strategy is based on the observation that negative k-mers are
normally not conserved to any pattern (Yang and Berry, 2004).

Step 4. Construct decision trees in the mapped numerical space. From this,
draw and analyse the constructed decision trees. The free software package
C4.5 is used in this study for tree construction.

Step 5. The prediction performance is assessed using five indicators, the
true positive fraction (TPf), true negative fraction (TNf), total accuracy
(Total), Matthews’ correlation coefficient (MCC) (Matthews, 1975) and the
positive prediction power (PPf). Suppose true negatives, true positives, false
negatives and false positives are referred to as TN, TP, FN and FP, respectively,
the definitions of these indicators are as follows:

TNf = TN

TN + FP

TPf = TP

TP + FN

PPf = TP

TP + FP

Total = TN + TP

TN + FP + TP + FN

MC = TP × TN − FN × FP√
(TN + FP)(TN + FN)(TP + FP)(TP + FN)

The positive prediction power measures the likelihood that a predicted pos-
itive is the true positive. Matthews’ correlation coefficient measures how the
prediction correlates with the real target value. Matthews’ correlation coeffi-
cient has been widely used in biology and bioinformatics (Gorodkin, 2004).
There is a risk of losing information when using the total accuracy when the
disparity in the data is large, which is very common in analysing biological
data; the Matthews correlation coefficient remedies this problem. When its
value is 1, it means a perfect prediction; if it is 0, it means for a completely
random assignment. The larger the value, the better the prediction perform-
ance. In the assessment, the combination of the TPf and the PPf can be used
to visualize the model comparison.

RESULT
Figure 3 shows the performance of three sets of models using window
size 4, where ‘NM’ means the models without any bio-mapping and
hence orthogonal decision trees, ‘BM1’ the models using the first
bio-mapping strategy and ‘BM2’ the second bio-mapping strategy.
It can be seen that ‘BM2’ worked the best. The NM models did not
work well since they are unable to predict cleaved k-mers well. When
the window size is increased, the performance was similar in general
(data not shown).

Figure 4 shows a comparison among three sets of models using TPf
as the horizontal axis and PPf as the vertical axis. Each set has five
points representing five models each of which uses a distinct window

Fig. 3. The performance of 10-fold cross-validation performance. The hori-
zontal axis represents the measurement indicators and the vertical axis the
performance. Although ‘NM’ gives a high total prediction accuracy, its
sensitivity is very low (<70%). For all the measurement indicators, ‘BM2’
outperformed ‘BM1’ meaning the positive k-mers are important for template
selection.

Fig. 4. A comparison among three sets of models using the sensitivity and
PPf. The horizontal axis represents sensitivity and the vertical axis the PPf.
Any model located between the diagonal line from the top-left corner to the
bottom-right corner is a failed one. The best model, without doubt, is located
on the top-right corner.

size. The closer to the top-right corner it is, the better the model’s
performance. It can be seen that the set of BM2 models performed
the best. The p-value of the t-test between the NM and BM1 models
is 0.01 meaning that the null hypothesis that the BM1 model does
not improve the prediction accuracy compared with the NM model is
denied statistically. The p-value of the t-test between the BM1 and
BM2 models is 0.02 also meaning that the null hypothesis that the
BM2 model does not improve the prediction compared with BM1
model is denied statistically.

Because the performance of the BM1 model decreases when the
window size increases, we use the window size 4 for the comparison
of the constructed trees. Shown in Figure 5 is the constructed BM1
tree (or model) for the window size 4, where ‘f(s, LQSK, 1)’ means
the output of a bio-basis function using a cleaved (marked by ‘1’,
otherwise ‘0’) 4-mer LQSK, ‘<= 0.543351’ means the condition
for transforming to one of two sub-trees, Y means that the condition
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Fig. 5. The extracted BM1 decision tree. The triangles represent the non-
cleaved class and the circles the cleaved one. Each box uses one template
which are either cleaved or non-cleaved 4-mers. The bio-basis function is used
to measure the similarity between a query 4-mer and a template. In calculating
the similarity, a substitution matrix like the Dayhof matrix is used. A branch
node or the root node is used for transforming a decision-making process to
an appropriate sub-tree. Each leaf node is used for decision-making.

is satisfied, N means that the condition is not satisfied and the tri-
angles represent the class of non-cleaved 4-mers and the circles the
class of cleaved 4-mers. Ten of about 50 000 4-mers were selected
demonstrating their importance in decision-making. Five are cleaved
and five are non-cleaved ones. The root node uses the cleaved 4-mer
LQSK as the template. A query 4-mer without confirmed cleavage
information is fed to the root node. If the similarity between the
query 4-mer and LQ|SK is <0.543351, the decision is passed by to
the sub-tree using GGAP as the root for further comparison. Sup-
pose the query 4-mer has been with the leaf node associated with the
non-cleaved 4-mer DYLA, we can investigate if the query 4-mer is
cleaved or not. If the similarity between the query 4-mer and DYLA
is <0.453845, the query 4-mer is labelled as a cleaved one as it is
dissimilar to a non-cleaved 4-mer and otherwise as a non-cleaved
one. Suppose the query 4-mer has been with the leaf node associ-
ated with the cleaved 4-mer LQAL, we can also investigate if the
query 4-mer is cleaved or not. If the similarity between the query
4-mer and LQAL is <0.559898, the query 4-mer is labelled as non-
cleaved as it is dissimilar to a cleaved 4-mer; otherwise it is labelled a
cleaved one.

