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ABSTRACT

Motivation: Although the outbreak of the severe acute respiratory
syndrome (SARS) is currently over, it is expected that it will return to
attack human beings. A critical challenge to scientists from various
disciplines worldwide is to study the specificity of cleavage activity
of SARS-related coronavirus (SARS-CoV) and use the knowledge
obtained from the study for effective inhibitor design to fight the dis-
ease. The most commonly used inductive programming methods for
knowledge discovery from data assume that the elements of input
patterns are orthogonal to each other. Suppose a sub-sequence is
denoted as P,-P1-P1/-Py/, the conventional inductive programming
method may result in a rule like ‘if P; = Q, then the sub-sequence is
cleaved, otherwise non-cleaved'. If the site P; is not orthogonal to the
others (for instance, P, Py and Py/), the prediction power of these
kind of rules may be limited. Therefore this study is aimed at develop-
ing a novel method for constructing non-orthogonal decision trees for
mining protease data.

Result: Eighteen sequences of coronavirus polyprotein were
downloaded from NCBI (http://www.ncbi.nlm.nih.gov). Among these
sequences, 252 cleavage sites were experimentally determined.
These sequences were scanned using a sliding window with size k to
generate about 50 000 k-mer sub-sequences (for short, k-mers). The
value of k varies from 4 to 12 with a gap of two. The bio-basis func-
tion proposed by Thomson et al. is used to transform the k-mers to
a high-dimensional numerical space on which an inductive program-
ming method is applied for the purpose of deriving a decision tree
for decision-making. The process of this transform is referred to as a
bio-mapping. The constructed decision trees select about 10 out of
50000 k-mers. This small set of selected k-mers is regarded as a set
of decisive templates. By doing so, non-orthogonal decision trees are
constructed using the selected templates and the prediction accuracy
is significantly improved.

Availability: The program for bio-mapping can be obtained by request
to the author.

Contact: z.r.yang@exeter.ac.uk

INTRODUCTION

Severe acute respiratory syndrome (SARS) has hit the world since
late 2002 and caused more than 8000 infected patients and more
than 800 deathsin 25 countries around theworld (Yang et al., 2003).
SARS has dramatically demonstrated the wide-ranging impact on a
highly mobile world. In response to the SARS outbreak, delegates
of the 56th World Health Assembly, organized by WHO in May
2003, unanimously adopted a resolution authorizing WHO to act

on information arising from sources other than official government
notifications. In addition, WHO was asked to conduct on-the-spot
investigationsto ensurethat an affected country has sufficient control
to prevent international spread.

A novel coronavirus has been discovered to be associated with the
casesof SARS; henceitwasnamed asSARS-CoV (Rotaetal ., 2002).
SARS-CoV asanovel coronavirus(Ksiazek et al ., 2003; Marraet al .,
2003; Yount et al., 2003) isaninfectious respiratory disease. It starts
with a fever, chills, headache and body aches, followed by a dry
cough within 2—7 days. The most distinguishing feature is breath-
ing difficulty. In severe cases, radiography can provide corroborative
evidence of SARS by diagnosing pneumonia. The virus has a spher-
ical enveloped virion. The sizeis between 80 and 160 nm diameters
with asingle stranded RNA of about 30 kb, which isthe largest gen-
ome of all single stranded RNA viruses (Marra et al., 2003; Rota
et al., 2002). In the el ectron micrograph image, glycoproteins on the
virus' surface give the virions a halo or crown-like appearance, and
hence the name coronavirus.

Coronaviruses are positive-strand RNA viruses with exception-
aly large genome sizes (Hegyi and Ziebuhr, 2002). The rep-
lication and transcription of coronaviruses are encoded by the
replicase genes (Thiel et al., 2001a,b). In many studies, 15-mers
(Pg-P7-Pg-P5-P4-P3-P5-P1-Py/ Py -P3 -P4 -Ps -Pg -P7) were used to
represent corresponding 3CLP cleavage sites in the replicase
polyproteins (Merrifield, 1965). It was indicated in Hegyi and
Ziebuhr (2002) and Padlai et al. (1989) that the conserved proto-
typic viruses suggest that the order of cleavage events may occur
in al coronaviruses. The structure and dynamics of SARS-CoV
protease have been analysed using a molecular dynamics simula-
tion technique (Lee et al., 2003), where molecular docking has
been carried out in order to search for potential SARS-CoV pro-
tease inhibitors. Previously characterized coronaviruses encode two
papain-like cysteine proteases (PL 1P and PL 2°™), which cleavethe
N-proximal polyprotein regions at three sites (Bonilla et al., 1997;
Gorbalenya et al., 1991; Herold et al., 1998; Thiel et al., 2001b;
Ziebuhr et al., 2001). The recent studies show that 3C-like cysteine
protease (3CLP") cleaves the central and C-proximal regions at 11
conserved sites (Hardy et al ., 2002; Hegyi and Ziebuhr, 2002; Tibbles
et al., 1999; Ziebuhr et al., 2000).

It is found that the SARS-CoV is unrelated to any well-
characterized human coronaviruses although the genome organiza-
tionissimilar to them (Ksiazek et al., 2003; Marraet al., 2003; Rota
etal., 2002). Besides, al the SARS-CoV genomes sequenced to date
demonstrate surprisingly little variation with mutations at only ~30
nucleotides. Based on this, Scientists suggest that the virus entered

2644

© The Author 2005. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oupjournals.org


http://www.ncbi.nlm.nih.gov

Mining SARS-CoV protease cleavage data

the human population recently from a single point source through
mutation. The study has also shown that the SARS-CoV issimilar to
acivet CoV. It isthen hypothesized that the virus could have jumped
the species barrier from civets to humans and the SARS-CoV was
mutated from non-human coronavirus (Hu et al., 2003).

SARS-CoV gene expression is expected to involve complex tran-
scriptional, trandational and post-translational regulatory mechan-
ismswhose molecular detailsare still unknown (Thiel et al., 2001b).
It has been indicated that although vaccines are available for some
animal coronaviruses, some of them can promote the disease when
vaccinated animals are exposed to the wild-type virus. Moreover,
antibody enhancement of disease is a potential risk of SARS vac-
cines in humans (Holmes, 2003; Lee et al., 2003). This means that
it will take many yearsto develop agood preventive vaccine against
SARS-CoV. It was suggested by Lee et al. (2003) to optimize the
use of available drugs as inhibitors through studying the enzyme
conformation. A recent study used a frequency estimation method
to detect the cleavage sites within a specified region based on the
knowledge of averagelength of cleavageproducts. (Gao et al., 2003).
Inthat study, 12-mers Pg-Ps5-Py-P3-Po-P1-Py/ -Po -P3 -Py -Ps -Py and
8-mers P4-P3-P5-P1-Py-Py-P3y-Py were used for PLP™ and 3CLP™©
cleavage sites, respectively.

According to our previous experience in anaysing protein
sequences, the prediction capability of the functional sites (cleavage
sitesin thisstudy) depends on theinherent patternsin sub-sequences.
If the patternsare not complicated (i.e., the sitesin the sub-sequences
are orthogonal to each other), simple rules can be explored by using
inductive programming methods; the prediction of phosphorylation
sites in proteins is such a case (Berry et al., 2004). However, most
casesare not simple. The success of prediction of thefunctional sites
needs more advanced investigation (Thomson et al., 2003; Yang and
Chou, 2004a,b). A novel method is therefore proposed in this study
for mining sub-sequence data. Instead of using the sites in k-mers
as the inputs to an inductive programming model, it is proposed to
transform k-mers to a high-dimensional numerical space through a
mapping. An inductive programming method is then used in this
high-dimensional space. The transform of k-mers needs a proper
function to ensure the biological content in the k-mers can be main-
tained for datamining. In this study, the bio-basis function proposed
in Thomson et al. (2003) is used for this mapping, referred to as
a bio-mapping. With the bio-mapping, each k-mer is represented
using a vector denoting its position in this high-dimensional space.
After themapping, aninductive programming isemployed regarding
the mapping vectors as the inputs. The modelling process itself will
select the most informative and decisive k-mers to construct a non-
orthogonal decision tree. These selected k-mers are then regarded as
the templates for decision-making. Importantly, these templates are
the representatives for the training k-mers, and hence the knowledge
hidden in the training k-mers. Instead of resulting in rules like ‘if
P; = Q, then the k-mer cleaved’, non-orthogonal decision treeswill
haveruleslike'if aquery k-mer issimilar to acleaved template, then
the k-mer is cleaved'.