As a comparison, Figure 6 shows the constructed BM2 tree, where
11 cleaved 4-mers are selected as the templates for decision-making.
Interestingly, the root node again selects the same cleaved 4-mer
LQSK as the BM1 tree meaning that this 4-mer is the most important
one for decision-making.

We then investigate the individual 4-mers which are selected as
templates in either the BM1 or the BM2 model. Figure 7 shows the
probability density functions of two 4-mers selected as templates in
the decision trees, where the 4-mer LQSK was always selected as the
template for the root node in both trees while DYLA was selected for
one of the leaf nodes. Note that the thin lines represent the probability
density function of the similarity between the non-cleaved 4-mers
and a template, and the thick lines the probability density function of
the similarity between the cleaved 4-mers and a template. It can be

Fig. 6. The extracted BM2 decision tree. The triangles represent the non-
cleaved class and the circles the cleaved class. Each box uses one template
which are always cleaved 4-mers. The bio-basis function is used to meas-
ure the similarity between a query 4-mer and a template. The branch nodes
including the root node are used for transforming the decision-making process
to the appropriate sub-trees. The leaf nodes are used for decision-making.

Fig. 7. The probability density functions of two sub-sequences which are
selected as templates in the decision trees. Each horizontal axis represents
the similarity between a query k-mer (either cleaved or non-cleaved ones)
and a template. The vertical axes represent the probability density values. If
two probability density functions are separated well, the template is believed
to discriminate well between cleaved and non-cleaved 4-mers.
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Table 1. Sensitivity and specificity of BM1 and BM2 models

Window BM1 BM2
Specificity (%) Sensitivity (%) Specificity (%) Sensitivity (%)

4 98.06±1.50 95.50±3.78 97.94±2.22 98.09±2.51
6 96.82±2.09 92.47±6.04 97.68±1.44 94.37±2.26
8 95.68±2.36 92.44±9.97 98.77±1.08 95.50±7.06

10 94.84±2.39 87.48±6.62 97.41±1.70 90.76±6.54
12 95.22±1.84 86.28±5.35 97.63±1.27 94.11±4.33

seen that the template LQSK shows high discriminating capability.
This is why it is always selected as the template for the root node.

In Kiemer et al. (2004), the sensitivity was only 87% and the spe-
cificity was 99%. The sensitivity and specificity values of the BM1
and BM2 models are listed in Table 1. From this table, we can also
see that the performance of BM1 decreases when the window size
increases while the performance of BM2 maintains unchanged when
changing the window size. This may result from the inclusion of long
non-cleaved k-mers which disrupted the modelling performance in
BM1 models.

DISCUSSION
This paper has presented a novel method called ‘bio-mapping’ based
on non-orthogonal decision trees for mining protease data. Bio-
mapping maps k-mers to a numerical space. In this numerical space,
decision trees are used for mining protease data. The method has been
applied to the prediction of the SARS-CoV protease cleavage sites. It
has been found in the simulation that this novel method showed great
success in two aspects: success in improving the prediction accuracy
and success in extracting the most important k-mers as templates for
decision-making. Two strategies were introduced for bio-mapping.
The first strategy referred to as ‘BM1’ selects templates from all the
k-mers. The second strategy referred to as ‘BM2’ selects templates
only from the cleaved k-mers based on the observation made in our
earlier study that most non-cleaved k-mers do not show conserved
patterns. It has been found through computer simulation that the
second strategy performed better.

It should be noted that there are many substitution matrices avail-
able, such as Blosum62 (Henikoff and Henikoff, 1992) and the most
recently developed one called the composition-adjusted matrix (Yu
et al., 2003). The composition-adjusted (for short, adjusted) has been
used in this study. It can be seen from Figure 8 that both models per-
formed equally well for the window sizes 4, 6, 8 and 10. However,
the adjusted model with the window size 12 performed badly.

It has been mentioned that the 4-mer LQSK seems the most import-
ant template selected through this inductive programming learning
in the high-dimensional space. Although different papers discussed
the use of different sizes of k-mers for the prediction, it has to be
noted that the studies were limited to a few polyproteins. The most
interesting work described in Hegyi and Ziebuhr (2002) has found
two templates (3-mers P2-P1-P1′) through experiments, i.e. LQS and
LQA. This has also been confirmed by other researchers (Ziebuhr
and Siddell, 1999; Gao et al., 2003; Thiel et al., 2003; Kiemer et al.,
2004). This means that the proposed method in this study is able to
extract the important templates for decision-making in an automatic
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Fig. 8. The comparison between the Dayhoff matrix and the composition-
adjusted (adjusted) matrices. The horizontal axis represents the TPf and the
vertical axis the PPf. The circles represent the adjusted models while the
triangles represent the Dayhoff models. It can be seen that one adjusted model
performed badly. The window size for this model is 12 and it is located on
the left. All the other four pairs (window sizes 4, 6, 8 and 10) performed
equally well.

and intelligent way and shows that computer programs are able to
assist biological experiments for scientific findings.

The last issue is about window size. It has been found that the
increased window size does not improve the sensitivity (Table 1)
when using decision trees. However, the biological experiments have
found that more than four sites are useful for inhibitor design to fight
the disease (Anand et al., 2003; Gao et al., 2003; Thiel et al., 2003;
Kiemer et al., 2004). This means that in the real use of a computer pro-
gram for computer-aided drug design, biological knowledge should
be used to alter the information provided by the decision-making
system made by a computer program.

IMPLEMENTATION
The programs were encoded in java and C on a PC containing a
500 MHz Pentium and Linux operating system.
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