In this study, 18 coronavirus polyproteins were downloaded from
GeneBank (NCBI, http://www.ncbi.nim.nih.gov) for the investiga-
tion. After applying the proposed method to this data, it is found
that the sensitivity is greatly increased by 30% while the specificity
is maintained. Besides, the proposed method even outperformed the
early work in the same area using neural networks (Kiemer et al.,
2004) by 7% in the sensitivity with a lightly improved specificity.

SYSTEMS AND METHODS
Data

Eighteen coronavirus polyproteinswhose sequences are avail able were down-
loaded from the GeneBank (NCBI, http://www.ncbi.nim.nih.gov). They
are NC_004718 (TOR2), NC_002645 (HCoV 229E), NC_001846 (MHV),
NC_003045 (BCoV), NC_001451 (IBV), NC_002306 (TGEV), NC_003436
(PEDV), U_00735 (BCoVM), AF391542 (BCoVL), AF220295 (BCoVQ),
AF208067 (MHVM), AF201929 (MHV2), AF208066 (MHVP), AY 278741
(Urbani), AY 278488 (BJ01), AY 278554 (CUHK-W1), AY 282752 (CUHK-
su10) and AY 291451 (TW1). Each has 14 cleavage sites. In total, there are
252 cleavage sites.

Decision trees

Decision trees are a kind of inductive programming algorithms (Breiman
et al., 1984; Quinlan, 1988). They select a hyper-plane orthogonal to an axis
of a variable through maximizing its ‘purity’. If a hyper-plane can make
100% separation between patterns from two classes with respect to a certain
threshold value, its purity is 1. Otherwise, the purity value will be <1. Each
hyper-plane divides a given region into two disjoint sub-regions. If each sub-
region only comprisesone classof patterns, the hyper-planehasapurity value
as 1. The process of selecting hyper-planes continuestill each resulting sub-
regionispurefor oneclass. Thenodewhichispurefor oneclassisreferred to
asaleaf. Intermsof this, each leaf hasan associated class|abel. Fromthis, an
inductive model is constructed and the training stage is completed. Various
tree-pruning methods can be used to prevent over-fitting. In the testing stage,
the hyper-planeswill progressively lead anovel patterninto aleaf. Up to this
end the classification of this novel pattern is completed through assigning
the class label associated with the leaf to the novel pattern. Figure 1 shows
adecision tree model, where there are two variables and the whole region is
divided into six sub-regions. The first hyper-plane makes a separation using
thethreshold value a for the variable x. Both resulting sub-regions on the | eft
and right of the hyper-plane are not pure. The second hyper-plane dividesthe
|eft sub-region generated by thefirst hyper-planeinto two smaller sub-regions
using the threshold value b for the variable y. The upper sub-region has been
pure for one class while the lower sub-regionis still not pure and needs more
separation.

Decision tree algorithms have been used for bioinformatics research cov-
ering many areas, for instance the prediction of Hepatitis C virus protease
cleavage sites (Narayanan et al., 2002) and the prediction of phosphoryla-
tion sites (Berry et al., 2004). In Kretschmann et al. (2001), C4.5 was used
for protein annotation through aligning novel proteins with SWISS-PROT
databank. C4.5 was also used for the prediction of phenotypes associated
with Saccharomyces cerevisiae geneson the basi s of gene ontology functional
annotations from the relevant databanks (King et al., 2003). Decision trees
were compared with support vector machinesfor the prediction of theimpact
of the single nucleotide polymorphisms on protein function (Krishnan and
Westhead, 2003). The study shows that the decision trees have the advantage
of generating interpreting rules although they have alower prediction accur-
acy than support vector machines. InLi et al. (2003), decision treeswere used
for identifying genesrelated with cancer, and hence they provided knowledge
for cancer diagnosis. King and his colleague studied the use of C4.5 for dis-
covering rules for the prediction of the ORFs whose function is unknown
(Clare and King, 2003). The dternative decision tree (Freund and Mason,
1999) was used for predicting the genetic regulatory response (Middendorf
et al., 2004). In Selbig et al. (1999), decision trees were used for the predic-
tion of secondary structures. Decision trees were also used in searching short
and statistically significant emerging patternsfor cancer diagnosisusing gene
expression profiles (Boulesteix et al., 2003).

Bio-mapping

The bio-mapping proposed in this study is based on the use of the bio-basis
function (Thomson et al., 2003). The basic principle of the bio-basisfunction
isthe normalization of pairwise homology alignment scores. Figure 2 shows
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Fig. 1. Decision tree demonstration. The first hyper-planeis orthogonal to x with athreshold a and its purity is <1. The second hyper-planeis orthogonal to y
with athreshold » and its purity is still <1. The third hyper-plane is orthogonal to y with athreshold c. The fourth and fifth hyper-planes are orthogonal to x

with thresholds d and e. Their purity values are 1.
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Fig. 2. Anillustration of the bio-mapping. The query 4-mer LQSE with unknown status (cleaved or non-cleaved) is mapped to a two-dimensional numerical
space with two templates. These two templates are supposed to have the known status, cleaved or non-cleaved. As LQSE ismore similar to LQSK than YKAE,
its mapping magnitude on the axis of the template LQSK is larger than that on the axis of the template YKAE; see the right side in the figure.

a query 4-mer (LQSE) aligned with two templates (LQSK and YKAE) to
produce two homology alignment scores a (56 + 48 + 40 + 32 = 176) and
b (28 + 36 + 36 + 48 = 148), respectively. It will beillustrated later in this
paper that LQSK and LQSE are cleaved 4-mers. The values 56, 48, 40, 32,
28 and 36 are obtained from the Dayhoff matrix (Johnson and Overington,
1993). For instance, the similarity between the amino acids L and L is 56
whilst the similarity between the amino acids L and Y is28. Becausea > b,
it is believed that the query 4-mer shares more functional similarity with the
first (cleaved) template.

Themethod of bio-mapping hasbeen successfully used for the prediction of
Trypsin cleavage sites (Thomson et al., 2003), HIV cleavage sites (Yang and
Chou, 2004b; Yang and Thomson, 2005), hepatitis C virus protease cleavage
sites (Yang and Berry, 2004), disordered protein prediction (Thomson and
Esnouf, 2004; Yang et al., 2005), phosphorylation site prediction (Berry et al .,
2004), the prediction of the O-linkage sitesin glycoproteins (Yang and Chou,
20044) and the prediction of caspase cleavage sites (Yang, 2005). A thorough
review can be seen in Yang (2004).

In this study, the bio-basis function is employed for bio-mapping; i.e.
for transforming the given k-mers to a high-dimensional numerical space

on which an inductive programming method is employed for constructing
a non-orthogonal decision tree. In a constructed decision tree, it is expec-
ted that the number of nodes will be much less than the number of given
k-mers. As each node employs one k-mer, the selection of the most informat-
ive and decisive template is automatically completed in running an inductive
programming method. In other words, the less informative k-mers are auto-
matically removedinlearning. It isalso expected that the prediction accuracy
of the non-orthogonal decision treeswill not be lower than that of orthogonal
trees constructed using the sitesin k-mers as inputs.

M ethods

Sep 1. Sequences of 18 polyproteins are scanned using a sliding window
with the size of k (k is always an even number). Each scan results in one
k-mer denoted as Py j2- - - - - Py-P1-Py/-Py- - - - - Py2 . A k-mer is classified as
a cleaved or positive one if there is a cleavage site between P; and Py, and
otherwiseasnon-cleaved or negative. Thepreviousreportshaveused different
window sizes(Gao et al ., 2003; Hegyi and Ziebuhr, 2002; Herold et al., 1998;
Merrifield, 1965; Pallai et al., 1989; Thiel et al., 2001a,b, 2003; Ziebuhr
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et al., 2000, 2001). The window size is varied in this study from 4 to 12
(the largest in recent literature) to investigate the impact of window size
on the prediction performance. After this process, about 50000 k-mers are
generated.

Sep 2. All thek-mersaredividedinto 10 foldsfor 10-fold cross-validation.
In each run, nine folds of k-mers are used for constructing orthogonal and
non-orthogonal decisiontrees. The constructed treeistested onthe remaining
fold of k-mers.

Sep 3. Map ninefolds of k-mersinto a high-dimensional numerical space
using the bio-mapping for constructing non-orthogonal decision trees. There
are two bio-mapping strategies:

Strategy 1: Both positive and negative k-mers are candidates for template
selection.

Strategy 2: Only positive k-mers are candidates for template selection. The
use of this strategy is based on the observation that negative k-mers are
normally not conserved to any pattern (Yang and Berry, 2004).

Sep 4. Construct decision treesin the mapped numerical space. From this,
draw and analyse the constructed decision trees. The free software package
C4.5isused in this study for tree construction.

Sep 5. The prediction performance is assessed using five indicators, the
true positive fraction (TPf), true negative fraction (TNf), total accuracy
(Total), Matthews' correlation coefficient (MCC) (Matthews, 1975) and the
positive prediction power (PPf). Suppose true negatives, true positives, false
negativesand falsepositivesarereferredtoas TN, TP, FN and FP, respectively,
the definitions of these indicators are as follows:

TN = — N
T TIN+FP
TR = 1P
TP+FN
TP
PPl = ——
TP+FP
Totad = — IN+TP
TN+FP+TP+FN
TP x TN — FN x FP
MC

= J(ON+FP)(TN + FN)(TP + FP)(TP + FN)

The positive prediction power measures the likelihood that a predicted pos-
itive isthe true positive. Matthews' correlation coefficient measures how the
prediction correlates with the real target value. Matthews' correlation coeffi-
cient has been widely used in biology and bioinformatics (Gorodkin, 2004).
Thereisarisk of losing information when using the total accuracy when the
disparity in the datais large, which is very common in analysing biological
data; the Matthews correlation coefficient remedies this problem. When its
valueis 1, it means a perfect prediction; if it is O, it means for a completely
random assignment. The larger the value, the better the prediction perform-
ance. In the assessment, the combination of the TPf and the PPf can be used
to visualize the model comparison.

RESULT

Figure 3 showsthe performance of three setsof model susing window
size 4, where ‘NM’ means the models without any bio-mapping and
hence orthogonal decision trees, ‘BM1' the models using the first
bio-mapping strategy and ‘BM2’ the second bio-mapping strategy.
It can be seen that ‘BM2' worked the best. The NM models did not
work well sincethey areunableto predict cleaved k-merswell. When
thewindow sizeisincreased, the performance was similar in general
(data not shown).

Figure 4 showsacomparison among three sets of model susing TPf
as the horizontal axis and PPf as the vertical axis. Each set has five
points representing five model s each of which usesadistinct window

Window Sized

15 i TS = _E 'E
@ 08 +8Y | fF---- - - &
& 06 - - o M- s - |SNM
§ o BM1
E 04 4 7|0 BM2
8 p2 - b L-

D = T T T T 1

THf TRf Total MC PPf

Measurement

Fig. 3. The performance of 10-fold cross-validation performance. The hori-
zontal axis represents the measurement indicators and the vertical axis the
performance. Although ‘NM’ gives a high total prediction accuracy, its
sengitivity is very low (<70%). For al the measurement indicators, ‘BM2’
outperformed ‘BM1' meaning the positive k-mers areimportant for template
selection.

PPf

Fig. 4. A comparison among three sets of models using the sensitivity and
PPf. The horizontal axis represents sensitivity and the vertical axis the PPf.
Any model located between the diagonal line from the top-left corner to the
bottom-right corner isafailed one. The best model, without doubt, islocated
on the top-right corner.

size. The closer to the top-right corner it is, the better the model’s
performance. It can be seen that the set of BM2 models performed
the best. The p-value of the z-test between the NM and BM1 models
is 0.01 meaning that the null hypothesis that the BM1 model does
not improve the prediction accuracy compared withthe NM model is
denied statistically. The p-value of the r-test between the BM1 and
BM2 models is 0.02 also meaning that the null hypothesis that the
BM2 model does not improve the prediction compared with BM1
model is denied statistically.

Because the performance of the BM1 model decreases when the
window sizeincreases, we use the window size 4 for the comparison
of the constructed trees. Shown in Figure 5 is the constructed BM 1
tree (or model) for the window size 4, where ‘f (s,LQSK, 1)’ means
the output of a bio-basis function using a cleaved (marked by ‘1’,
otherwise ‘0') 4-mer LQK, ‘<= 0.543351" means the condition
for transforming to one of two sub-trees, Y means that the condition
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T(s,LQSK,1)
<=0.543351
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Fig. 5. The extracted BM1 decision tree. The triangles represent the non-
cleaved class and the circles the cleaved one. Each box uses one template
whichareeither cleaved or non-cleaved 4-mers. Thebio-basisfunctionisused
to measurethe similarity between aquery 4-mer and atemplate. In calculating
the similarity, a substitution matrix like the Dayhof matrix is used. A branch
node or the root node is used for transforming a decision-making process to
an appropriate sub-tree. Each leaf node is used for decision-making.

is satisfied, N means that the condition is not satisfied and the tri-
angles represent the class of non-cleaved 4-mers and the circles the
class of cleaved 4-mers. Ten of about 50000 4-mers were selected
demonstrating their importancein decision-making. Fiveare cleaved
and five are non-cleaved ones. The root node uses the cleaved 4-mer
LQK as the template. A query 4-mer without confirmed cleavage
information is fed to the root node. If the similarity between the
query 4-mer and LQ| K is <0.543351, the decision is passed by to
the sub-tree using GGAP as the root for further comparison. Sup-
pose the query 4-mer has been with the leaf node associated with the
non-cleaved 4-mer DYLA, we can investigate if the query 4-mer is
cleaved or not. If the similarity between the query 4-mer and DYLA
is <0.453845, the query 4-mer is labelled as a cleaved one as it is
dissimilar to a non-cleaved 4-mer and otherwise as a non-cleaved
one. Suppose the query 4-mer has been with the leaf node associ-
ated with the cleaved 4-mer LQAL, we can also investigate if the
query 4-mer is cleaved or not. If the similarity between the query
4-mer and LQAL is <0.559898, the query 4-mer is |abelled as non-
cleaved asit isdissimilar to acleaved 4-mer; otherwiseitislabelled a
cleaved one.

Asacomparison, Figure 6 showsthe constructed BM2 tree, where
11 cleaved 4-mers are sel ected asthe templates for decision-making.
Interestingly, the root node again selects the same cleaved 4-mer
LQSK asthe BM1 tree meaning that this 4-mer isthe most important
one for decision-making.

We then investigate the individual 4-mers which are selected as
templates in either the BM 1 or the BM2 model. Figure 7 shows the
probability density functions of two 4-mers selected as templatesin
the decision trees, wherethe 4-mer LQSK was always selected asthe
template for the root node in both trees while DYLA was selected for
oneof theleaf nodes. Notethat thethin linesrepresent the probability
density function of the similarity between the non-cleaved 4-mers
and atemplate, and the thick linesthe probability density function of
the similarity between the cleaved 4-mers and a template. It can be

¥

f(s,LQSK,1)
<=0.543351

! N
1(s,GGAP,1) f(s,VQSV,1)
<=0.532502 <=0.527202

Y ' y N, y ¥
<=0).537949 c-d.&i! «:-a.m&
Y t+N Yy N N+ t Y
s i R
<=0.532592 d.‘

Y N N 4 ' Y

A r(s,l.ns%.aizg o 1(s,MQSA,1)
<=0.532592 <=0.496585
Yy N

1 Yy tN
A 1(s,LQSK,1)
<=0.537944

A Q@
Y| ' N
A @

Fig. 6. The extracted BM2 decision tree. The triangles represent the non-
cleaved class and the circles the cleaved class. Each box uses one template
which are always cleaved 4-mers. The bio-basis function is used to meas-
ure the similarity between a query 4-mer and a template. The branch nodes
including theroot node are used for transforming the decision-making process
to the appropriate sub-trees. The leaf nodes are used for decision-making.
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Fig. 7. The probability density functions of two sub-sequences which are
selected as templates in the decision trees. Each horizontal axis represents
the similarity between a query k-mer (either cleaved or non-cleaved ones)
and atemplate. The vertical axes represent the probability density values. If
two probability density functions are separated well, the templateis believed
to discriminate well between cleaved and non-cleaved 4-mers.
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Table 1. Sensitivity and specificity of BM1 and BM2 models

Window BM1 BM2
Specificity (%) Sensitivity (%) Specificity (%) Sensitivity (%)

4 98.06+1.50 95.504+3.78 97.9442.22 98.09+2.51
6 96.824+-2.09 92.474+6.04 97.68+1.44 94.374+2.26
8 95.68+2.36 92.44+9.97 98.77+1.08 95.50+7.06
10 94.844-2.39 87.48+6.62 97.41+1.70 90.76+6.54
12 95.22+1.84 86.284+5.35 97.63+1.27 94.11+4.33

seen that the template LQSK shows high discriminating capability.
Thisiswhy it is always selected as the template for the root node.

In Kiemer et al. (2004), the sensitivity was only 87% and the spe-
cificity was 99%. The sensitivity and specificity values of the BM1
and BM2 models are listed in Table 1. From this table, we can aso
see that the performance of BM1 decreases when the window size
increases while the performance of BM 2 maintai ns unchanged when
changing thewindow size. Thismay result from theinclusion of long
non-cleaved k-mers which disrupted the modelling performance in
BM1 models.

DISCUSSION

Thispaper has presented anovel method called * bio-mapping’ based
on non-orthogonal decision trees for mining protease data. Bio-
mapping maps k-mersto anumerical space. In this numerical space,
decisiontreesare used for mining proteasedata. Themethod hasbeen
appliedto theprediction of the SARS-CoV protease cleavage sites. It
has been found in the simulation that this novel method showed great
successin two aspects: successin improving the prediction accuracy
and success in extracting the most important k-mers as templates for
decision-making. Two strategies were introduced for bio-mapping.
Thefirst strategy referred to as ' BM1' selectstemplates from al the
k-mers. The second strategy referred to as ‘BM2' selects templates
only from the cleaved k-mers based on the observation made in our
earlier study that most non-cleaved k-mers do not show conserved
patterns. It has been found through computer simulation that the
second strategy performed better.

It should be noted that there are many substitution matrices avail-
able, such as Blosum62 (Henikoff and Henikoff, 1992) and the most
recently developed one called the composition-adjusted matrix (Yu
et al., 2003). The composition-adjusted (for short, adjusted) has been
used in this study. It can be seen from Figure 8 that both models per-
formed equally well for the window sizes 4, 6, 8 and 10. However,
the adjusted model with the window size 12 performed badly.

It has been mentioned that the4-mer LQSK seemsthe most import-
ant template selected through this inductive programming learning
in the high-dimensional space. Although different papers discussed
the use of different sizes of k-mers for the prediction, it has to be
noted that the studies were limited to a few polyproteins. The most
interesting work described in Hegyi and Ziebuhr (2002) has found
two templates (3-mers P,-P;-Py/) through experiments, i.e. LQSand
LQA. This has also been confirmed by other researchers (Ziebuhr
and Siddell, 1999; Gao et al., 2003; Thiel et al., 2003; Kiemer et al.,
2004). This means that the proposed method in this study is able to
extract the important templates for decision-making in an automatic

100 T ] I I |
Bh
0.95 1---t---i-—— L
o /N
0.90 *——-—f—-—i-—-—f—‘—'
I I I
oy ] T
o 0.85 ':r ’:r *:r T i

| |
080 | | | 1 I
| — Dayhoff T T
| |

0.75 O—Adjusted =7
| |
0.70 - |
0.70 0.75 0.80 0.85 0.90 0.95 1.00

TPf

Fig. 8. The comparison between the Dayhoff matrix and the composition-
adjusted (adjusted) matrices. The horizontal axis represents the TPf and the
vertical axis the PPf. The circles represent the adjusted models while the
trianglesrepresent the Dayhoff models. It can be seen that one adjusted model
performed badly. The window size for this model is 12 and it is located on
the left. All the other four pairs (window sizes 4, 6, 8 and 10) performed
equally well.

and intelligent way and shows that computer programs are able to
assist biological experiments for scientific findings.

The last issue is about window size. It has been found that the
increased window size does not improve the sengitivity (Table 1)
when using decision trees. However, the biological experimentshave
found that more than four sitesare useful for inhibitor design to fight
the disease (Anand et al., 2003; Gao et al., 2003; Thiel et al., 2003;
Kiemer etal., 2004). Thismeansthat inthereal useof acomputer pro-
gram for computer-aided drug design, biological knowledge should
be used to alter the information provided by the decision-making
system made by a computer program.

IMPLEMENTATION

The programs were encoded in java and C on a PC containing a
500 MHz Pentium and Linux operating system.
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